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ABSTRACT Numerous mapping projects conducted on different species have generated an abundance of
mapping data. Consequently, many multilocus maps have been constructed using diverse mapping
populations and marker sets for the same organism. The quality of maps varies broadly among populations,
marker sets, and software used, necessitating efforts to integrate the mapping information and generate
consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared
with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional
complications introduced by consensus analysis include inter-population differences in recombination rate
and exchange distribution along chromosomes; variations in dominance of the employed markers; and use
of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared
sets of markers and different level of mapping data quality. In this article, we introduce a two-phase
approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with
iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem
is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for
order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the
optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal
sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different
modifications to take into account the variation in quality of the original data (population size, marker
quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP
that can be referred to as “synchronized TSP.” The conflicts detected after phase 1 are resolved using either
a heuristic algorithm over the entire chromosome or an exact/heuristic algorithm applied subsequently to
the revealed small non-overlapping regions with conflicts separated by non-conflicting regions. The pro-
posed approach was tested on a wide range of simulated data and real datasets from maize.
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Numerous mapping projects have generated an abundance of mapping
data. Consequently, many multilocus maps have been constructed using
diverse mapping populations and marker sets for the same species. The
quality of maps varies broadly between populations, marker sets, and
applied software. As one would expect, there might be some inconsis-
tencies among different versions of maps for the same organism. This

calls for new efforts to integrate the mapping information and generate
consensus genetic maps (MCGM) and integrate genetic and physical
maps (Stam 1993; Klein et al. 2000; Kwitek et al. 2001; Williams et al.
2001; Wu et al. 2002; Menotti-Raymond et al. 2003; Yap et al. 2003; De
Givry et al. 2005; Mester et al. 2006, 2010; Korol et al. 2009; De Keyser
et al. 2010; and others). MCGM problem is even more challenging
compared with mapping based on one dataset due to additional com-
plications, namely, genetic and ecological differences in recombination
rates and exchange distribution along chromosomes (Korol 2001), var-
iations in dominance of the employed markers (Mester et al. 2003b),
and different subsets of markers used by different labs. The maps created
by different labs for an organism could contain different numbers of
markers, and not all markers will be presented in each map. Markers
presented in two or more maps can be referred to as shared, in contrast
to unique markers presented in one map only. Four major approaches
for consensus mapping can be considered:
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(i) Reducing the consensus-mapping problem to single dataset or-
dering via constructing the synthetic distance matrix from all
datasets (Wu et al. 2002). This approach does not use the notion
of conflicting markers; the approximate EM algorithm is applied
for optimization.

(ii) Graph-theoretic approach by looking for non-conflicting subset
of markers via joint analysis of the previously constructed in-
dividual maps. This analysis is based on searching shared orders
among the already constructed genetic maps from different
mapping projects. For a conflicting pair of markers, the solution
is obtained using heuristics that are based on some “voting”
criterion (Yap et al. 2003; Jackson et al. 2008; Wu et al. 2008,
2011). For example, Jackson et al. consider a genetic map as
a partial order, and the problem is solved by combining the
graphs corresponding to individual partial orders and removing
cyclic conflicts through the identification of minimum-feedback
arc set. A combination of a heuristic algorithm and an exact
solver are employed in the approach. This approach does not
use the whole matrix of marker distances.

(iii)Using maximum-likelihood approach in two versions (De Givry
et al. 2005): (a) if one assumes that the data from different sets
represent a single map, i.e. same order and distances (this situ-
ation is referred to as genetic merging); or (b) if the same order is
assumed, but recombination rates differ between the mapping
populations (this situation is referred to as order merging).

(iv)Reducing consensus mapping to a specific (constrained) version
of the traveling salesperson problem (TSP) that can be referred
to as “synchronized TSP.” To solve the problem, we search for
the best multilocus order corresponding to minimum of weighted
sum of map lengths among non-conflicting orders, testing only
those orders that fit the condition “shared markers must be in
shared order” for any subgroup of mapping populations (Mester
et al. 2003b, 2006, 2010; Korol et al. 2009). This approach uses the
whole matrix of marker distances for each mapping population
included in the analysis. A combination of heuristic and exact
algorithms is used in the approach.

These approaches to solve MCGM were implemented as software
packages: (i) JoinMap (http://www.kyazma.nl/index.php/mc.JoinMap/);
(ii) MergeMap (http://138.23.178.42/mgmap); (iii) CarthaGene
(http://www.inra.fr/internet/Departements/MIA/T//CarthaGene/);
and (iv) MultiPoint (http://www.multiqtl.com/). Here, we introduce
new algorithms for the forth approach, which are more effective than
our previously published variant (Mester et al. 2006). The algorithms were
implemented in MultiPoint-consensus software (http://evolution.haifa.ac.
il/images/stories/korol_lab/Programs/MultiPointConsensus_DemoG.zip),
validated on simulated datasets and illustrated on real data.

The major points of our approach concern the chosen optimization
criteria for searching for the best multilocus order and representation
of the integral map resulting from consensus analysis of multiple
datasets. For building consensus (non-conflicting) maps, we employ
methods of conditional minimization (the condition is “shared order
for shared markers”) of the weighted sum of individual chromosome
lengths. In using this approach, we take advantage of high efficiency of
our hybrid heuristics for discrete optimization. In building the integral
map, we take into account the possibility of local map uncertainty
(branching) caused by the presence of unique (set-specific) markers.
This uncertainty, inescapable in many cases, is ignored by some map-
ping packages in which the integral map is based on averaged recom-
bination distances. An interesting perspective to address this problem
is to take advantage of the comparative genomic approach (Faraut

et al. 2007) based on the evolutionary conservation of chromosome
segments between related species.

