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Abstract

The Suppressor of Fused (SUFU) protein plays an essential role in the Hedgehog (HH) signaling pathway, by regulation of
the GLI transcription factors. Two major isoforms of human SUFU are known, a full-length (SUFU-FL) and a carboxy-terminal
truncated (SUFU- DC) variant. Even though SUFU- DC is expressed at an equivalent level as SUFU-FL in certain tissues, the
function of SUFU-DC and its impact on HH signal transduction is still unclear. In two cell lines from rhabdomyosarcoma, a
tumor type associated with deregulated HH signaling, SUFU-DC mRNA was expressed at comparable levels as SUFU-FL
mRNA, but at the protein level only low amounts of SUFU-DC were detectable. Heterologous expression provided support
to the notion that the SUFU-DC protein is less stable compared to SUFU-FL. Despite this, biochemical analysis revealed that
SUFU-DC could repress GLI2 and GLI1DN, but not GLI1FL, transcriptional activity to the same extent as SUFU-FL. Moreover,
under conditions of activated HH signaling SUFU-DC was more effective than SUFU-FL in inhibiting GLI1DN. Importantly, co-
expression with GLI1FL indicated that SUFU-DC but not SUFU-FL reduced the protein levels of GLI1FL. Additionally, confocal
microscopy revealed a co-localization of GLI1FL with SUFU-DC but not SUFU-FL in aggregate structures. Moreover, specific
siRNA mediated knock-down of SUFU-DC resulted in up-regulation of the protein levels of GLI1FL and the HH signaling
target genes PTCH1 and HHIP. Our results are therefore suggesting the presence of novel regulatory controls in the HH
signaling pathway, which are elicited by the distinct mechanism of action of the two alternative spliced SUFU proteins.
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Introduction

The Hedgehog (HH) signaling pathway is fundamental during

embryonic development, and is also implicated in the growth of a

variety of tumors [1]. The HH proteins are secreted ligands, which

bind to the Patched 1 (PTCH1) receptor and initiate additional

signaling events, ultimately resulting in the activation of the GLI

transcription factors. The intracellular protein Suppressor of Fused

(SUFU) acts as a negative regulator in the pathway, by binding to

the GLI factors in the absence of signal activity and thereby

repressing their transcriptional effects [2]. SUFU sequesters GLI1

in the cytoplasm but can also bind to GLI1 on DNA and actively

export the nuclear GLI1 protein [3]. Additionally, SUFU binds to

the other two GLI proteins, GLI2 and GLI3, and has recently

been shown to be an important regulator of GLI2 and GLI3

processing, promoting the production of the truncated repressors

[4,5]. HH stimulation triggers the dissociation of SUFU-GLI

complexes [4,6]. The mechanism whereby the HH signal

counteracts the repression of SUFU on GLI activity may also

involve the ubiquitin-proteasome pathway-mediated degradation

of SUFU [7].

Loss of function of mammalian SUFU leads to ligand-

independent activation of the HH pathway [8]. Mutations in

human SUFU have been found in medulloblastoma [9] and

prostate cancer [10], and SUFU loss of heterozygosity was

observed in rhabdomyosarcoma (RMS) [11], implicating that

SUFU is a tumor suppressor gene.

Human SUFU is localized on chromosome 10q24–25, and

contains 12 exons [12]. In addition to the full-length 484 amino

acids (aa) protein, SUFU-FL, several alternatively spliced variants

of SUFU have previously been identified. One of them codes for a

carboxy-terminal deleted isoform of 433 aa, reducing therefore the

calculated molecular mass from 54 to 48 kDa [13]. The truncated

SUFU, SUFU-DC, uses a unique terminal exon harboring an

early in-frame translation termination codon, exon 10a, which is

derived from sequences within intron 10 of SUFU (Fig 1A).

Most studies have focused on SUFU-FL, while the function of

SUFU-DC remains unclear. The aim of this work has been to

analyze the biological properties of SUFU-DC and its implications

on the transduction of the HH signal. These experimental

approaches provide now support for a functional role of SUFU-

DC and have resulted in the identification of novel mechanisms
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through which this SUFU variant can regulate the activity of the

GLI transcription factors.

