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Pathogenic strains of viruses that infect humans are encapsulated in membranes derived from the host cell in which they infect.
After replication, these viruses are released by a budding process that requires cell/viral membrane scission. As such, this represents
a natural target for innate immunity mechanisms to interdict enveloped virus spread and recent advances in this field will be the
subject of this paper.

1. Budding of Retroviruses

Retroviruses, such as human immunodeficiency virus type 1
(HIV-1) and avian sarcoma/leukosis virus (ASLV), bud from
cells using a similar mechanism (see Figure 1). Monoubiq-
uitination of viral Gag polyproteins, catalyzed by an E1,
E2, and E3 ubiquitin ligase complex, is important in the
process where the ubiquitin most likely serves as a ligand
for assembly of various protein budding complexes [1–
5]. A recent study, however, has presented evidence that
either ubiquitination of Gag or ubiquitination of transacting
proteins can be used to assemble downstream virus-budding
complexes [6]. Ubiquitin is a 76-amino-acid cell regulatory
protein that is conjugated to proteins at lysine residues. Free
ubiquitin in the cytosol is activated in an ATP-dependent
reaction by an E1 enzyme, which then transfers the ubiquitin
to a cysteine residue of an E2 ubiquitin-conjugating enzyme.
The E2 protein interacts with a specific E3 ubiquitin ligase,
which selects the target protein for the covalent transfer of
the ubiquitin.

While the mechanisms of release of HIV-1 and ASLV are
similar, there is evidence that these viruses traffic through
different cell membranes in the process. This is based on
the facts that ASLV passes through membranes containing
rhodamine labeled phosphatidylethanolamine, which gets
incorporated into released virus-like particles, while HIV-1

does not [7], the two viruses utilize different early ESCRT
complexes as outlined hereinafter, and HIV-1 and ASLV Gag
can colocalize with cholesterol-rich membranes, referred to
as rafts. Nonetheless, when cholesterol is depleted from cells
by treatment with methyl-β-cyclodextrin, release of HIV-1
Gag [8] but not ASLV Gag (Zhang and Leis, unpublished)
virus-like particles is blocked.

Viral polyproteins enter the different budding pathways
by recruiting specific host cell proteins, Nedd4, an E3 ubiq-
uitin ligase, for ASLV [9], Tsg101, an inactive homologue of
the E2 ubiquitin-conjugating enzyme, for HIV-1 [10], and
AIP1 or Alix for both [11, 12]. These proteins bind to small
proline-rich sequences, referred to as L-domain. Nedd4
binds to the “PPPY” core motif in the p2B region of ASLV
Gag and Tsg101 binds to the “PTAP” core motif in the p6
region of HIV-1 Gag [13–15]. AIP1 binds to a “LYP (Xn)L”
core motif in the same regions of p2B and p6, respectively,
and where X is any amino acid and n is a number of residues
[11, 12]. EIAV uses the LYPXL sequence in the p9 region
of Gag as a high affinity site to bind AIP1/ALIX [16]. The
PPPY and PTAP L-domains are functionally exchangeable
among viruses [7, 17, 18]. In the case of HIV-1, if the
L-domain sequences in p6 are mutated, budding of the
virus can be rescued by overexpression of a Nedd4-like
ubiquitin ligase (Nedd4L or 2s) indicating that an alternative
exit process was used, though the mechanism of rescue is
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Figure 1: Parallel pathways used by ASLV and HIV-1 Gag to bud from cells. Retroviruses recruit components of the ESCRT machinery
to assemble budding complexes. Step 1: HIV-1 and ASLV Gag L-domains bind to Tsg101 and Nedd4, respectively. They also bind the Alix
adaptor protein. Whether these initial interactions take place in the cytosol or at the plasma membrane remains to be defined. Step 2: Nedd4
mediates ubiquitination of ASV Gag. HIV-1 Gag is ubiquitinated by an unidentified E3 ligase. Step 3: Gag oligomerization in the cytosol
increases membrane avidity and in conjunction with the M domain signal at the N-terminus of Gag targets the polyproteins to sites of
assembly/budding on the plasma membrane. ASLV Gag assembles on rhodamine labeled phosphatidylethanolamine (N-Rh-PE)-positive,
endosome-derived membranes. HIV-1 Gag assembles on N-Rh-PE-negative membranes. Step 4: The ASLV Gag/Nedd4/Alix complex recruits
ESCRT-II proteins while the HIV-1 Gag/Tsg101/Alix complex recruits the remainder of the ESCRT-I proteins. Each early budding complex
then recruits the same ESCRT-III machinery which promotes the membrane scission to release VLPs from the cellular membranes. Step 5:
The ESCRT-III subunits recruit the AAA ATPase, VPS4, and the coactivator protein LIP5 to mediate the disassembly of membrane-bound
ESCRT complexes concomitant with the budding process.