MODELS, METHODS, AND ALGORITHMS

Models and methods
In our approach, the optimal consensus order of shared markers is
defined by searching the minimal total length of non-conflicting maps
of the chromosome. The employed criterion is based on the sum of
recombination rates across adjacent segments and is widely used in
map construction for single-population data (see Molinari et al. 2009
for review). Unlike the analysis of a single dataset, in consensus map-
ping the optimization is conducted simultaneously on all sets or some
subset of all mapping populations. The additional request is non-
conflicting order of shared markers. Let Wi be the set of all markers
of the analyzed chromosome of the ith population (dataset). Then,
W ¼ [Wi is the set of all markers of the consensus mapping problem.
Consider markers that appear in at least one pair of mapping pop-
ulations. The set R of such markers is referred to as shared markers.
Correspondingly, V = W-R is the set of markers that appear in only
one of the mapping populations and can be called unique markers.

Denote G as the set of all possible partial orders g of shared
markers and by U(i, g(i)) the set of all permutations of unique markers
of the ith dataset relative to order g(i)�g of shared markers of this set.
An optimal partial order g� of shared markers can be defined as one
from the set G minimizing the sum

SðgÞ5
X

i

wiminu2Uði;gðiÞÞSiðgðiÞ; uÞ5
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Here Si is the sum of all recombination rates along the map for the
ith set (population) of the analyzed chromosome; order ui(g(i)) from
set U(i, g(i)) is the one that provides the minimum of Si. Coefficient wi

is the weight of ith set in the optimization criterion that can charac-
terize the quality or reliability of the data. This criterion can be mod-
ified to take into account the variation in the quality of original
datasets (e.g. population size and/or marker quality).

Generally, our approach is based on joint analysis of raw mapping
data using a two-phase analytical scheme. In phase 1, multilocus
ordering combined with iterative resampling (to evaluate the stability
of marker orders) is performed separately for each dataset (Mester
et al. 2003a). In phase 2 we employ two methods, global and local, for
solving the problem. In the global method, consensus mapping is
conducted by reducing the problem to synchronized TSP (Mester
et al. 2006). In the local method, the regions of conflicting order are
defined and for each such region the analysis is conducted using
criterion (1). If a conflicting region is small, an effective scheme of
full enumeration is proposed; otherwise, we employ the heuristics of
synchronized TSP. The results of local analysis can also be used as
starting point for the global analysis. The main reason for using local
analysis is the complexity of optimization for TSP with constrains.
Even a single constrain may request more sophisticated algorithms
and a considerable increase in computation time (sometimes by orders of
magnitude; see TSP-like benchmarks and results in http://www.sintef.no/
Projectweb/TOP/Problems/VRPTW/Homberger-benchmark/).

In case of MCGM, ordering of shared markers across all analyzed
datasets tremendously increases the computational complexity com-
pared with the standard single-set TSP-like formulation, which itself is
computationally challenging (Weeks and Lange 1987; Falk 1992; Mott
et al. 1993; Schiex and Gaspin 1997; Hall et al. 2001). As mentioned
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earlier, we employ in our approach the criterion of total sum length of
the chromosome maps or the criterion of the total length of each
region of conflict. These criteria can be modified to take into account
variation in the quality of original datasets (e.g. population size and/or
marker quality). Moreover, various other criteria employed for single-
map construction can be adapted to the proposed here synchronous
ordering approach.

Algorithms for consensus mapping
For consensus mapping (phase 2), we developed algorithms for the
aforementioned local and global analysis. The local method includes:
(a) defining the regions of local conflicts based on pairwise conflicts
and (b) the algorithm of full enumeration of all non-conflicting orders
of shared and unique markers in the defined conflict region (see
below) to find the solution (local order with the best value of the
criterion) in reasonable time. The algorithm for the global method
uses special heuristics for global discrete optimization of synchronized
TSP for all markers (unique, shared conflicting, and shared non-
conflicting) (Korol et al. 2009; Mester et al. 2010). Here the process of
optimization is conducted along the entire chromosome using the
solution obtained with the local method as an initial point. It is
noteworthy that the global algorithm may be very useful in the local
method when the size of the conflicting region is too large to employ
the optimization based on full enumeration.

Let us consider in more detail the developed algorithms. After
getting the non-synchronized solutions based on independent map-
ping for each dataset (single-population mapping), conflict regions are
formed by the analysis of all pairs of the resulting individual maps.
Each conflict region contains shared conflicting and non-conflicting
markers, and some unique markers. The remaining non-conflicting
shared markers between the conflict regions are considered as “frozen”
anchors during the solution process for each conflict region (hence,
only conflict region markers participate in the optimization process).
This version of the algorithm significantly reduces the computation
time. Moreover, for certain sizes of conflict region, an exact solution
can be obtained. The sequential steps of the analysis include:

1. Building skeleton maps for each of the initial datasets using the
methodology described in Mester et al. (2003a), Korol et al.
(2009), and Ronin et al. (2010).

2. Revealing conflicting shared markers for each pair of chromosomes
(Figure 1A).

3. Integration of the results on detected pairwise conflicts (across all
involved datasets) allows defining the conflicting regions separated
by non-conflicting regions (Figure 2).