Results

Expression of SUFU Splice Variants
We first investigated the expression of SUFU in normal tissue

and cancer cell lines by real-time RT-PCR (Fig 1B). SUFU-DC

was generally expressed at lower levels than SUFU-FL, however in

the lung comparable amounts of the variants were detected and in

the lung cancer cell line GI117 higher levels of SUFU-DC relative

to SUFU-FL could be observed. We also evaluated the expression

pattern in RMS, a tumor associated with deregulated HH

signaling [11,14]. A variable expression was seen among the

RMS cell lines, with most having a higher expression of SUFU-FL

than SUFU-DC, however in CCA and RMS13 cells the levels

were comparable (Fig 1C). To investigate whether the SUFU-DC

protein can be detected, we first transfected NIH3T3 cells with an

expression construct of SUFU-DC followed by whole cell protein

extractions. On Western blot analysis a protein band of the

expected 48 kDa size was observed with the SUFU-DC transfected

construct, which was absent with the empty vector (Fig 1D). To

examine whether it was possible to detect endogenous levels of

SUFU-DC, the RMS13, CCA and Rh36 cell lines were also used.

In contrast to the abundant protein expression of SUFU-FL in

these cells, low levels of a protein band co-migrating with SUFU-

DC at the 48 kDa region were detected in the RMS13 and CCA

cell lines (Fig 1D). Interestingly, in the Rh36 cells, which have

reduced SUFU-DC mRNA expression, no SUFU-DC protein was

observed. Thus, even though the mRNA levels of the SUFU

variants in either RMS13 or CCA cells are similar, the amounts of

the corresponding proteins are dissimilar, with only low levels of

SUFU-DC detected.

Expression of SUFU-DC and SUFU-FL Constructs in
Hek293 Cells

To examine whether the differences in endogenous protein

levels of the SUFU variants in the human RMS cell lines are

also reflected on exogenously added proteins, Hek293 cells were

transfected with SUFU-FL and SUFU-DC expression constructs.

Indeed, the steady state levels of the exogenous SUFU variants

were in line with what has been observed for the endogenous

proteins, namely, reduced amounts of SUFU-DC relative to

SUFU-FL. Additionally, treatment of the transfected cells with

the proteasome inhibitor MG-132 conferred a detectable

increase in the expression levels of the SUFU-DC (Fig 2A).

Similarly, the endogenous SUFU-DC protein in RMS13 cells

was also increased by MG-132 treatment (Fig 2B). Worth noting

is that expression of the two isoforms in E.coli [15] revealed

much higher levels of SUFU-FL than SUFU-DC in the soluble

fraction (Figure S1). In conclusion, the heterologous expression

analysis of the SUFU variants in the human Hek293 cell line is

in agreement with the observations of low endogenous protein

levels of SUFU-DC compared with SUFU-FL in the human

RMS cells.

GLI repression by SUFU-DC: Reduced Activity Against
GLI1FL but not GLI1DN or GLI2

Despite the lower protein expression of SUFU-DC relative to

SUFU-FL, we set on to address the possible repressive function of

SUFU-DC on GLI activity by reporter assays in NIH3T3 cells. In

this mouse embryonic fibroblast cell line the protein expression of

the SUFU-DC and SUFU-FL constructs is not as different as seen

in Hek293 cells (Fig 3A). SUFU and GLI1 are known to bind to

each other in the N-terminal and in the C-terminal regions of both

proteins [16,17]. As expected, SUFU-FL was capable of effectively

repressing full length GLI1 (GLI1FL) transcriptional activity; on

the other hand SUFU-DC could not act as an equally efficient

repressor (Fig 3B). This suggests a role of the last 51 amino acids of

SUFU in partially mediating the repression on GLI1FL. However,

when a GLI1 variant lacking the N-terminal region, GLI1DN

[18], was used, the repression elicited by either SUFU-FL or

SUFU-DC was comparable (Fig 3C).

Additionally, for GLI2 and the N-terminal-truncated active

form, GLI2DN, no major differences between the SUFU-FL and

SUFU-DC repressive effects could be observed (Fig 3D and E).