not understood because of a lack of the PPPY motif in HIV-1
Gag [19–21]. Overexpression of AIP1/ALIX can also rescue
the effects of PTAP mutations [20]. In some cases, viruses
such as Moloney murine leukemia virus, Mason Pfizer
monkey virus, and HTLV-I have both PTAP and PPPY motifs
in Gag suggesting that they may use both egress pathways
[22, 23]. However, when two L-domains are present, one
appears to be dominant [22].

Tsg101 is known to be involved in membrane vesicle
biogenesis and cytokinesis [24, 25]. It forms part of the
cellular endosomal sorting complex required for transport
(ESCRT), which contains at least 20 proteins that assemble
into several complexes referred to as ESCRT-0, -I, -II, and
-III [26]. HIV-1 specifically uses ESCRT-I but not ESCRT-
II while ASLV utilizes ESCRT-II but not ESCRT-I proteins
to assemble early budding complexes [27–29]. AIP1 is an
adaptor protein for both. The early budding complexes
then recruit the same ESCRT-III protein complex, which
is responsible for the mechanical deformation that causes

membrane scission to release particles [30]. The ESCRT-
III complex contains 11 different charged multivesicular
body proteins (CHMPs) [31]. Several of these contain MIT-
interaction motifs (MIMs), which are the binding site for
the vacuolar protein sorting protein 4 (VPS4) through
interaction with a microtubule-interacting and transport
domain (MIT) [32, 33]. There are two types of MIM
domains known; MIM1 is found in CHMP1A, 1B, 2A, and
2B and MIM2 is found in CHMP4A-C and CHMP6 [34, 35].
VPS4 is normally localized in the cytosol as a homodimer.
When recruited to the membrane, it forms a double hexamer
ring structure in the presence of a coactivator protein, called
LIP5 [32, 36]. This conformational change activates its AAA
ATPase. When ATP is hydrolyzed, VPS4 and the ESCRT-
III complex are disassembled into the cytosol, promoting
complex turnover which increases the efficiency of the bud-
ding process. A point mutation, E228Q, which inactivates
the ATPase, produces a VPS4 protein that acts as a dominant
negative inhibitor to virus release [7, 23, 27]. LIP5 is delivered
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Table 1: L-domains found in enveloped virus proteins, which bud from the cell membrane in an ESCRT-dependent process: Lassa fever virus
(LFV) [39], lymphocytic choriomeningitis virus (LCMV) [39, 40], Ebola virus (EboV) [2], Marberg virus (MarV) [41], hepititus B virus
(HBV) [42], Herpes simplex virus, type 1 (HSV-1) [43], Simian virus, type 5 (SV5) [44], Mumps virus (MuV) [45], avian sarcoma leukemia
virus (ASLV) [11, 14, 15], human immunodeficiency virus, type 1 (HIV-1) [2, 10, 27], human T-lymphotropic virus, type 1 (HTLV-1) [2],
equine infectious anemia virus (EIAV) [12, 16], vesicular stomatitis virus (VSV) [46], and rabies virus (RV) [47].