4. In case of a large interval between neighboring markers, the corre-
sponding map may display an “inversion” or “transposition” of
a large segment resulting in multiple conflicts with other maps. In
such a case, before starting the main consensus procedure, we em-
ploy heuristic rules of transposition and inversion to get a better
initial point for consensus ordering (Figure 3).

5. Evaluating the computation complexity of the conflict regions. On this
stage, a crude estimate of the computation time needed to resolve the
conflict by testing all possible permutations is provided. If the needed
time is not affordable, the alternative is to use heuristic optimization.

6. Resolving the conflicts in each conflict region by synchronous opti-
mization. This means that the allowed trial solutions must fit the
following condition: for the considered chromosome, the map order
in none of the mapping populations is in conflict with the order in
any other mapping population. Obviously, for such a formulation,
one may take advantage of parallel computations.

7. Detecting and resolving higher-order conflicts and loops, which are
much less frequent than pair conflicts (Figure 1B).

As a conflict region, we imply a set of segments of the maps for the
mapping populations that include shared and unique markers and fit
the conditions: (a) unique markers are flanked by or are adjacent to
the shared markers and (b) at least for one pair of populations, two or
more shared markers from the region appear in conflict order. The
procedure of defining conflict region is illustrated in Figure 2. The
analysis of several datasets may reveal a few conflict regions separated
by regions of no conflict. In Figure 2, the process of delineating
a conflict region is based on overlaps of pairwise conflicts. The conflict
between markers a and b includes the first five sets; the conflict region
is bordered by a single line. A second conflict, between b and
d markers, starts at set 4 and extends until set 7. In defining the
boundaries of the conflict region, we employ the following rules: (i)
the size of the region depends on the conflict markers, where a conflict
marker can coincide with the boundary only if it is simultaneously the
end marker of the linkage group (in the example in Figure 2, conflict
markers а and b coincide with the end in sets 1 and 2, respectively);
(ii) in all other cases, boundary marker for the conflict region may be
either a non-conflict shared marker or a unique marker; and (iii)
depending on the width of the conflict region, we employ the exact
or heuristic optimization algorithm.

Local algorithm of consensus analysis, in contrast to global analysis,
applies only to the conflict region. With several regions, the conflicts
are resolved successively in each such frame. A conflict region should
include at least a pair of shared markers, the order of which in at least
one set is opposite to the order in other sets. The conflict region of the
entire set of mapping populations should include the considered pair
of conflicting markers as well as all markers in between this pair, either
shared or unique. In turn, the shared markers in the conflict region can
also be in conflict with other markers. This conglomerate of pairwise
conflicts makes up a conflict region that can also be extended by
including neighbor markers from both sides that do not create any
conflict (see Figure 2). This extension is needed because during the
process of resolving the conflict(s) within the conflict region, the flank-
ing markers are frozen. Note that if one of the ends of the conflict
region coincides with the end of the linkage group, then only one of
the ends (the internal one) remains frozen during the optimization.

The computation complexity and the efficiency of the proposed
scheme of exact solution can be illustrated by the following calculations.
Consider a conflicted interval of k shared conflicted markers bounded
by a pair of non-conflicted markers. Let n be the number of unique
markers in one dataset. In this situation, the total number of different
orders is (k+n)!. For each order, a sum of k+n+1 elements should be
calculated. According to the proposed scheme, in the first stage we
prepare a table of 2n((k+2)(k+1)/221) optimal orders for each of the
possible subsets of n unique markers in the intervals bounded by the
pair of shared markers (for each possible pairs of k+2 shared markers,
excluding the pair of bounded markers). The worst case corresponds to

Figure 1 Examples of local conflicts: (A) pairwise conflict and (B)
higher-order conflict.
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situations where all of n unique markers are situated in one interval of
shared markers (the number of possible orders in this situation is n!).
In the second stage, we test all k!(k+1)n combinations of the orders of k
shared markers and arrangements of n unique markers among k+1
resulting intervals of k+2 shared markers. For each such combination,
we calculate the criterion value as a sum of k+1 elements of the table
prepared in the first stage. This tabulation-based method significantly
reduces the computation time for finding the exact solutions. For
example, in a situation with k = 4 and n = 10, using this scheme
reduced the calculation time about 325-fold compared with the time
one would need for consequent testing of all possible permutations. In
fact, we employ a scheme of exhaustive permutations, where with in-
creasing number of markers, the majority of marker orders can be
skipped due to the preliminary computations saved in the memory.
With k+n, 15 (of which the number of either shared k or unique n is
,11), the exact solution can be obtained in less than an hour.

The main idea of solving MCGM using the global method is to
generate possible partial orders g of shared markers R and evaluate
them by means of criterion of minimal total length S(g) (equation 1)
taken across all datasets of the problem. The optimal consensus order
of shared markers is defined by searching minimal total length of non-

conflicting maps of the chromosome. Unlike the analysis of a single
dataset, where the order is optimized based on the sum of recombi-
nation distances for one map only, here the optimization is conducted
simultaneously on all sets or on some subset of all sets. Each dataset i
contains some shared markers R(i)2R named as anchors, and some
unique (set-specific) markers V(i). Here computing the criterion (1)
includes determination for each dataset i the optimal order of unique
markers V(i) using the order of shared markers as anchors. The
mapping problem is reduced to a TSP with special restriction on order
of anchor markers. We do not know about any existing specific
method for the TSP that can be directly applied to this specific so-
phisticated situation. Therefore, for searching the solution to the prob-
lem, we decided to use a meta-heuristic, guided evolution strategy
(GES). It is a hybrid heuristic algorithm that combines the power of
guided local search (Voudouris 1997) and evolution strategy (ES)
algorithms (Mester et al. 2003a, 2007, 2010). Our GES algorithm uses
the basic ideas of ES (Rechenberg 1973) and (m, l)-strategy (Schwefel
1977), which were supplemented with new elements. Namely, we
extended the ES algorithm by including variable size mutations,
random mutation schemes, and a heuristic algorithm that defines
the “reasonable” places of mutation (for large-scale problems) (Mester