Effect of Introduction of SUFU-DC into Sufu2/2 MEFs
To further evaluate the functional capacity of SUFU-DC in

relation to SUFU-FL we introduced the two expression constructs

into mouse embryonic fibroblasts lacking Sufu (Sufu2/2 MEFs),

together with a GLI reporter construct. SUFU-FL was found to

have a stronger effect than SUFU-DC in reducing GLI activity

(Fig 4). Possibly, this may reflect the increased ratio of Gli1 to Gli2

in Sufu2/2 relative to wild type MEFs [8], which would be in line

with the over-expression experiments of Fig 3B and D.

HH Signal Dependency of SUFU Inhibitory Activity
We also investigated whether HH signaling activation may

modulate the SUFU repressive effects on GLI1. For this purpose

mouse embryonic fibroblast cells lacking Ptch1 (Ptch12/2 MEFs),

and therefore characterized by a constitutively active HH signaling

pathway, were used. The results indicated that the maximal

repression was observed with SUFU-FL acting on GLI1FL, as

seen with NIH3T3 cells. SUFU-DC, on the other hand, was found

to be more effective than SUFU-FL in repressing the GLI1DN

variant (Fig 5A and B).

Over-expression of SUFU-DC but not SUFU-FL Elicits a
Reduction in GLI1FL

Since the SUFU variants had differential effects on the

GLI1FL transcriptional activity we examined their impact on

the GLI1FL protein levels. Surprisingly, co-expression of

GLI1FL with SUFU-DC in Hek293 cells resulted in lower

amounts of GLI1FL relative to co-expression with either SUFU-

Figure 1. Expression of SUFU-FL and SUFU-DC in human tissues and cell lines. A, Schematic map of the SUFU exon 10 to exon 12 genomic
region. Exons are shown by open boxes and splicing events by thin lines. The translation termination codons TGA and TAG are indicated, while the
black and white triangles show the position of the PCR primers used. B, Real-time PCR analysis of SUFU-FL and SUFU-DC expression in a multiple
tissue/tumor cDNA panel. C, Real-time RT-PCR analysis of SUFU-FL and SUFU-DC expression in the E-RMS cell lines JR-1, RD, Rh36, CCA, CT-TC and the
A-RMS cell line RMS13. For both the B and C panels the data are presented as relative unit (RU) expression values, after normalization to the
housekeeping gene large ribosomal protein (RPLPO), which is given the value of 1. Error bars indicate the standard deviation. *, Statistical significant
difference, p,0,01, (Student’s t test). D, Western blot analysis of extracts from NIH3T3, transfected with an expression construct for SUFU-DC-FLAG, or
pCMV (vector), CCA, RMS13 and Rh36 cells, and detected with a SUFU antibody. Note that CCA and RMS13 but not Rh36 cells express a protein band
(arrowheads), which co-migrates with that of the transfected SUFU-DC FLAG-tagged construct (arrow), the small size difference apparently reflecting
the presence of a FLAG tag. The endogenous SUFU-FL protein is indicated by FL.
doi:10.1371/journal.pone.0037761.g001
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FL or the empty vector (Fig 6A and B). These findings suggest

that the mechanism of inhibition of GLI1FL activity by SUFU-

DC may be fundamentally different to the one elicited by

SUFU-FL, and could involve an increased degradation of the

GLI1FL protein. Interestingly, the levels of GLI2 remained

unchanged in the same transfection setting (Figure S2),

highlighting the specificity of the GLI1FL and SUFU-DC

interaction. Additionally, the levels of endogenous GLI1FL in

RMS13 cells were investigated following transfection of the

SUFU variants. SUFU-DC, in contrast to SUFU-FL, conferred

a detectable reduction of the GLI1FL levels. This reduction is

not as high as seen with exogenous GLI1FL in Hek293,

apparently the result of the relatively low RMS13 transfection

efficiency (usually less than 50%), which allows the presence of

a large number of untransfected cells that express high levels of

GLI1FL. Moreover, the proteasome inhibitor MG-132 increased

the GLI1FL protein in both SUFU-DC and SUFU-FL

transfected cells. (Fig 6C and D).

