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Glioblastomas are characterized by altered expression of several ion channels that have important consequences in cell functions
associated with their aggressiveness, such as cell survival, proliferation, and migration. Data on the altered expression and function
of the intermediate-conductance calcium-activated K (KCa3.1) channels in glioblastoma cells have only recently become available.
This paper aims to (i) illustrate the main structural, biophysical, pharmacological, and modulatory properties of the KCa3.1
channel, (ii) provide a detailed account of data on the expression of this channel in glioblastoma cells, as compared to normal brain
tissue, and (iii) critically discuss its major functional roles. Available data suggest that KCa3.1 channels (i) are highly expressed in
glioblastoma cells but only scantly in the normal brain parenchima, (ii) play an important role in the control of glioblastoma cell
migration. Altogether, these data suggest KCa3.1 channels as potential candidates for a targeted therapy against this tumor.

1. Introduction

Glioblastomas are the most common and aggressive among
primary brain tumors. In spite of the intensive basic and clin-
ical studies, only minor successes have been witnessed over
the last decades. One-third of patients keep surviving no
longer than one year from diagnosis, and average life expect-
ancy remains dismal (12–15 months), even when radical sur-
gical resection, chemo- and radiotherapy can be applied. The
major problem with glioblastomas is their highly migratory
and invasive potential into the normal brain tissue that
prevents complete surgical removal of tumor cells and the
extreme resistance of these cells to standard treatments [1].
To worsen the outcome of the disease is the presence in the
tumor mass of a recently identified subpopulation of highly
tumorigenic stem-like glioblastoma cells possessing even
more invasive power, chemo- and radio-resistance than non-
stem tumor cells, that are also thought to be responsible for
the commonly observed tumor relapses [2–4].

Glioblastomas are characterized by a large number and
variety of genetic mutations that heavily disregulate the

major signaling pathways controlling cell survival, prolifer-
ation, differentiation, and invasion [5]. Among the disreg-
ulated pathways found in glioblastoma cells there are those
controlling the expression of ion channels, transmembrane
proteins endowed with a permeation pore that allows the
passage of ions. Usually ion channels are selectively perme-
able to one particular ion and can open and close their per-
meation pore in response to chemical and physical stimuli,
such as neurotransmitters, modulators, and changes in the
membrane potential [6]. Ion channels have been found to be
involved in several cellular functions, hallmarks of cancer cell
aggressiveness, such as proliferation, apoptosis, and migra-
tion. In most cases their contribution consists in regulating
two important cellular parameters, the cell volume and the
intracellular Ca2+ concentration ([Ca2+]i) [7, 8].

By allowing the movement of K and Cl ions through the
plasmamembrane, and the osmotically driven water flux, ion
channels critically control the changes of cell volume that
are functionally relevant for glioblastoma cells. For example,
a premitotic volume condensation (PVC) is required for
glioblastoma cells to switch from a bipolar into a round cell
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morphology just prior cell division. Notably, this process
requires the opening of Cl-selective ClC-3 channels, that are
markedly upregulated in glioblastoma cells as compared to
healthy astrocytes [9–12]. Similarly, a cell volume reduc-
tion, the so-called apoptotic volume decrease (AVD), was
observed during the staurosporine- or TRAIL (TNF-alpha-
related apoptosis inducing ligand)-induced apoptosis of
glioblastoma cells, and also in this case it was found to be
sustained by a Cl channel flux, being prevented by inhibitors
of Cl channels [13]. Cell migration and invasion through
the narrow extracellular spaces of the brain parenchyma also
require major changes in cell volume. These processes in
addition to the ClC-3 channels discussed above require the
activity of Ca2+-activated K-selective BK channels, likewise
markedly upregulated in glioblastoma cells as compared to
healthy astrocytes [14–16].

The important role of the Ca2+ signals in the devel-
opment of glioblastoma has recently been reviewed [17].
Notably, ion channels play a critical role to this regard;
besides sustaining directly the Ca2+ influxes (through Ca2+-
permeable channels) they can influence the entry of extra-
cellular Ca2+ ions by modulating the membrane potential
that controls the driving force for Ca2+ influx. Ca2+ influx
through the TRPC family of Ca2+-permeable channels has
indeed been shown to modulate glioblastoma cell cycle pro-
gression [18–20] and to induce a CaMKII-dependent activa-
tion of ClC-3 during premitotic volume condensation [12].
In addition, glioblastoma cell migration has been shown to
be accompanied by intracellular Ca2+ oscillations that are
instrumental to promote the kinase-dependent detachment
of focal adhesions during cell rear retraction [21, 22], and
these intracellular Ca2+ oscillations can be significantly af-
fected by the membrane hyperpolarization determined by
the activity of K channels [23].