Figure 2 Stepwise determination of conflict regions.
White circles denote shared markers, and gray circles
denote unique markers. The figure illustrates the pro-
cess of delineating conflict regions based on over-
lapping regions of pairwise conflicts. Conflict between
markers a and b includes the first five sets; the conflict
region is bordered by a single line. Conflict between
b and d starts in the first region (at set 4) and extends
until the end (set 7) (its part outside the first region is
marked by double lines). The whole conflict region is
highlighted in gray.

Figure 3 Inversion and transposition transformations in
consensus analysis. Black and gray circles represent
shared and unique markers, respectively. Shared
markers with the same name are connected with solid
lines. The left part of the figure illustrates the operation
“inversion”: due to a large interval in set 2 (recombina-
tion rate �0.31), the distal part of the map in set 2 is in
conflict with the one in set 1. Operation “inversion”
returns a nonconflicting order. Similarly, in the right part
of the figure, a source of the conflict is the interval with
loose linkage in set 1. Operation “transposition” returns
a nonconflicting order.
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et al. 2010). GES successfully solves some constrained discrete optimi-
zation TSP-like problems (Mester and Braysy 2005, 2006; http://www.
sintef.no/Projectweb/TOP/Problems/VRPTW/Homberger-benchmark/),
classic TSP (Mester et al. 2010), and genetic mapping problems for-
mulated in TSP-like terms with the anchor constraints (Mester et al.
2004, 2006, 2010; Korol et al. 2009). The GES algorithm was adapted
to solve synchronized optimization problems when the exact algo-
rithm of the local method is not effective due to the large size of the
conflict region. Namely, GES was strengthened by three additional
local search procedures for working with anchor-marker constrains:
“Reinsert,” “Reverse-Reinsert,” and “Exchange 1�1” (Braysy and
Gendreau 2001). A new multi-parametric generator was developed
to create random orders g of shared markers. In our scheme, six
parameters define mutation of current best solution gbest (Mester
et al. 2010).

For getting the exact solution of MCGM via the global method we
must generate all (n!/2) possible orders of shared markers in g. Clearly,
it does not make sense trying all generated orders g of shared markers
with respect to criterion (1), which includes both shared and unique
markers, because the majority of orders will be very far from the
optimal order. For estimating the quality of generated order gt at step
t, the second (skeleton) criterion, is used. It is computed as total map
length S(t)shared =

P
i wi Si(gt), taking much less time. Note that the

total map length S(t), referred to asmain criterion, is calculated accord-
ing to eq.1, i.e. includes both the shared and unique markers. During
the optimization process, all current S(t)shared and corresponding best
S(t) values are stored in a special list. The values of S(t)shared and S(t) are
highly correlated, although the extremes do not necessarily coincide
(i.e. minimum of S may not correspond to the minimum of Sshared).
Therefore, checking the main criterion for each generated order g of
the shared markers does not seem to be a good idea. We compute the
criterion S(t) only for those gt that satisfy the condition Sshared(gt) # q,
where parameter q is the threshold value of Sshared (Mester et al. 2010).
After a new successful step of optimization (that provides an improve-
ment of S(t)), the new (S(t)shared, S(t)) pair is included to the list and q is
recalculated. Changing q along (and dependent on) the optimization
trajectory can be considered as a learning process that allowed re-
ducing 20- to 100-fold the computation time.

Two starting points are used in the global method: g� (optimal
solution obtained by the local method) and quick skeleton solution
g�� (minimum of Sshared) defined by the GES algorithm (Mester et al.
2006). Main steps of the global method can be presented as:

1. Define initial solution

g0 ¼ best of ðg�; g��Þ
gbest ¼ g0; t ¼ 0
S
�
gbest

� ¼ P
i
wi minu2Uði;gÞSi

�
gbest; u

� ¼ P
i
wiSi

�
gt ; ui

�
gbest

��

ð2Þ

2. t = t+1
3. Generate new gt on gbest via muti-parametric generator
4. If Sshared(gt) # q then
{
5. Define S(gt) via GES algorithm
6. If S(gt) , S(gbest) then gbest = gt

}
7. If not finished go to step 2

To test the efficiency of GES, we simulated single mapping
populations with up to 1000 markers per chromosome, whereas for

testing constrained optimization problems in consensus mapping, our
simulations included multiple populations (up to 16) with up to 100
markers per population with different proportions of shared markers.

The general scheme of the proposed two-phase approach of
consensus mapping analysis is presented in Figure 4.