Subcellular Localization of SUFU-DC
Confocal microscopy with Hek293 cells was utilized to

examine the subcellular localization of transfected SUFU-FL

and SUFU-DC. In line with previous reports [19,20] SUFU-FL

had a predominant cytoplasmic localization, and we also found

SUFU-DC to be mainly detected in the cytoplasm (Fig 7A, left

and middle panel). GLI1FL was detected in the nucleus (Fig 7A,

right panel), as shown previously [17], but there were several

cases where a cytoplasmic localization was also observed. Co-

expression of GLI1FL and SUFU-FL resulted in co-localization

in the cytoplasm (Fig 7B, upper panels). SUFU-DC also co-

localized with GLI1FL, however, predominantly in aggregate/

clump structures in close proximity to the nucleus (Fig 7B,

lower panels).

Knock-down of Endogenous SUFU-DC Increases GLI1FL
Protein Levels and Up-regulates HH Signaling Targets

To investigate the role of endogenous SUFU-DC, two shRNA

constructs targeting SUFU-DC (sh4 and sh5) were individually

introduced into the RMS13 cell line. Transfection of the shRNAs

did not alter the SUFU-FL expression levels, as determined by

real-time RT-PCR analysis, highlighting their specificity for

SUFU-DC (Fig 8A). Additionally, a detectable reduction of

SUFU-DC protein was observed by sh5 (Figure S3), with the

effect seen being less than that of the SUFU-DC mRNA.

Subsequently, the GLI1 protein levels were analyzed by Western

blotting. In line with the negative impact of SUFU-DC on the

Figure 2. Impact of proteasome inhibition on exogenous and endogenous SUFU. A, Western blot analysis of soluble protein fractions from
Hek293 cells, transfected with expression constructs for Myc-SUFU-FL (FL) or Myc-SUFU-DC (DC) and treated with or without 10 mM MG-132 for 6
hours. A Myc antibody was used for protein detection. Vinculin staining was used as a loading control. Note the higher levels of SUFU-FL protein
relative to that of SUFU-DC, which is shown by an arrow. B, Western blot analysis of extracts from RMS13 cells with or without 10 mM MG-132
treatment for 6 hours. A SUFU antibody was used for protein detection. Note the increase of the lower protein band (SUFU-DC) relative to the upper
protein band (SUFU-FL). For both the A and B panels duplicate experiments were performed and a quantification of the average protein levels is
shown to the right.
doi:10.1371/journal.pone.0037761.g002
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GLI1FL protein levels, observed in the analysis of Fig 6, the most

effective siRNA used (sh5) resulted in increased amounts of

GLI1FL protein (Fig 8B). Moreover, the HH signaling target gene

HHIP and the HH signaling regulated transcript variants of the

PTCH1 gene, PTCH1-1B and PTCH1-1C [21,22], were up-

regulated by the shRNA treatments. Interestingly, the extent of

up-regulation appeared to parallel the effectiveness of the two

shRNAs in down-regulating SUFU-DC. Additionally, the GLI1

mRNA was not significantly changed by the introduction of the

shRNAs (Fig 8C). Thus, our data provide evidence that

endogenous SUFU-DC can modulate HH signaling activity

through a mechanism that is distinct from that of SUFU-FL,

namely by reducing GLI1FL protein levels.

Discussion

Human SUFU plays an essential role during both normal

development and cancerous transformation. SUFU is known to

functionally regulate the GLI proteins, the ultimate effectors of the

HH pathway [3]. However, the exact role of human SUFU-FL is

still not fully deciphered, and even more so the function of the

alternatively spliced variant SUFU-DC.

Although both SUFU isoforms could be detected at the mRNA

level, only low levels of the endogenous SUFU-DC protein were

observed in the Western blot analysis of the RMS cell lines. This

indicates that the SUFU-DC is less stable than SUFU-FL. The

analysis of the heterologous expression of the SUFU variants in the

Hek293 cell line is in agreement with a reduced stability of SUFU-

DC relative to SUFU-FL in human RMS cells. Moreover,

treatment with the proteasome inhibitor MG-132 confers a

selective increase of both the endogenous and exogenous SUFU-

DC protein, however, the levels of SUFU-FL are not reached.