Virus species Virus Protein Amino acid sequence containing L-domain

Arenavirus
LFV Z AAPTAPPTGAADSIPPPYSP

LCMV Z TAPSSPPPYEE

Filovirus
EboV VP40 MRRVILPTAPPEYMEAI

MarV VP40 NTYMQYLNPPPYADHS

Hepadnavirus HBV Core protein PPAY

Herpesvirus HSV-1 E PPTY

Paramyxovirus
SV5 M QSIKAFPIVINSDG

MuV M RLNA FPIVMGQ

Retrovirus

ASLV p2B of Gag ATASAPPPPYVGSGLYPSL

HIV-1 p6 of Gag PEPTAPPFLQSRPEPTAPPEES..ELYPLTSLR

HTLV-I MA of Gag DPQIPPPYVEPTAP

EIAV p9 of Gag QNLYPDLSEIK

Rhabdovirus
VSV M LGIAPPPYEEDTSMEYAPSAP

RV M DDLWLPPPEYVPLKEL

to membranes and VPS4 by binding to several ESCRT-III
proteins including CHMP1B, 2A, 3, and 5 [37]. CHMP5
differs from the other ESCRT-III proteins in that its LIP5
binding site is unique and it does not directly interact with
VPS4 [38].

2. Other Viruses Use an ESCRT-Dependent
Budding Process

Many other enveloped viruses have the same requirements
for membrane scission to release particles and employ similar
mechanisms to those used by retroviruses to drive the release
process. These include arena- [39, 40], filo- [2, 41, 48–
51], flavi- [52, 53], hepadna- [42], herpes- [43, 54], rhab-
doviruses [46, 47, 55], and some paramyxoviruses [44,
45, 56]. Each virus contains L-domain sequences in their
structural proteins and the release process is dependent upon
the ESCRT-III/VPS4 ATPase complex. This was demon-
strated experimentally by either directly mutating L-domain
sequences within the viral proteins or by dominant negative
interference caused by exogenous expression of the VPS4
(E228Q) mutant. While many of the L-domain sequences
have been identified (see Table 1), some have not. For exam-
ple, even though budding of the flavivirus HCV is dependent
upon the ESCRT-III/VPS4 complex, the L-domain sequences
involved are not known [52, 53]. Among herpesvirus
proteins, there are multiple candidates for possible L-domain
sequences. Which is used is not clear. However, there is
evidence that the budding process is independent of Tsg101
suggesting that this virus uses a PPPY-dependent pathway

[54]. L-domains different from those used by retroviruses
include the FPIV core sequence in the paramyxoviruses SV5
and mumps (MuV) [44, 45], though the mechanism of the
release is not understand.

3. ESCRT-Independent Release

While paramyxoviruses such as mumps and SV5 use an
ESCRT-dependent pathway for release [44, 45], there are
reports that measles and respiratory syncytial virus use an
as yet unknown ESCRT-independent pathway for budding
[57, 58]. There is also a report that human cytomegalovirus
uses an ESCRT-independent release mechanism [59], based
solely on siRNA suppression data. However, a subsequent
report demonstrated that release of CMV was blocked
by a dominant negative mutant of VPS4 but not wild
type VPS4 arguing that the virus does use the ESCRT-
dependent mechanism [60]. Similarly, there is a report that
rhabdoviruses use a VPS4-independent release pathway [61]
and a subsequent publication demonstrating that budding
was also VPS4 dependent [55].

Some strains of influenza virus have evolved a completely
different mechanism for cell release that employs the virus
matrix protein (M), haemagglutinin, and neuraminidase
(the latter being two major glycoproteins of the virus)
[62–66]. Virus budding is initiated by haemagglutinin and
neuraminidase association with the viral M1 protein at lipid
rafts inside of the cell. M1 then recruits the M2 ion channel
protein to catalyze the scission from the cell membrane lead-
ing to budding. A mutation introduced into an amphipathic
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helix of M2 results in a protein incapable of membrane
scission blocking virus release. The neuraminidase facilitates
the release of VLPs by cleaving the terminal sialic acid from
cell membrane glycan [63, 66].

4. Interferon Regulation of
the ESCRT-Dependent Virus Budding

To control virus infections, host cells have evolved many dif-
ferent antiviral immune mechanisms as well as mechanisms
that target viral replication directly [67, 68]. Some of the
latter are based on synthesis of enzymes or restriction factors,
such as APOBEC3, TRIM5, and tetherin that interfere with
virus replication functions [69, 70]. APOBEC3 is a cytosine
deaminase that catalyzes the conversion of cytosine to uricil
and ammonia [71]. TRIM5 is a ring finger E3 ubiquitin ligase
protein that mediates an early block to retrovirus infection by
interfering with virus uncoating [72, 73]. Tetherin (CD317
or BST2) is an interferon-induced protein that blocks release
of envelope viruses including Lassa and Marburg [74] and
HIV-1 [75, 76] by preventing diffusion of virus particles
after budding. It also blocks cell-to-cell transfer of virus [77].
While the mechanism of how tetherin works is not fully
understood, its association with membranes from which
viruses bud and its propensity to dimerize suggests that it
might act as a nonspecific protein-based tether to fix particles
to the membranes.

Many of the cellular antiviral mechanisms are initiated by
induction of interferon (IFN). There are three groups of IFNs
(types I, II, and III), classified by the IFN receptor complex
to which they bind. It is the type I IFNs which primarily
regulate the antiviral response. For instance, recombinant
forms of type I IFNs demonstrate therapeutic potential
for the treatment of chronic hepatitis B and C infections
[78]. Some of the known interferon-induced genes include
PKR/2′5′ oligoadenylate synthetase, interferon-stimulated
gene 15 (ISG15), tetherin, and MxA [79].

ISG15 is one of the more abundant proteins induced
by interferon expression which is associated with antiviral
effects [80–88]. It has a molecular mass of about 15 kDa
and is a covalent dimer homologue of ubiquitin [89, 90].
It can be conjugated to several hundred different proteins
in cells [91–93] catalyzed by an interferon-induced ISG15
E1 (Ube1L) [94, 95], E2 (UbcH8) [96, 97], and E3 (Herc5)
[98, 99] ligase complex. The targets are largely abundant
constitutively expressed proteins involved in diverse cellular
functions, with the exception of around 15 proteins which
are themselves interferon induced [92, 99, 100]. A common
sequence that serves as an ISG15 covalent attachment site
has not been identified. For recent reviews of ISG15, see
[87, 101, 102]. Retrovirus release from cells is blocked by
interferon treatment or exogenous expression of ISG15 in
cells [49, 83, 84, 103, 104]. Also, ISG15 is conjugated to the
influenza A virus NS1A protein to block its replication [93].
ISG15 knockout (ISG15−/−) mice show increased suscepti-
bility to influenza, herpes, chikungunya (alphavirus), and
sindbis virus infections as measured by decreased survival
rates compared to wild type mice [105, 106]. In addition,

expression of a conjugation-deficient form of ISG15 fails to
protect ISG15−/− mice from sindbis infection [94, 105, 107].

5. Mechanism of Inhibition of Enveloped Virus
Budding by ISG15 Expression in Cells

5.1. Blockage to Early Virus-Budding Events. When ISG15 is
expressed in cells, there is a block early in the virus-budding
process that appears to be virus specific. For example, for
HIV-1 infections, ISG15 expression prevents the L-domain
in the p6 region of HIV-1 Gag from recruiting Tsg101 [103].
While Tsg101 and Gag are not ISGylated, the E2 ubiquitin-
conjugating enzyme is [103]. In contrast, for Ebola and other
enveloped viruses, ISG15 expression inhibits the Nedd4 E3
ubiquitin ligase by binding to the E3 subunit thereby averting
its interaction with the E2 ubiquitin-conjugating enzyme.
This prevents ubiquitination of viral proteins required for
the release process [49, 92, 108]. Mice lacking Ube1L are as
susceptible to Chickungunya virus infections as wild type
mice indicating that ISG15 conjugation to protein is not
involved [106].

5.2. Blockage to Late Virus-Budding Events. Disruption of the
late release process represents a more general antiviral
mechanism which requires conjugation of ISG15 to several
ESCRT-III proteins (see Figure 2). The initial target for
ISGylation is the ESCRT-III-associated LIP5 binding protein,
CHMP5 [84]. This protein is not ISGylated when a GG to
AA mutant of ISG15, which cannot be conjugated to protein,
is expressed in cells [83]. When CHMP5 is ISGylated, it no
longer binds LIP5 and VPS4 is released from and/or not
recruited to the budding complex in the membrane resulting
in a budding defect [84]. CHMP5 like VPS4 is a cytoplasmic
protein, which is recruited to the viral budding complex by
interaction with several ESCRT-III proteins [34, 91]. When
CHMP5 becomes ISGylated, it accumulates in the membrane
fraction [83, 84]. ISG15 is also conjugated to CHMP2A,
another ESCRT-III protein that binds LIP5. Like CHMP5,
ISGylation of CHMP2A prevents its binding to LIP5. In
contrast, the binding of LIP5 to CHMP3 was not affected
under these same conditions. Because ISGylation of CHMP5
and CHMP2A correlates with the release of VPS4 from the
budding complex, it suggests that CHMP5 and CHMP2A but
not CHMP3 are the primary physiological delivery systems
of LIP5 to VPS4.

In addition to compromising its ability to bind LIP5,
CHMP2A-ISG15 shows significant decreases in binding to
VPS4. In contrast, changes in CHMP1B-VPS4 and CHMP3-
VPS4 interactions were not detected [83, 84]. ISG15 is
also conjugated to two other ESCRT-III proteins, which
do not bind LIP5, CHMP4B, and CHMP6 [83]. Both of
these proteins bind to VPS4 [34], and when ISGylated,
their binding to this protein is weakened [83]. Thus the
release of VPS4 into the cytosol is caused by the sum of
ISGylation of several ESCRT-III proteins along with the lack
of available LIP5 to form the stable VPS4/LIP5 double-
hexamer-ring structure in the membrane. ISGylation of
CHMP5 is pivotal to initiate the general antiviral mechanism
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and the binding to LIP5 is lost. Step 2: The CHMP5-ISG15 conjugate accumulates in the budding complex on the membrane. The interaction
between VPS4 and its coactivator LIP5 is blocked preventing activation of the ATPase through formation of the VPS4/LIP5 double hexamer
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direct interaction to VPS4. Step 4: CHMP6 is ISGylated in the presence of ISG15-CHMP5. This results in weakening of its binding to VPS4.
Step 5: VPS4 is released into the cytosol and virus budding is arrested. (This figure was modified from Figure 7 in [83].)

because removal of CHMP5 from cells using specific but
not nonspecific siRNAs prevents ISG15 from inhibiting
virus release. In addition, ISGylation of the other ESCRT-
III proteins including CHMP2A and CHMP6 is dependent
upon prior ISGylation of CHMP5 [83].

ISG15 can be induced in cell culture by treatment with
interferon or by introduction of the ISG15 expression system.
For example, release of ASLV from DF-1 cells was blocked
to the same extent by either treatment [83]. If CHMP5
expression was significantly lowered in these cells by using
specific targeting siRNAs, the inhibition of virus release
caused by either treatment was only partially restored. This is
not surprising because ISG15 expression acts to inhibit both
early steps not dependent upon CHMP5 as well as late steps
dependent upon CHMP5. Based upon the degree of rescue,
it was estimated that about half of the inhibition to release
of ASLV was caused by blocking CHMP5-indpendent early
steps and half by blocking the late CHMP-dependent steps in
the budding process [83]. The finding that many different
ESCRT-III proteins are ISGylated and that this results in
changes in the binding properties of each protein to LIP5 or
VPS4 strongly suggests that interferon-induced expression of
ISG15 will shut down normal cellular endocytosis and MVB
biogenesis.