RESULTS

Analysis of simulated data
Simulated data are the main instrument allowing the objective
comparison of different analytical schemes of consensus analysis. It
is highly desirable to imitate as many as possible features of real data
that may be important for the solution process and affect the solution
quality. Many of these features are the same as in multilocus mapping
for single-population situations (e.g. Mester et al. 2003a, b), but there
are also some differences:

• Differences between the populations in the rate and chromosomal
distribution of recombination events

• Variation in interference (positive and negative)
• Various levels of missing data
• Scoring errors varying among the loci and populations
• Variation in the proportions of shared markers

The main quality characteristic in our previous single-population
analysis was the recovery coefficient (Mester et al. 2003a). This char-
acteristic can also be applied in simulation analysis of consensus
mapping analysis, with a small modification: the recovery coefficient
should be considered for shared markers.

Before moving to the results obtained for simulated data, a short
explanation of employed marker names should be provided. In each
set, markers located sequentially along the chromosome were enumer-
ated sequentially. The names of shared markers look like mar1, mar2,
mar3, etc., and the unique marker names also include the set number.
Thus, markers located consequentially along chromosome for ith set
can be represented as mar1, mar2_i, mar3_i, mar4, mar5, mar6_i,. . .,
where the 2nd, 3rd, and 6th markers are unique to set i.

In the first two examples, we compare the effects of missing data
and small sample size with the number of conflicts and quality of
consensus mapping. Namely, the population size in the first example
was 150, but due to missing data in the first eight sets, the average size
per marker pair was 56; in the second example, the sample size for
the first eight sets was 50 and no missing data were simulated.
The simulated datasets used in this article can be downloaded (http://
evolution.haifa.ac.il/images/stories/korol_lab/Programs/SE.rar).

Example 1.1: Example 1.1 includes single-chromosome data on 16 F2
populations each with sample size 150 genotypes scored for 50 co-
dominant markers (supporting information, File S1, example 1.1). In
75% of the cases, the interval length was generated as an evenly dis-
tributed variable in range [1, 4] cM, and in 25%, in range [4, 20] cM.
For the first eight variants, 40% of scores were simulated as missing
data, whereas in the remainder 8 variants the missing scores com-
prised 20%. In addition, in 10% of individuals, 20% of loci of the first
group and 80% of the second group were simulated as misclassified.
Namely, for loci with misclassification, 5% of heterozygous gen-
otypes H = AB are classified as AA and 5% as BB; and 10% of
homozygotes AA and 10% of BB are classified as AB. The results of
consensus analysis of the data are shown in Table 1. Here, as well as in
Table 2, Table S1, and Table S2, we show the map length for each
population obtained based on individual analysis of the population
data (Ind) and based on joint (consensus) analysis (Cons); the order of
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shared markers is also shown. Marker names are represented by con-
secutive numbers in the chromosomes, so that the true order corre-
sponds to monotonically increasing numbers. Places with wrong order
are highlighted in gray; for such places, left parts of the columns
correspond to individual ordering, whereas right parts correspond
to consensus mapping. We can see that in the vast majority of cases
consensus analysis corrects the local deviations from the true order.

Example 1.2: In contrast to the previous example, no missing data
were in the first eight populations, but their sample size was only 50
per population, i.e. 1/3 of the sample size of the second group of eight
populations (File S2, example 1.2). All other parameters were as in
example 1.1. The results of consensus analysis are shown in Table 2.

In both examples, the increased level of scoring errors resulted in
inflation of map lengths in the second group of populations. The
differences between the results obtained for examples 1.1 and 1.2 can
easily be explained. In example 1.1, due to 40% of missing data, only
56 genotypes remain, on average, for estimation of pairwise distances
between markers, i.e. nearly the same as in the first eight populations
of example 1.2. In example 1.2, individual analysis of each dataset
resulted in maps with 28 cases of deviation from the simulated order
of shared markers (in total) across the first eight datasets; in example
1.1 the number of such cases was nearly 2-fold (52). Thus, missing has
a more influential effect on the quality of multilocus ordering than an
equivalent decreasing of the sample size. Nevertheless, in both exam-
ples, consensus analysis managed to recover the true order, except for
one case in example 1.1.

Example 2.1: The sample size for each of the 16 populations was 100.
The first 8 populations were simulated with no missing data, whereas
20% of missing data were simulated for the remaining 8 populations
(File S3, example 2.1). Moreover, zero level of scoring errors was
simulated in the first group and 10% of error alleles at 75% of loci
were in the second group. The absence of missing scores and errors in
the first group of populations resulted in exact individual ordering of
each chromosome, unlike the second group with more than three
wrong orders per set (Table S1). Two rounds of consensus analysis
were conducted. In the first, equal weights were applied to all pop-
ulations in the optimization criterion. In all sets, except one, erroneous
local neighborhoods caused by missing data and marker scoring errors
were corrected via consensus analysis. Only one segment from variant
13 remained unfixed and, during consensus analysis, caused an or-

dering error in set 1. Thus, only one out of 28 segments remained
uncorrected. This exemplifies a situation in which consensus analysis
results in an increased order quality compared with the wrong solu-
tions obtained for individual sets due to the noise effects. It is note-
worthy that this result was obtained without using an important
resource: the information about the quality of scoring data.

Obviously, one would expect the results obtained with noisy data to
be less accurate; hence, it makes sense to decrease the contribution of
more noisy data to the optimization criterion compared with less noisy
data. The simplest indicator of data quality may be just the map length
Li for the corresponding ith dataset analyzed individually (before con-
sensus step). Indeed, with other things being equal, the map length will
inflate monotonically with the level of scoring errors. This effect can be
easily seen in Table 1, Table 2, Table S1, and Table S2, in which noisy
variants have, on average, 2-fold longer maps than the “pure” variants.
To reduce the impact of noisy variants to the consensus solution, one
can conduct a second round of calculations using 1/Li as weights. In
our example, when 1/Li weights were employed, the less noisy (more
informative) dataset 1 overweighed the effect of the more noisy dataset
13, resulting in a correct order in the region of markers 18–19.