Consequently, one has to hypothesize that other mechanisms may

also have a role in the reduced steady state levels of SUFU-DC,

possibly lysosomal autophagy as recently implicated in Wnt

Figure 3. Dose-dependent SUFU repression of GLI activity in NIH3T3 cells. A. Western blot analysis of extracts from NIH3T3 cells,
transfected with expression constructs for the SUFU variants, and detected with a SUFU antibody. Due to the partial co-migration with endogenous
mouse Sufu, the SUFU-FL expression in the right lane was calculated by subtracting from the total signal the mouse Sufu signal. This was determined
based on the Sufu expression in the left lane following normalization with the tubulin internal control. Note that the quantitation revealed that the
level of SUFU-FL (right lane, upper protein band) is 188% the level of SUFU-DC (middle lane, lower protein band). B–E, Different amounts of Myc-
tagged SUFU-FL or SUFU-DC expression constructs were co-transfected with 50 ng GLI expression constructs (Panel B, GLI1FL; panel C, GLI1DN;
panel D, GLI2FL; panel E, GLI2DN), 12xGLIBS-luc and pRL-SV reporter plasmids, and the luciferase activity was measured. Error bars indicate the
standard deviation.
doi:10.1371/journal.pone.0037761.g003
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signaling components [23]. Interestingly, in the mouse embryonic

fibroblast cell line NIH3T3, the protein levels of transfected

SUFU-FL and SUFU-DC are not as pronouncedly different.

GLI2 is the primary activator of HH-dependent transcription.

Our biochemical analysis in NIH3T3 cells showed that SUFU-DC

could repress GLI2 transcriptional activity to the same extent as

SUFU-FL. These observations are in line with an earlier study,

which showed that a SUFU deletion construct lacking the amino

acids 389–485 was fully capable to repress GLI2, but to a lesser

extent GLI1 [20].In a previous study we have shown that GLI1 is

the most important GLI factor in E-RMS [24]. Now we provide

evidence that SUFU-FL has generally a higher capacity than

SUFU-DC in inhibiting GLI1 activity. However, in certain cellular

contexts SUFU-DC may have a major impact on the transcrip-

tional activation elicited by GLI1. For example, our data (Fig 5)

indicate that SUFU-DC is more effective than SUFU-FL in

inhibiting the transcriptional activity of an amino terminal variant

of GLI1, GLI1DN, during conditions of activated HH signaling.

On the other hand in Sufu2/2 MEFs, SUFU-FL elicited a

stronger inhibition than SUFU-DC on GLI activity (Fig 4),

possibly reflecting the increased amounts of Gli1 in these cells,

which would be consistent with the data of Fig 3B.

Importantly, the co-expression experiments of GLI1FL with the

SUFU variants suggest that distinct regulatory mechanisms act on

GLI1FL. SUFU-FL does not alter the protein levels of GLI1FL

but is quite effective in repressing its transcriptional activity. On

the other hand SUFU-DC is a less effective transcriptional

inhibitor, but elicits a reduction of the GLI1FL protein levels

(Figs 3B and 6). Thus, SUFU-DC, in line with its intrinsically lower

stability in human cells, may act as a scavenger by promoting

GLI1FL degradation instead of only shuttling GLI1FL to the

cytoplasm, as does SUFU-FL [3]. This scenario is supported by

the immunofluorescence data in which GLI1FL tends to localize

to punctate cytoplasmic densities when co-expressed with SUFU-

DC (Fig 7).

Moreover, specific knock-down of the SUFU-DC resulted in

increased protein levels of GLI1FL and activation of HH signaling

target genes (Fig 8), providing support for an in vivo function of this

variant as a regulator of the GLI1FL protein and consequently

HH signal transduction. This finding indicates that the relatively

weaker repression of GLI1FL activity by SUFU-DC, determined

by the over-expression analyses of Figs. 3–5, may be augmented by

the destabilization of the GLI1FL protein. Taken together, our

experimental data suggest that the mechanism of action of SUFU-

DC is fundamentally different from that of SUFU-FL, as

highlighted by the distinct effects on GLI1FL protein/activity.

In conclusion, our results provide support for the presence of

novel regulatory mechanisms within the HH signaling pathway,

which are linked to the alternative splicing of SUFU. Further

evaluation of the SUFU isoforms will be needed in order to unfold

additional complexities of their differential function and regula-

tion.