6. Virus Defense Mechanisms

Ubiquitin metabolism is very important both to the spread
of enveloped virus infections and for bypassing host restric-
tions. As mentioned previously, monoubiquitination of viral
structural proteins or transacting proteins is important
for recruitment of the ESCRT complexes responsible for
membrane scission leading to budding. In contrast, polyu-
biquitination is used by viruses to remove host restriction
factors. For HIV-1, the action of tetherin is downregulated
by expression of the Vpu protein, which targets this protein
for degradation via a β-TrCP2-dependent pathway [109]. On
the other hand, release of the human herpesvirus Kaposi’s
sarcoma-associated herpesvirus (HHV8) is also blocked
by tetherin expression. In this case, it is counteracted by
expression of an E3 ubiquitin ligase, K5, which catalyzes
the polyubiquitination of tetherin leading to its degradation
[110]. When APOBEC3 interacts with the HIV-1 viral
infectivity factor (Vif), it also becomes polyubiquitinated
and is degraded by the ubiqutin-dependent proteasome
system [71].

Several enveloped viruses encode proteins that target
the ISGylation pathway directly in order to propagate [82].
For example, the NS1 protein of influenza B virus prevents
the interaction of ISG15 with Ube1L to inhibit ISGylation
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[95, 111, 112]. A crystal structure of human ISG15 in
complex with an N-terminal fragment of NS1B has been
solved [113]. One can speculate that these results suggest that
some strains of the flu virus either now or in the past utilized
an ESCRT-dependent pathway for release. Other examples
include nairoviruses and arteriviruses, which encode ovarian
tumor domain-containing deubiquitinating enzymes that
remove ISG15 from substrates [81, 114, 115]. A vaccinia
virus E3 protein also prevents the antiviral action of ISG15
[116].

7. Clinical Perspectives

The mechanism for blocking release of retroviruses from cell
membranes has broad implications for many enveloped virus
infections. If drugs can be identified that prevent viruses
from recruiting ESCRT proteins to budding complexes, we
would have compounds that would act to slow down the
spread of many pathogenic enveloped viruses giving the
immune system time to clear the infection. Such drugs would
complement natural immune mechanisms that target virus
budding. This could be a clinical game changer world-wide
for treatment of viral infections and associated diseases in
humans.
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and H. G. Kräusslich, “The Mason-Pfizer monkey virus PPPY
and PSAP motifs both contribute to virus release,” Journal of
Virology, vol. 77, no. 17, pp. 9474–9485, 2003.

[24] J. G. Carlton and J. Martin-Serrano, “Parallels between
cytokinesis and retroviral budding: a role for the budding:
a role for the ESCRT,” Science, vol. 316, no. 5833, pp. 1908–
1912, 2007.

[25] U. K. von Schwedler, M. Stuchell, B. Muller et al., “The pro-
tein network of HIV budding,” Cell, vol. 114, pp. 701–713,
2003.

[26] M. Babst, “A protein’s final ESCRT,” Traffic, vol. 6, no. 1, pp.
2–9, 2005.

[27] J. E. Garrus, U. K. von Schwedler, O. W. Pornillos et al.,
“Tsg101 and the vacuolar protein sorting pathway are essen-
tial for HIV-1 budding,” Cell, vol. 107, no. 1, pp. 55–65, 2001.

[28] A. Pincetic, G. Medina, C. Carter, and J. Leis, “Avian sarcoma
virus and human immunodeficiency virus, type 1 use dif-
ferent subsets of ESCRT proteins to facilitate the budding
process,” Journal of Biological Chemistry, vol. 283, no. 44, pp.
29822–29830, 2008.

[29] A. Pincetic and J. Leis, “The mechanism of budding of
retroviruses from cell membranes,” Advances in Virology, vol.
2009, Article ID 623969, 9 pages, 2009.

[30] S. Lata, G. Schoehn, J. Solomons, R. Pires, H. G. Göttlinger,
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