Example 2.2: Example 2.2 is based on eight simulated F2 mapping
populations each with N = 100 genotypes and m = 50 markers. In the
first four sets, there were neither missing nor scoring errors, whereas
in the remaining four sets 20% of missing scores across all marker loci
and 10% erroneous scores across 75% of loci were simulated. In the
example, after phase 1 analysis, we observed altogether 17 conflicts; all
of these were resolved in phase 2. For illustration, let us consider one
of these conflicts in more detail, for m25 and m26 loci, involving four
out of the eight sets (Table S2). The conflict is caused by inconsistency
of the optimal orders of these markers in sets 5–7 with the optimal
order (i.e. the correct one, coinciding with the simulated order) of
these markers in set 1. For these four sets, Si values at the solution
orders resulted from separate analysis of individual sets were 244, 552,
578, and 542 cM, respectively. The two conflicting orders are shown in
Figure S1. With the erroneous solution, the contributions of the de-
fined conflict region to Si are equal to 0.25, 0.32, 0.81, and 0.47,
respectively (the non-weighted sum = 1.84, see Figure S1A). With
the correct solution, the contributions were 0.18, 0.32, 0.81, and
0.51, respectively (sum = 1.82, see Figure S1B). Clearly, the second
solution is preferable: its criterion value is smaller by 0.02. Using non-
equal weights wi decreases the contribution of the erroneous solution

Figure 4 The general scheme of the pro-
posed two-phase approach of consensus
mapping.
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to optimization criterion S because missing data and scoring errors
resulted in an elongation of maps in datasets from the second group.
This increases the difference between the correct and erroneous sol-
utions about 4-fold. Clearly, the simple “voting” approach would not
work here because only one out of the four sets displayed the correct
order between m25 and m26.

Analysis of real data
We illustrate here the developed methodology and algorithms
in consensus mapping example on maize. Two groups of data
were analyzed, one with six BC populations and the other with
24 RIL populations (http://www.panzea.org/db/gateway?file_id=
NAM_map_and_genos). The results for both groups of data in-
clude correction of the individual maps based on consensus anal-
ysis and building of integral maps.

Maize six BC populations: The major step in our multilocus
mapping is building a framework (skeleton) map. With this approach,
the skeleton map is cleaned from markers that fit one of these
conditions: (i) are absolutely linked; (ii) violate monotonic growth of
recombination with its subsequent neighbors; (iii) have unstable
location relative to other markers (as detected by jackknife resam-
pling). During consensus mapping, the first step is also building
skeleton maps for each dataset, but now we should retain as many

shared markers as possible. Thus, on the first step, we delete only
unique markers that fit one of the three conditions and each of the
shared markers that is absolutely linked to the same shared marker in
other sets. This allows obtaining a richer integral map at the end of the
analysis. Below we present the results on consensus analysis of six BC
populations (Set1–Set6). Comparing the lengths of maps constructed
based on individual and consensus analysis allows judging the quality
of the data.

Three situations can be considered: (a) no difference between the
lengths, implying no conflicts between the individual maps (like in
chromosome 9, Table S3); (b) small differences, which point to local
conflicts resolved by consensus analysis with a minor elongation of the
map (this situation was found in most chromosomes for most of the
sets; see, for example, chromosome 1 in sets 1 and 5, Table S3, and
Figure 5A); and (c) larger difference, indicating a considerable conflict,
as found for chromosome 6. The situation of chromosome 6 in set 4
before and after consensus analysis is presented in Figure 5B. Consid-
erable inflation of the map length after consensus analysis may reflect
a low quality of some of the markers or be a result of a real biological
reason (e.g. inversion or transposition). In any case, the cost of con-
sensus in a situation like the one found in chromosome 6 (set 4) may
be too high, calling for detection and removing of the “responsible”
marker from the set in which its position in the initial map seriously
differs from that in other datasets. In the considered example, the map

Figure 5 Examples illustrating the “cost of consensus” (based on joint analysis of six BC maize populations): (A) low cost when there is no need in
removing markers to reduce the cost; (B, C) high cost justifying removal of one marker in each case; and (D, E) moderate cost caused by marker
pairs extending the map (deleting these markers reduced the segment length 2-fold).
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expansion was caused by the presence of marker idp1973. Table S3
shows the results for map lengths for all 10 chromosomes, including
the corrected situation for chromosome 6 after removing marker
idp1973 from set 4. We can see a good correspondence between the
results of individual and consensus mapping. In addition to the pre-

viously mentioned case of “high cost” of consensus, a few additional
cases may deserve similar consideration: Chr2-Set2 (144.8–167.7);
Chr5-Set3(158.3–166.4); and Chr7-Set3(191.7–200.6) (see Figure 6,
C–E, and Table S3). For Chr2-Set2 (Figure 5C), removing marker
idp618 solves the problem of the high cost of consensus caused,

