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The ‘‘pathological’’ energy function E(u) 5 u2 for u Þ 0, E(0) 5
1, has no minimizer. As u decreases to 0, the energy also
decreases, but there is no way to achieve the value 0. Although
examples like this might seem to be unimaginably far from
scientific thought, they are at the heart of a new approach (1) to
understand the complex microstructure and macroscopic re-
sponse of materials that undergo phase transformations. The free
energy of such materials typically has no minimizer, and the
observed microstructures (complex, fine-scale patterns of do-
mains of different atomic lattice structure as shown below in a
micrograph of CuAlNi by C. Chu and R.D.J.; Fig. 1) have their
origin in the material’s ultimately futile attempt to find the
minimum energy state (2).

The lack of a ground state prohibits prediction of the macro-
scopic response from microscopic data via the standard proce-
dure: determine the free energy, find the minimizing state, and
evaluate its macroscopic properties. Emerging mathematical
methods, linked to profound work in the 1940s by L. C. Young
and recently surveyed in (3), nevertheless deliver well defined
macroscopic quantities, obtained via averaging over all low-
energy states. One area where predictions obtained in this new
way have played a role is the recent synthetization of a new
magnetostrictive material (4, 5) whose magnetostrictive strain is
50 times larger than that of giant magnetostrictive materials
(formerly those with the largest strain).

Energy Functions and Energy Wells. The materials on which
the new coarse-graining methods have been brought to bear are
alloys exhibiting a martensitic transformation. In this transfor-
mation, below a critical temperature, the unit cell of the crystal
undergoes a bifurcation into different, lower symmetry unit cells.
(Not just thousands of alloys but also ceramics and proteins
undergo this transformation.) The relevant microscopic param-
eters (transition temperature, symmetry changes, and lattice
parameters) can be regarded as known from atomic measure-
ments and can be subsumed into a cell energy function F(F, u)
depending on temperature and on the 3 3 3 matrix F 5 (e1, e2,
e3) of lattice vectors of the cell. A macroscopic sample can be
described by a continuous vector field y(x) indicating the position
of the lattice site formerly at x (martensitic transformations are
coherent, i.e., the atomic bonds stay intact). The complicated
cooperative effects between the cells, which result in structures
like the one shown above, can be explained via minimization of
the total free energy (1)
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where x varies over the specimen V. (Think of the integral as a
sum over unit cells with corner x and of the derivatives ­y

­xi
as the

corresponding lattice vectors.) The cell energy F is minimized on

those triples F of lattice vectors that correspond to the stable unit
cells at temperature u. Typically, there is only one stable cell or
‘‘energy well’’ at high temperatures (Fig. 2 Upper Left) and many
at low temperatures (Fig. 2 Lower Left). For example, for a
cubic-to-tetragonal transformation as in InTl, the high-
temperature well is of the form F 5 RI where I 5 diag(1, 1, 1) and
R is a rotation (note: rotations leave the free energy invariant).
This well is shown as the dashed circle in Fig. 2 Right. Below the
transition temperature, there are three wells, shown as solid
circles, which correspond to elongation of the unit cell along
either of the three crystallographic axes and are given by RU1 5
R diag(h1, h2, h2), RU2 5 R diag(h2, h1, h2), and RU3 5 R diag(h2,
h2, h1) where the hi are the transformation stretches.

From Energy Wells to Nonattainment. Whereas F is a function
of unit cells, i.e., a nine-dimensional energy landscape, E is a
function of patterns y, i.e., an infinite-dimensional energy land-
scape. Depending on applied fields and loads, minimizing pat-
terns can be highly complex or may in fact not exist at all, despite
the simple-looking formula for E. It is instructive (6) to reduce to
one deformation component y(x1, x2) depending on two spatial
variables, and to consider the case of two wells F 5 ((­y­x1)2 2
1)2 1 ((­y/­x2)2) and of four wells [F 5 ((­y/­x1)2 2 1)2 1
((­y/­x2)2 2 1)2]. The behavior of the total free energy
E5E0

1E0
1 F(­y/­x1,­y/­x2) dx depends in a spectacular way on the

linear deformation y(x) 5 Fx prescribed on the boundary (6). The
boundary condition, which idealizes a hard loading device, en-
forces the average strain F, in competition with the locally
preferred strains (61, 0) in the two-well case (Fig. 3 Left) and (61,
61) in the four-well case (Fig. 3 Right). If F 5 (F1, F2) lies in the
white parameter region, the energy is minimized by the homo-
geneous deformation y(x) 5 Fx. In the lightly shaded region, the
energy is minimized by a heterogeneous state. In the dark region,
there is no minimizer, finer and finer microstructure being
necessary to lower the energy. [Other natural examples of non-
attainment arise e.g., in quantum chemistry or optimal control
problems (7).]