Materials and Methods

Cell Lines and Reagents
The NIH3T3 cell line, the Hek293 cell line, the alveolar

rhabdomyosarcoma (A-RMS) cell line RMS13 and the embry-

onal rhabdomyosarcoma (E-RMS) cell line RD were purchased

from ATCC (Manassas, VA, USA), the E-RMS cell lines JR-1

and Rh36 were kind gifts from P. Houghton (St. Jude Childrens

Research Hospital, USA), CCA was a kind gift from P-L Lollini

(University of Bologna, Italy), and CT-TC a kind gift from H.

Hosoi (Kyoto Prefectural University of Medicine, Japan.

Figure 4. Dose-dependent SUFU repression of GLI activity in Sufu2/2 MEFs. Different amounts of SUFU-FL or SUFU-DC FLAG-tagged
expression constructs were co-transfected with 8xGLIBS-luc and pRL-SV reporter plasmids, and the luciferase activity was measured. Error bars
indicate the standard deviation. NS, non-specific; co-transfection with 8xmutatedGLIBS-luc.
doi:10.1371/journal.pone.0037761.g004
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Ptch12/2 MEFs was a kind gift from J. Taipale (University of

Helsinki, Finland), and Sufu2/2 mouse embryonic fibroblasts

(MEFs) were established by S. Teglund in our laboratory [8].

cDNA panels (Human tissues and human tumor cell lines) were

purchased from BD Biosciences (San Jose, CA, USA). MG-132

was purchased from Calbiochem (San Diego, CA, USA).

Real-time RT-PCR
Total RNA from cells was prepared with the RNeasy kit

(Qiagen, Hamburg, Germany) followed by cDNA synthesis with

random (N6) primers (New England Biolabs, Ipswich, MA, USA)

and Superscript II (Invitrogen, Carlsbad, CA, USA). Real-time

RT-PCR was performed with Power SYBR Green (Applied

Biosystems, Foster City, CA, USA) on a 7500 Fast real-time PCR

Figure 5. Dose-dependent SUFU repression of GLI1 activity in constitutively active Ptch12/2 MEFs. Different amounts of Myc-tagged
SUFU-FL or SUFU-DC expression constructs were co-transfected with 50 ng GLI1 expression constructs (Panel A, GLI1FL; panel B, GLI1DN), 12xGLIBS-
luc and pRL-SV reporter plasmids, and the luciferase activity was measured. Error bars indicate the standard deviation. Note the increased capacity of
SUFU-DC relative to SUFU-FL in inhibiting GLI1DN transcriptional activity.
doi:10.1371/journal.pone.0037761.g005
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Figure 6. SUFU-DC but not SUFU-FL reduces GLI1FL protein levels. A, GLI1FL was introduced into Hek293 cells together with either SUFU-FL
or SUFU-DC FLAG-tagged expression constructs, as indicated. Soluble protein fractions were run on a SDS-PAGE gel, followed by Western blotting,
and detected by a GLI1 antibody. Vinculin staining was used as a loading control. B, Quantification of average GLI1FL protein levels in this and in an
additional repeat experiment. Note that SUFU-DC but not SUFU-FL elicits a reduction of GLI1FL protein. C, SUFU-FL (FL) or SUFU-DC (DC) was
introduced into RMS13 cells, with or without 10 mM MG-132 treatment for 6 hours. Soluble protein fractions were run on a SDS-PAGE gel, followed by
Western blotting, and detected by a GLI1 antibody. Vinculin staining was used as a loading control. D, Quantification of average GLI1FL protein levels
in this and in an additional repeat experiment. Note that SUFU-DC but not SUFU-FL elicits a detectable reduction of GLI1FL protein and that MG-132
treatment confers an increase in GLI1FL protein.
doi:10.1371/journal.pone.0037761.g006
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Figure 7. Subcellular localization of SUFU-FL and SUFU-DC in Hek293 cells. The transfected SUFU and/or GLI1FL constructs were detected
using Myc and FLAG antibodies by confocal microscopy. A, Individual transfections of Myc-tagged SUFU-FL or SUFU-DC and FLAG-tagged GLI1FL
constructs. B, Co-transfections of GLI1FL with the SUFU-FL (FL) or the SUFU-DC (DC) construct. Two representative images from each co-transfection
are shown. The nuclei are stained with the marker DRAQ5 (blue signal). Note that GLI1FL co-localizes with SUFU-DC in aggregate/clump structures in
the cytoplasm.
doi:10.1371/journal.pone.0037761.g007

Figure 8. Knock-down of SUFU-DC expression in RMS13 cells results in increased GLI1FL protein and up-regulation of HH targets.
A, Real-time RT-PCR analysis of the relative expression of SUFU-DC and SUFU-FL following transfection of the sh4, sh5 or shEGFP construct. B,
Western blot analysis of soluble protein fractions with a GLI1 antibody following transfection of the sh4, sh5 or shEGFP construct. A quantification of
the protein levels is shown to the right. C, Real-time RT-PCR analysis of the relative expression of HHIP, GLI1, PTCH1-1B and PTCH1-1C following
transfection of the sh4, sh5 or shEGFP construct. In both the A and C panels the expression levels relative to the EGFP control, normalized to the
mean expression of the housekeeping genes RPLPO and TBP, are shown. Error bars indicate the standard deviation. *, Statistical significant, p,0,05,
compared with control (Student’s t test). Note that the more effective the knock-down of SUFU-DC, the higher the increase of GLI1FL protein and the
expression of HH signaling target genes.
doi:10.1371/journal.pone.0037761.g008

SUFU Splice Variant

PLoS ONE | www.plosone.org 10 May 2012 | Volume 7 | Issue 5 | e37761



system (Applied Biosystems) with the following primers used;

SUFU–Forward: 59-TGCCACTGAGGAGCATCCTTACGC;

SUFU-FL–Reverse: 59-TTCAGGCCAGCTGTACTCTTTGG-

GAAG; SUFU-DC–Reverse: 59-TCAGGGCAGAAA-

GACGTTCCAGGAC. Additional primer sets are found in the

Table S1. mRNA expression levels were normalized against the

housekeeping genes RPLPO and TBP, and the relative units after

assigning RPLPO or the average of RPLPO and TBP expression to

1 are shown. Individual experiments were performed at least in

triplicate and the data from a representative experiment are

shown. Statistical significance was evaluated using a two-tailed,

unpaired Student’s t test and p,0,05 was considered statistically

significant.

Western Blot
Proteins were extracted and separated on 15% or 7% SDS-

PAGE essentially as described [21]. SUFU was detected with a

rabbit polyclonal antibody (C81H7), GLI1 with a rabbit

polyclonal antibody, both from Cell Signaling (Danvers, MA,

USA), FLAG with a mouse monoclonal antibody (M2) from

Sigma-Aldrich (St. Louis, MO, USA), GLI2 with a rabbit

polyclonal antibody from Aviva Systems Biology (San Diego,

CA, USA) and vinculin with a mouse monoclonal antibody

(V9131) from Sigma-Aldrich. Horseradish peroxidase-conjugated

anti-rabbit IgG or anti-mouse IgG (GE Healthcare, Little

Chalfont, Buckinghamshire, UK) was used as the secondary

antibody, followed by detection of the proteins with the Western

Lightning Western blot Chemiluminescence Reagent Plus (Perki-

nElmer Life Sciences, Waltham, MA, USA). Individual experi-

ments were performed at least in duplicate and the data from a

representative experiment are shown. Protein levels were quanti-

fied using the Fiji software (ImageJ/NIH).

Expression Constructs and Transfection
Expression and reporter constructs have been described

elsewhere [3,18]. The SUFU-FL-EYFP was a kind gift from M.

Lauth, the GLI2FL was a kind gift from E. Roessler and the

GLI2DN was a kind gift from F. Aberger. The Myc-SUFU-DC

expression construct was generated by replacement of the Xba1

and NspE1 digested Myc-SUFU-FL expression construct with a

RT/PCR product amplified by the primer set 59-GCTTCTA-

GAATAGGTTCAGAGTTGT and 59-ACCAATCAACCCT-

CAGCGGCAGAAT. The SUFU-FL-FLAG and SUFU-DC-

FLAG constructs were generated from the SUFU-FL-EYFP

plasmid. Following BspE1/Xba1 double digestion, ligation of

PCR products generated by the primer sets SUFU-Forward 59-

ACCAATCAACCCTCAGCGGCAGAAT and either FLAG-

SUFU-FL-Reverse 59-GCTTCTAGACTACTTGTCATCGT-

CGTCCTTGTAATCGTGTAGCGGACTGTCG or FLAG-

SUFU-DC-Reverse 59- GCTTCTAGACTACTTGTCATCG-

TCGTCCTTGTAATCGAGTTGTAACCAGGGT were per-

formed. For all expression constructs the pCMV vector was used.