Perhaps the best suited ion channels to play a role in
tumor development are the Ca2+-activated K (KCa) chan-
nels, as they are at the cell crossroad where Ca2+ influx, mem-
brane potential, and outward ion fluxes, all processes gov-
erned by KCa channels, integrate to modulate a large array
of cellular processes [24]. KCa channels are subdivided into
three major classes according to their single channel con-
ductance: large conductance (150–300 pS) K channels (BKCa

or KCa1), small conductance (2–20 pS) K channels (SK
or KCa2.1, KCa2.2, KCa2.3), and intermediate conductance
(20–60 pS) K channels (IKCa or KCa3.1). Each subclass has
specific biophysical and pharmacological properties that
allow to identify them. KCa1 channels, encoded by the
Kcnma1 gene, are broadly expressed in various tissues. They
are regulated by cytoplasmic Ca2+ but also by membrane
potential. In the absence of Ca2+, KCa1 channels can be acti-
vated only with extreme (nonphysiological) depolarizations.
Elevations in cytoplasmic [Ca2+] shift the range of activating
voltages to more negative potentials. Near resting potentials,
the EC50 of the KCa1 is in the micromolar range. Paxilline,
iberiotoxin, and low concentrations of tetraethyl ammonium
are potent and specific inhibitors of the KCa1 channel. The
KCa2.x channels are voltage independent but more sensitive
to Ca2+ (EC50 in submicromolar range) due to the presence
of calmodulin associated with the C-terminus that works as

Ca2+ sensor. Apamine, but not paxilline or iberiotoxin, can
selectively block the KCa2.x channels. The KCa3.1 channels,
like the KCa2.x channels, are voltage independent but gated
by intracellular Ca2+ that binds to calmodulin and opens the
channel. Clotrimazole and its derivative TRAM-34 are potent
inhibitors of the KCa3.1 channels, discriminating them from
other KCa channels.

KCa3.1 channels are expressed in a variety of normal and
tumor cells, where they participate in important cell func-
tions such as cell cycle progression, migration, and epithelial
transport, by controlling the cell volume and the driving
force for Ca2+ influx [25–27]. Here we review the major pro-
gresses that have led to our present understanding of the
expression and role of the KCa3.1 channels in glioblastoma.

2. General Properties of the KCa3.1 Channel

The KCa3.1 channel has the overall architecture of the
voltage-gated K (Kv) channel superfamily, with four sub-
units, each containing six transmembrane domains (S1–S6)
and a pore domain (P loop) located between S5 and S6. The
S4 domain, which confers voltage sensitivity to the Kv chan-
nels, shows in KCa3.1 channels only two positively charged
aminoacids, as compared to the 4–7 charged residues of
voltage-gated K channels. Channel activation is, therefore,
voltage independent. The KCa3.1 channel is gated instead
by the binding of intracellular Ca2+ to calmodulin, a Ca2+-
binding protein that is constitutively associated with the
C terminus of each channel subunit [28–30]. This Ca2+-
dependent gating is similar to that displayed by the KCa2.x
channel family but distinct from KCa1 channels, where the
Ca2+-dependent module is intrinsic to the channel α subunit
[24]. Patch-clamp experiments in several cell types, including
glioblastoma, give IC50s for KCa3.1 channel activation by
Ca2+ of 200–400 nM [31, 32], consistent with those found for
the cloned channel [33–35]. The high Ca2+ sensitivity of the
KCa3.1 channel allows its activation by submicromolar Ca2+

levels, easily reached upon Ca2+ release from intracellular
stores or influx through Ca2+ permeable channels. A four-
state gating scheme was proposed for KCa3.1 channels, with
Ca2+-dependent transitions dependent on the [Ca2+]i in a
nonlinear manner [36]. This peculiarity, not shared by the
KCa2.x channel family [37], is related to the channel
behaviour at saturating [Ca2+]i, as elevated divalent concen-
trations have been reported to block the channel [36, 38].
The most studied KCa3.1 mRNA is the 2.1 kb form, but
other transcripts have been reported in humans [34, 35].
Three distinct Kcnn4 cDNAs that are designated as Kcnn4a,
Kcnn4b, and Kcnn4c encoding 425, 424, and 395 aminoacid
proteins, respectively, were isolated from the rat colon, and
several differences in the functional expression and phar-
macological properties of the different isoforms were found
[39].