Coarse-Graining in Case of Nonattainment. If the energy
function E exhibits nonattainment, the mathematical object re-
placing a minimizing deformation y(x) is a probability distribution
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FIG. 1. Typical microstructure of CuAINi.
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nx of values of the deformation gradient Dy(x) (called Young
measure) obtained by averaging over low-energy states (8). For
the two-well example (see above) with F 5 0, the optimal
distribution is Dy(x) 5 (1, 0) and Dy(x) 5 (21, 0) with equal
probability 1/2, representing physically a microstructure of 50
percent of each phase. (Ongoing research on such ‘‘generalized
solutions’’ of minimization problems is described in (3). Macro-
scopic quantities are obtained by taking expected values, e.g., the
macroscopic energy density is the expected value of F(Dy(x), u).

A fascinating and largely unresolved area is that of kinetic
response. It was found recently that a wealth of nonminimizing
patterns enjoy unexpected long-time stability under small per-
turbations (9), whereas it had been shown earlier how the
assumption of many metastable states implies a novel macro-
scopic kinetic law different from that obtained by averaging the
underlying energy surface (10). An instructive example is a simple
quadratic energy with superimposed small wiggles of length scale
«, E«(u) 5 u2/2 1 a« sin(u/«), on which we let a particle move by
steepest descent kinetics u̇«(t) 5 2E«9(u(t)) (10). Averaging out
the wiggles of the energy surface leads to the energy lim« 3

0E«(u) 5 E(u) 5 u2/2 and the kinetic law u̇(t) 5 2E9(u(t)), which
is incorrect. The correct macroscopic law is u̇(t) 5 =u2 2 a2 for
u # 2a, u̇(t) 5 0 for 2a , u , a, and u̇(t) 5 2=u2 2 a2 for
u $ a.

Predictions About Shape-Memory Alloys. Some martensitic
materials display the amusing and useful shape-memory effect
(SME), where a material subjected to severe deformation
below a critical temperature jumps back to its original shape on
heating. But not all martensites display this phenomenon.
Why? Simply stated, the SME requires some very special
microstructural features and this in turn requires that the
energy wells be arranged in a very special manner. The
methods described above have been used to turn this idea into
explicit criteria: the SME requires that the transformation
stretches (like h1, h2 above) satisfy an explicitly known but very
restrictive condition and the high temperature phase have
cubic crystallographic symmetry (11, 12). Furthermore, the
extent of the SME depends on the way the specimen is created.
Many alloys display the SME as carefully prepared single-
crystal specimens; however, only TiNi displays a large SME in
commercially prepared wires, tubes, and strips. The latter
specimens are polycrystals, composed of innumerable small
single crystals or grains with possibly differing orientation. It
turns out that the grains behave in a most uncooperative
manner and destroy any SME unless the low-temperature
phase has small crystallographic symmetry (13) and the texture

(the size, shape, and orientation of grains) is just right. The first
requirement dooms virtually all materials except TiNi and
some Cu-based alloys like CuZnAl and CuAlNi, and the
second requirement dooms the Cu-based alloys when made as
wires, tubes, and strips (13, 14).

Current interest in micromachines has inspired many experi-
mental efforts to make thin-film shape-memory materials, and
most of these have concentrated on TiNi with limited success. A
recent calculation shows that two common ways of making these
films, sputtering and meltspinning, produce undesirable texture in
TiNi. A better alternative is to make the (previously condemned)
Cu-based alloys by meltspinning (13). Finally, theory has also
pointed out the great potential of single-crystal thin films and
proposed novel designs of micropumps (15, 16). Thus, these
theoretical methods provide a road map for materials selection
and design.

New Materials. The typical procedure in science, explained
above, is to begin from the real material, describe its energy-well
structure, find minimum energy states, predict the microstructure
and, in some cases, the material behavior, and then compare with
experiment. But theory can also be used in an inverse way. We
begin with a theoretical concept of an interesting property or
effect, formulate a hypothetical energy-well structure that pro-
duces this effect via energy minimization or the solution of a
dynamic theory, propose a hypothetical material, then go to the
laboratory and actually make the material. The inverse procedure
is one of the most exciting for theory, and for materials science,
as it can lead to an entirely new material that might not have been
anticipated by purely experimental approaches.

The inverse procedure has been followed for the development
of new ‘‘ferromagnetic shape-memory’’ materials (4), materials
that combine ferromagnetism and shape-memory. The free en-
ergies of such materials are sensitive to deformation (through the
deformation gradient), magnetization, and temperature. As the
temperature is decreased, they exhibit a set of energy wells
associated with a ferromagnetic transition; with a further de-
crease in temperature these are joined by another set of wells
associated with a martensitic transformation. All of these wells
live on a complex 12-dimensional energy landscape, which,
however, is precisely restricted by conditions of symmetry and
rotational invariance. The central question for ferromagnetic
shape memory is ‘‘What energy-well structures lead to a large
change of macroscopic shape when a magnetic field is applied to
the specimen?’’ An analysis of this question, and its application to
a program of alloy development, have now produced materials
that exhibit, under moderate field, about 50 times the field-
induced strain of giant magnetostrictive materials. Until some 6
months before this Symposium, giant magnetostrictive materials
exhibited the largest strain known.
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FIG. 2. Multiwell energy.

FIG. 3. Attainmentynonattainment diagram.
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