Figure 6 A fragment of the integral map of chromo-
some 1 (based on data of six BC mapping populations
of maize). Dark nodes denote shared markers, and light
nodes denote unique markers.
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actually, by two markers, idp618 and idp488 involved in non-local
conflict in sets 1 and 2, and separated by 21 cM in set 1 and 11.2
cM in set 2. For Chr5-Set3 (Figure 5D), markers idp1625 and idp2587,
which caused an expansion of idp722-сidp1251 from 2.1 cM to 25.3
cM, were removed. Similarly, for Chr7-Set3 (Figure 5E), markers
idp1670 and idp1977, which caused an expansion of the interval from
39.6 cM to 61.9 cM, were also removed. On the basis of consensus
analysis of the six BC mapping populations, we obtained six corrected
conflict-free variants of each chromosome, as well as an integrated
map (based on all six datasets). Here, as an example, we provide
a fragment of the integral map for chromosome 1 (Figure 6, dark
and light ellipses represent shared and unique markers, respectively).
This example demonstrates that consensus analysis resolves the con-
flict between the individual maps, i.e. brings the maps to one order of
shared markers. Nevertheless, the obtained solution is not free of
uncertainties, especially for unique markers (see Discussion).

Maize 24 RIL populations: For each population, the data include
marker scores for each of the 10 chromosomes. Unlike the previously
mentioned BC data, these sets have a very high level of shared markers
and a high quality of marker scoring. For each chromosome, we show
the length of the map (in cM) based on ordering for each dataset
separately (first row) and based on consensus analysis (second row).
Except for a few cases (marked by frames in Table S4), the map lengths
for individual-set ordering and consensus ordering were identical or
very similar. This means that the unique maps built independently for
each dataset displayed no conflicts of multilocus orders, pointing to
a high-quality marker scoring. Still, for some set-chromosome combi-
nations, the differences were moderate (3–10 cM) or rather high
(.40 cM!). The last situation means that the cost of consensus is
“not affordable” and that corresponding markers in the specific dataset
should be removed, no matter which mechanism generated such a dis-
crepancy of the specific population from all others. However, such
a situation may also result from low marker density in some sets
and real variation of marker positions among mapping populations,
e.g. due to chromosomal rearrangements (see Discussion).

Here we provide more details on the above-noted case with
considerable difference between the map length before and after
consensus analysis (89.2 cM vs. 132.9 cM) for chromosome 9 in set 21.
As in the BC data, one marker caused the effect. Here it was marker
I00098. In this case, the effect was due to a very sparse map, which is
actually represented by only four loci separated by 34, 28, and 36 cM.
With such distances, unequivocal ordering is problematic (Figure S2).
We can see from the illustration that unique order of marker I00098
in set 21 differs from the consensus order: the attempt for consensus
resulted in moving this marker to the opposite end of the map, in-
creasing the distance between I00098 and its closest neighbor from
36 cM to nearly 80 cM. It is noteworthy that, in all other sets, the size
of the same interval varied from 7 cM in set 11 to 20 cM in set 22.
This may mean either very high noise in scoring I00098 in set 21 or
hotspot of recombination in this interval in the heterozygote from
which set 21 was established.

For illustration, we show here the integral map of chromosome 1
(Figure S3). Obviously, this integral map differs significantly from the
one shown for BC populations. This is due to the simple fact that BC
data included a considerable proportion of non-shared markers,
whereas in the RIL data, the proportion of such markers is close to
zero. As a result, the integral map for the RIL problem is mainly
represented as one-dimensional chain interrupted by some simple
loops caused by unique patterns of chromosomal distribution of par-
tially shared markers.

DISCUSSION
The application of the proposed approach based on synchronized-TSP
formulation (hence, constrained discrete optimization) is illustrated
on simulated data and real data on maize. In a comparison with other
approaches, several aspects of the proposed methodology and employed
criteria are worth discussing. Building multilocus maps can be based on
various criteria, and choosing “the best” is not a simple task (Molinari
et al. 2009).

Reduction of the consensus mapping problem to single-dataset
mutilocus ordering using the synthetic distance matrix constructed
from all datasets seems to be the simplest possible approach to the
problem. It “automatically” resolves all conflicts because ordering is
based on only one (synthetic) matrix. With this approach, irresolvable
problems on mutual positioning of shared markers belonging to
non-overlapping subsets are overlooked because of the assumption
of proportional parallel changes of recombination rates along the
chromosome in different sets that may contradict the reality (see
example in Figure 7). In the considered example, mij are popula-
tion-specific (nonshared) markers. Marker m22 in population 2 is
closer to the shared marker Gm2 than marker m12 in population 1,
due to uneven and population-specific distribution of recombina-
tion along the segment. Without additional shared markers, this
difference cannot be taken into account. Assuming “proportional”
changes in recombination rates, one will get a wrong order, whereas
the correct order will be obtained if additional shared markers Gm3

and Gm4 are available. Thus, with only two shared markers Gm1 and
Gm2 in the region, the relative positions of markers mij cannot be fully
resolved, and employing surrogate information based on linear ap-
proximation of recombination rates will result in a wrong local order
in the integral map. Similarly, a wrong order will be obtained for
shared markers that belong to poorly overlapping subsets of mapping
populations, if the missing experimental information on recombina-
tion rates between markers from these subsets is “derived” analytically
based on linear approximation.

