Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Oct;75(10):4911–4915. doi: 10.1073/pnas.75.10.4911

Asymmetric displacement currents in giant axons and macromolecular gating processes.

P L Dorogi, E Neumann
PMCID: PMC336231  PMID: 283402

Abstract

An electrical-chemical gating model is proposed that describes basic observations on asymmetric displacement currents and transient Na+ conductivity changes in squid giant axons. A previously developed single-parameter analysis of primary voltage clamp data yields normal mode relaxation times that agree well with the time constants of asymmetric capacitative currents, suggesting these currents as gating currents associated with charge displacement in a subunit of a complex gating system. The physical-chemical approach correlates the opening of Na+ channels with charge-charge interactions amongst displaceable membrane charges or dipoles and conformational changes in gating macromolecules. The model covers the close correspondence between the voltage dependence of the peak value of the Na+ conductance change and that of the square of the total displaced charge for small depolarizing voltage steps. The quadratic charge relationship also describes the two-mode relaxation of asymmetric displacement currents; the transiently inhibited return transition of two-thirds of the displaced charge after a prolonged depolarization is interpreted to reflect a dissipative chemical gating process.

Full text

PDF
4911

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Kinetic properties and inactivation of the gating currents of sodium channels in squid axon. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):449–458. doi: 10.1098/rstb.1975.0022. [DOI] [PubMed] [Google Scholar]
  4. Bezanilla F., Armstrong C. M. Properties of the sodium channel gating current. Cold Spring Harb Symp Quant Biol. 1976;40:297–304. doi: 10.1101/sqb.1976.040.01.030. [DOI] [PubMed] [Google Scholar]
  5. Goldman L. Kinetics of channel gating in excitable membranes. Q Rev Biophys. 1976 Nov;9(4):491–526. doi: 10.1017/s0033583500002651. [DOI] [PubMed] [Google Scholar]
  6. Goldman L., Schauf C. L. Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons. J Gen Physiol. 1973 Mar;61(3):361–384. doi: 10.1085/jgp.61.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keynes R. D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 1974 Jun;239(2):393–434. doi: 10.1113/jphysiol.1974.sp010575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keynes R. D., Rojas E. The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. J Physiol. 1976 Feb;255(1):157–189. doi: 10.1113/jphysiol.1976.sp011274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meves H. The effect of holding potential on the asymmetry currents in squid gaint axons. J Physiol. 1974 Dec;243(3):847–867. doi: 10.1113/jphysiol.1974.sp010780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neumann E., Bernhardt J. Physical chemistry of excitable biomembranes. Annu Rev Biochem. 1977;46:117–141. doi: 10.1146/annurev.bi.46.070177.001001. [DOI] [PubMed] [Google Scholar]
  14. Nonner W., Rojas E., Stämpfli R. Gating currents in the node of Ranvier: voltage and time dependence. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):483–492. doi: 10.1098/rstb.1975.0024. [DOI] [PubMed] [Google Scholar]
  15. Rawlings P. K., Neumann E. Physical-chemical approach to the transient change in Na ion conductivity of excitable membranes. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4492–4496. doi: 10.1073/pnas.73.12.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rudy B. Sodium gating currents in Myxicola giant axons. Proc R Soc Lond B Biol Sci. 1976 Jun 30;193(1113):469–475. doi: 10.1098/rspb.1976.0059. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES