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abstract
Genomic technologies, such as whole-exome sequencing, are a powerful
tool in genetic research. Such testing yields a great deal of incidental
medical information, or medical information not related to the primary
research target. We describe the management of incidental medical in-
formation derived from whole-exome sequencing in the research con-
text. We performed whole-exome sequencing on a monozygotic twin pair
in which only 1 child was affected with congenital anomalies and applied
an institutional review board–approved algorithm to determine what
genetic information would be returned. Whole-exome sequencing iden-
tified 79 525 genetic variants in the twins. Here, we focus on novel
variants. After filtering artifacts and excluding known single nucleo-
tide polymorphisms and variants not predicted to be pathogenic, the
twins had 32 novel variants in 32 genes that were felt to be likely to
be associated with human disease. Eighteen of these novel variants
were associated with recessive disease and 18 were associated with
dominantly manifesting conditions (variants in some genes were po-
tentially associated with both recessive and dominant conditions), but
only 1 variant ultimately met our institutional review board–approved
criteria for return of information to the research participants.
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The advent of “Next Generation” sequen-
cing technologies has allowed large-scale
genomic sequencing to become widely
used in genetic research. One type of ge-
nomic analysis, whole-exome sequencing,
refers to the sequencing of the exome, or
all the known coding regions (∼1%) of the
genome.1 This technology is an efficient,
affordable, and powerful research tool.1–6

Genomic sequencing necessarily reveals
incidental medical information, or me-
dical information that has potential health
or reproductive importance, but is not
related to the primary research ques-
tion.1,7–9 Managing this incidentalmedical
information presents many logistical and
ethical challenges, especially as relates to
novel variants.10,11 Guidelines have been
proposed to help guide the return of in-
cidental genetic information, but it can be
difficult to conceptualize the ramifications
of a given algorithm in the abstract.12–14

Here, we illustrate the incidental in-
formation revealed by whole-exome se-
quencing and provide an example of the
decision process by which novel var-
iants were determined to meet criteria
for return to participants.

PATIENT PRESENTATION

Through our National Human Genome
Research Institute institutional re-
view board (IRB)-approved protocol
on VACTERL (vertebral defects–anal
atresia–cardiovascular anomalies–
tracheoesophageal fistula with esophageal
atresia–radial and renal dysplasia–limb
defects) association, which uses whole-
exome sequencing (among other research
modalities), we studied a monozygotic
twin-pair in which only 1 twin was af-
fected, with appropriate consent ob-
tained from all participants, and with a
separate consent required to perform
genomic sequencing. Potential inciden-
tal medical information is discussed in
detail during the consent process, and
research participants choose whether
to learn the results of genomic se-
quencing, both regarding the primary

research target, as well as related to
incidental medical information.

We extracted DNA from peripheral blood
samples. Confirmation of mutations that
met criteria for return was undertaken
throughClinicalLaboratory Improvement
Amendment, 1988 (CLIA)-approved labo-
ratories, either through DNA extracted
from lymphoblastoid cell lines, or from a
new blood sample. For specific genes for
whichCLIA testing is not available,weuse
commercial laboratories that are able to
perform CLIA-based confirmation of any
genetic variant identified through re-
search laboratories (we perform con-
firmationthroughGeneDx,Gaithersburg,
MD).Ofnote,someresearch laboratories
alsohave theirown,noncommercialCLIA
laboratories that are able to perform
CLIA verification on any genetic variant.

See Supplemental Information for de-
tailed whole-exome sequencing and
analysis methods. After variant analysis,
the data were initially filtered to elimi-
nate likely false-positives; genotypes
were called at all positions with high-
quality sequence bases (Phred-like Q20
or greater) by using a Bayesian algo-
rithm (Most Probable Genotype [MPG]).15