The expression constructs and the appropriate reporter construct

were transfected into cultured cells using FuGENE6 (Roche

Diagnostics, Mannheim, Germany) or Lipofectamine 2000 (In-

vitrogen). Expression of the SUFU variants in E.coli is described in

Methods S1.

Reporter Assays
Luciferase reporter assays were performed essentially as

described previously [18,21]. All experiments were analyzed

independently three times, and a representative experiment is

shown.

Immunofluorescence
Hek293 cells were plated in 4-well poly-d-lysine-coated dishes,

and transfected 24 hours later with Myc-tagged SUFU constructs

and GLI1FL-FLAG. 48 h after transfection, cells were fixed,

permeabilized, incubated with anti-FLAG (Sigma-Aldrich) and/or

anti-Myc (Santa Cruz; sc-789) overnight and fluorescently labeled

with Alexa Fluor dye-conjugated secondary antibodies (Molecular

Probes, Eugene, OR, USA). Imaging of the immunostained cells

was performed using a Zeiss LSM510 confocal microscope.

Individual experiments were performed at least in triplicate and

the data from a representative experiment are shown.

RNA Interference
Two shRNA constructs (sh4 and sh5) targeting SUFU-DC were

designed using sequences from SUFU exon 10a and the Insert

Design Tool for the pSilencer Vectors (Ambion, Austin, TX,

USA). As a negative control, a shRNA targeting the Enhanced

Green Fluorescent Protein (EGFP), shEGFP, was also designed.

Complementary oligonucleotides with BamHI and HindIII sites at

the ends were ordered from Sigma-Aldrich with the following

sequences; sh4: 59-CCTATCCTCGGAGCTCTGCTTCAAGA-

GAGCAGAGCTCCGAGGATAGGTT, sh5: 59-TTTTCAG-

CAGCTCAAGAACTTCAAGAGAGTTCTTGAGCTGCTGA-

AAATT, shEGFP: 59-GAAGCAGCACGACTTCTTCTTCAA-

GAGAGAAGAAGTCGTGCTGCTTCAT and cloned into the

pSilencer 4.1-CMVpuro vector. All constructs were verified by

sequencing. RMS13 cells were transfected with the shRNA

constructs and subjected to puromycin (1 mg/mL) selection for 4

days, followed by RNA isolation and real-time RT-PCR.

Supporting Information

Figure S1 Heterologous expression of SUFU variants in
E. coli. SUFU-FL (upper panel) and SUFU-DC (lower panel)

constructs were purified from E. coli as described above.

Chromatograms of the last purification step, size-exclusion

chromatography, are shown. Open arrows indicate peaks

corresponding to protein eluted with the void volume (aggregated

form), while filled arrows indicate peaks corresponding to

monomeric (soluble form) protein fractions. Note the decreased

amount of SUFU-DC relative to SUFU-FL in the soluble fraction.

(PDF)

Figure S2 The Western blot of Fig 6A was stripped and
incubated with a GLI2 antibody. Note that the levels of

endogenous GLI2 remain unchanged irrespective of the introduc-

tion of SUFU-DC or SUFU-FL.

(PDF)

Figure S3 Western blot analysis of SUFU protein levels
after shRNA down-regulation. shEGFP, sh5 or sh4 constructs

were transfected into RMS13 cells, followed by SDS-PAGE gel

electrophoresis and Western blot analysis by a SUFU antibody.

Both a short and a long exposure are shown. SUFU-DC is

indicated by an arrow. Vinculin was used as a loading control. A

quantification of the SUFU-DC protein levels relative to SUFU-

FL is shown below the blot, revealing a 33% reduction of SUFU-

DC by sh5 RNA treatment.

(PDF)

Methods S1 Heterologous protein expression in E.coli
and purification.

(PDF)

Table S1 Sequence of PCR primers.

(PDF)
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