Much more reasonable is the graph-theoretic approach (GTA)
based on the detection of non-conflicting subset of markers in the
previously constructed individual maps (Yap et al. 2003; Jackson et al.
2008; Wu et al. 2008). There are some important advantages of the
method presented in the current paper over GTA. In GTA, pairwise
distances are employed between adjacent markers only, whereas our
approach utilizes information from the whole distance matrix. Once
conflicts among individual maps are detected, the correction in GTA
is based on deleting some of the markers, whereas our approach is
based on reordering the markers and utilizing the option of marker
deletion only if the cost of consensus is high. If the initial maps were
erroneous (due to small sample sizes, scoring errors, weak mapping
algorithm, etc.), the GTA consensus map will absorb these errors
(Jackson et al. 2008), whereas the approach proposed in this paper
allows checking the data quality for each set based on resampling
analysis, cleaning up the most problematic markers, and giving lower
weight to datasets with inflated map lengths.

Choice of optimization criterion is the basis of any mapping
approach. Here we extend the criterion of minimum total map length,
widely employed by many authors dealing with multilocus map
construction in the case of a single mapping population (e.g. Weeks
and Lange 1987), to consensus mapping problem. For consensus
mapping, we employ the sum of the map lengths taken across all
datasets included in analysis. With this criterion, we are testing only
those orders that fit the condition: shared order for shared markers.
Obviously, this criterion can easily be extended to take into account
the variation in information content in different datasets caused by
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variation in sample sizes and data quality. It is interesting that this
approach may return correct multilocus order even in situations where
intuitively clear and attractive voting criteria may result in wrong
orders, e.g. with data different in signal/noise level (see example 2.2
above).

A specific aspect of the consensus mapping approach proposed
here is the cost of consensus. This notion is closely related to the initial
formulation of our approach, with synchronous re-analysis of the
initial mapping data based on testing only non-conflicting multilocus
orders. Consensus ordering will be accompanied with high cost when
some of the markers in the initial maps (constructed during separate
analysis of each population) appear in conflict. In fact, consensus
analysis moves such markers to new positions, resulting in map
expansion compared with the initial map. Local corrections of marker
positions during consensus analysis will cause insignificant increase in
map length, but considerable changes cannot be excluded, as could be
seen from our examples on real data. There might be several reasons
for such considerable changes, calling for careful analysis followed by
corresponding decision making (e.g. deleting the problematic marker
from one or several datasets). Indeed, one of the reasons of high cost
may be high noise in marker scoring in one of the populations. But
biological reasons can also play a role, including chromosomal rear-
rangements (e.g. Nelson et al. 1995). In such cases, a marker may have
a different map position in a certain population compared with other
populations (in principle, chromosomal rearrangement may also re-
sult in more serious changes of map order, involving considerable
segments). With the graph-theoretic approach, the previously men-
tioned problem is absent because the trouble-making markers are
always deleted. With our approach, the need to remove a marker
due to high cost of consensus is quite rare. Usually, local repositioning
of the markers resolves the noise-generated conflicts without substan-
tial increase in map length.

Although the general scheme of our approach includes synchro-
nous optimization over the entire chromosomal length (global
analysis), a higher computational efficiency was achieved by local
analysis based on segmentation of the total map into regions of local
conflicts separated by regions of no conflicts and employing the
consensus optimization criterion for each conflict region separately.
What are the reasons justifying the use of local analysis? The main
cause of conflicts is the noise in recombination data, originating from
three factors: errors in marker allele identification; missing data for
some or many markers; and statistical noise decreasing with sample
size. Low noise does not affect the quality of multilocus ordering
(Mester et al. 2003a). With increasing noise, local wrong orders will be
manifested as local conflicts between the individual maps. Further

increase in the noise level will cause a widening of the conflict regions
that will still be local, and only rare moderate noise will throw amarker
far enough. Thus, local analysis is justified by the assumption of low-
to-moderate noise in recombination scores. The other assumption is
that resolving local conflicts should provide the same solution as
global analysis based on optimization of the main criterion (total
map length, equation 2). Obviously, larger size of the entire chromo-
some compared with the sizes of regions of local conflicts considerably
complicates the global solution process using heuristic algorithms.

Unlike many applications of TSP, where differences in portions of
percentage in the achieved optimal value of the criterion have no
practical value, in genetic mapping, the value of the criterion is not
important by itself. However, even small differences in the criterion
value can be associated with considerable deviation of the calculated
order from the true order. Therefore, as the first step in the consensus
analysis, we conduct ordering separately for each dataset taking
advantage of jackknife resampling verification of the obtained orders
(Mester et al. 2003a). The next step is detection of conflicts and local
analysis to resolve the conflicts keeping the non-conflict regions “pro-
tected” (frozen). With small sizes of the conflict region, an exact
analysis is affordable; otherwise, we employ heuristic algorithms
for synchronous-TSP optimization (Figure 4). At this step, the cost
of consensus should be taken into account to prevent considerable
map length inflation due to noisy markers. After all local conflicts
are resolved, the obtained solution can be employed as a starting
point to run the global optimization over the entire chromosome to
ensure that the obtained solution cannot be further improved.

An interesting perspective for improving the quality of consensus
analysis may be mutual controlling of the results obtained with
synchronous-TSP heuristics and GTA. Namely, the multilocus orders
constructed by reanalysis or raw data and coordinated with resam-
pling quality control may be employed as a starting point for both
approaches. Although GTA is less sparing (less economical) with
respect to conflicting markers (hence, fewer markers will remain in
the GTA consensus maps than in the synchronous-TSP maps), if
the two approaches perform well, the subset of markers remaining
in the final consensus maps from the two methods are expected to be
in the same order. Such correspondence will point to the quality of the
solution. Other possibilities of building hybrid algorithms taking
advantage of the complementary properties of the two approaches
remain to be investigated.
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