Genotypes with MPG score$10 demon-
strate .99.89% concordance with high-
density single-nucleotide polymorphism
(SNP) array data, and were considered
high quality if they also had an MPG
score/coverage ratio of$0.5. Variants
predicted not to result in potential
pathogenicity were excluded (based
on Conserved Domain-based Prediction
scores that predict pathogenicity; see
http://research.nhgri.nih.gov/software/
VarSifter for details). High-quality
predicted pathogenic variants were
analyzed by using standard available
databases, including the Human Ge-
nome Mutation Database (professional
version) (http://www.hgmd.cf.ac.uk/
ac/index.php) and Online Mendelian
Inheritance in Man (http://www.ncbi.
nlm.nih.gov/omim), and through litera-
ture review. Further comparison of

variants of interest was performed ver-
sus results of whole-exome sequencing of
479 whole-exome samples (sequenced at
the same sequencing facility) ascertained
from theClinSeq cohort,which ascertains
patients with a phenotypic continuum
from unaffected, to those who have had
myocardial infarctions.16 A working com-
mittee consisting of board-certified clini-
cal geneticists, board-certified molecular
geneticists, board-certified genetic coun-
selors, bioethicists, and National Human
Genome Research Institute IRBmembers,
as well as other genetic researchers, con-
vened to discuss variants that met the
above criteria. Finally, in several cases, ex-
perts in the study of individual genes and
conditions were contacted when results
remained equivocal. IRB-approved guide-
lines regarding what incidental medical
information would be returned to study
participants are summarized as follows:

1. The genetic change must be known
or predicted to be of urgent clini-
cal significance.

2. Knowledge of the finding must have
a clear direct benefit that would be
lost if diagnosis was made later;
that is, knowledge of this risk factor
would substantially alter medical or
reproductive decision-making.

3. The potential benefit of knowing a
genetic disorder exists clearly out-
weighs the potential risks of anxiety
and subsequent medical testing that
could result from this knowledge.

4. Unless they add substantial risk,
risk factors for multifactorial disor-
ders are not reported.

5. Recessive mutations will be reported
only if (1) the carrier frequency for
mutations in that specific gene is
.1% (such that the disease incidence
is more than 1/40 000); (2) the syn-
drome results in significant morbidity;
or (3) early diagnosis and interven-
tion would have significant benefit.

Monozygosity was initially confirmed by
high-densitySNPmicroarray.Whole-exome
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sequencing did not reveal an obvious
genetic cause of the congenital anoma-
lies in the affected twin, although studies
are ongoing regarding several variants
of interest. High-quality genotypes were
98.9% concordant in the twins; see
Table 1 for details of overall sequenc-
ing results. After eliminating known
SNPs notmeeting criteria outlined above
and likely nonpathogenic variants, as
well as artifacts (both by examining
MPG and coverage data from next-
generation sequencing, as well as by
comparison with 479 other whole-exome
samples), a total of 412 variants were
identified. Of these, 32 novel variants (25
missense and 7 insertion-deletions) in 30
genes were felt to be likely associated
with human disease (Table 2). Eighteen
variants were associated with recessive
diseases (manifesting in the homozy-
gous or compound heterozygous state),
and 17 were associated with conditions
for which the presence of a single mu-
tation (heterozygosity) was associated
with disease in a dominant model (var-
iants in some genes were associated
with both recessive and dominant con-
ditions). Some of these dominant-model
genes were associated with increased
susceptibility to a complex condition,
such as schizophrenia or inflammatory
bowel disease, whereas others were
related to more traditional Mendelian
disorders, although there was no clinical
evidence for these disorders in the

participants or their families, indicating
that the variant was nonpathogenic,
nonpenetrant, or that the reported gene-
disease association was spurious.

Three heterozygous variants initially
met criteria for return of information:
CACNA1S, associated with hypokalemic
periodic paralysis and malignant hy-
perthermia17,18; CPSI, associated with
Carbamoyl Phosphate Synthetase I de-
ficiency, as well as pulmonary artery
hypertension,19–21 the latter of which
this participant had; and CYP21A2, as-
sociated with 21-hydroxylase deficiency
leading to congenital adrenal hyperpla-
sia.22 Experts in each of the diseases/
genes were contacted, as pathogenicity
was not clear in all cases. Of these, after
extensive discussion, it was unclear (but
felt to be unlikely) whether the specific
variant identified in CACNA1S was path-
ogenic, and because the research par-
ticipants and their relatives showed no
signs of these CACNA1S-related condi-
tions, it was determined that this result
did not meet criteria for return. In dis-
cussion with individual researchers,
strong evidence emerged that the variant
in CYP21A2 was nonpathogenic through
(private, unpublished) work of re-
searchers specializing in this disease
(Maria New, MD; Tony Yuen, PhD). There
was evidence that the CPSImutation was
pathogenic as relates to postoperative
pulmonary artery hypertension, which
the affected twin suffered, and, as there is

a potential intervention (special anesthe-
siology considerations in future surgeries),
this was deemed to meet requirements
for return to the participants.

DISCUSSION

New technologies allow researchers to
examine large portions of the genome
with relative ease. These are valuable
tools, and reveal a large amount of po-
tentially medically significant informa-
tion that, with in-depth analysis, can be
used to facilitate health care8,9; however,
the presence of incidental medical in-
formation may also impede the use of
genomic sequencing. Challenges di-
rectly related to incidental genomic
information in clinical practice involve
complex and resource-consuming in-
terpretation and validation of data, the
possibility of subjecting patients to risky
and unnecessary follow-up testing, and
questions about the overall risk-benefit
ratio of conducting such testing.11 In
the research setting, similar issues
also apply, and hinge on specific IRB-
approved guidelines.

One central issue in the research con-
text involves defining and determining
what genetic information should be
returned to research participants who
undergo this type of sequencing. In our
experience, and in discussions with a
numberofotherresearchersusingthese
sequencing methods, there is a wide
range of opinions. These opinions range
from returning no incidental medical
information (because of logistical con-
cerns as well as the argument that that
the overall risk would outweigh the
benefits), to returning large amounts of
information involving personal and fa-
milial genetic risk factors for disease, to
returning all genetic data in an uncu-
rated fashion so that research partic-
ipants and their physicians can access
this information prospectively. Likewise,
although there is no single accepted
algorithm in the medical literature,
various criteria have been proposed

TABLE 1 Overview of Variants Detected in the Monozygotic Twins Through Whole-Exome
Sequencing

Total variantsa 79 525
Total variants with high-quality genotypesb Twin A: 62 504

Twin B: 64 926
Total variants where there is a high-quality genotype

available for both twins
52 143 (98.9% concordance: 51 566 concordant

variants; 577 discordant variants)
Variants in dbSNP (build 130) 43 300
Synonymous variants 8428
Nonsynonymous variants 7660
In-frame insertions/deletions 77
Frameshift mutations 68
Nonsense variants 49
Splice-site mutations 37
a Differences from the human reference sequence, build National Center for Biotechnology Information 36.
b Based on MPG score $10 and score/coverage ratio $0.5.
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regarding which information should be
returned. Unifying themes of these
recommendations involve the follow-
ing: allowing research participants to
choose whether they want to learn
about incidental medical information;
the need for filtering and confirmation
of variants owing to the inevitable false-
positive variant calls; the requirement
to show that the findings are valid in
terms of pathogenicity, which can be far
more demanding; and requirements that
thereturnedgenetic informationinvolves
a relatively high risk for disease, that the
information is actionable, and that the
benefits of knowing the genetic infor-
mation outweigh the risks.7,11,13 Other
recommendations focus on specific
context, taking into account the nature
of the variant, the parameters of the
research study, and the characteristics
of the research participants.12,14

Despite optimal guidance and careful
algorithms, there will inevitably be var-
iants that fall into “gray zones” in the
decision-making process. For such var-
iants, we use amultidisciplinary approach
drawing on experts frommultiple fields,
but this can be a laborious process that
draws resources away from direct re-
search goals. This report demonstrates
that a large amount of effort was re-
quired to return only 1 incidental geno-
mic variant found through whole-exome
sequencing. One proposal to help man-
age the workload in a streamlined
manner is to establish collective groups
experienced in interpretation of geno-
mic sequencing to automate the pro-
cess of both analyzing research results,
as well as aiding in interpretation, vali-
dation, and return of results.
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