The KCa3.1 channels are target for several inhibitory and
activatory agents (for an exhaustive review see [40]). Two
structurally distinct groups of KCa3.1 channel blockers, pep-
tidic and nonpeptidic, have been found which also differ
for their binding site on the channel protein. Among the
peptidic blockers, maurotoxin and charybdotoxin display
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the strongest potency. Maurotoxin, is a 34-aminoacid toxin
cross-linked by four disulfide bridges [41]. Lys23 of the toxin
binds to the pore filter of the channel from the extracellular
side, and a π-π interaction between tyr32 of the toxin and
a cluster of aromatic residues in the channel pore vestibule
stabilizes the interaction [42]. Maurotoxin is not selective
for KCa3.1 channels, being also a potent blocker of some
members of Kv channels [41]. Charybdotoxin (ChTX), a
37-aminoacid toxin, displays a block mechanism similar to
maurotoxin, and poor selectivity, blocking effectively other
ion channels including KCa1 channels [43]. Several nonpep-
tidic molecules have been found to block KCa3.1 channels,
such as the vasodilator cetiedil [44, 45], the antimycotic
triarylmethane clotrimazole (CTL, [46]), and the antihyper-
tensive L-type Ca2+ channel blocker nifedipine [47]. From
chemical modification of cetiedil several more potent KCa3.1
channel blockers were obtained. The investigation of one of
these compounds, the UCL 1608, suggests that they interact
with a lipophilic-binding site located within the membrane
[48]. Also the chemical modification of the poorly selective
CTL has led to the production of several more effective
KCa3.1 channel blockers, including the triarylmethanes
TRAM-34 [49] and ICA-17043 [50]. TRAM-34 is so far
the best probe to study the roles of KCa3.1 channels, being
much more selective than CTL [49]. An excellent work
has conclusively delineated the properties of the KCa3.1
channel binding site for TRAM-34 [51]. These authors found
that the TRAM-34 analogue and membrane impermeant
TRAM-30 blocked the channel only when applied from
inside, and the interaction of TRAM-34 with the channel
required the P-loop aminoacid Thy250 and the S6 segment
aminoacid Val275, both likely facing a large water-filled
cavity localized below the narrow selectivity filter of the
channel. They thus concluded that the TRAM-34 binding
site is accessible from the cytoplasmic side and lays well up
inside the inner vestibule. The same work has also found
that the dihydropyridines-binding site is likely different from
the TRAM-34 binding site, as the same mutation does not
alter the blocking action of nifedipine [51]. Starting from
nifedipine as lead compound, the 4-phenil-4H-pyrans and
the related cyclohexadienes were obtained [52, 53], of which
cyclohexadiene 4 represents the most potent blocker of
KCa3.1 channel. Particularly interesting for KCa3.1 channel
targeting in glioblastomas is the analogue compound bicycle
hexadiene lactone 16, that displays a 10-fold enrichment in
brain tissue [53].

From the early discovery of 1-ethyl-2-benzimidazolinone
(EBIO) as KCa3.1 channel activator [54], much effort has
been devoted to increase its potency and selectivity. Potency
was initially improved with the introduction of DC-EBIO
[55], and more recently with NS309 [56]. Selectivity on the
contrary has been more difficult to increase since these com-
pounds activate also KCa2.x channels [40]. The mechanism
of action of KCa3.1 channel activators, and the location and
structure of their binding sites have been only partially clar-
ified [57, 58]. The potency of all KCa3.1 channel activators
depends on Ca2+, as they are totally ineffective in its absence
[54, 57, 58]. The origin of this Ca+2 dependence is still
unclear.

3. KCa3.1 Channel Modulation by
Intracellular Messengers

3.1. Kinase Regulation. Several studies have described a run-
down of the KCa3.1 channel activity in ATP-free internal
milieu that can be restored after the readdition of ATP [59],
suggesting the involvement of kinases in the process. In
accordance, several kinases such as PKC, PKA, and PI3Ks
have been shown to regulate the KCa3.1 channels [59–61],
although not through the direct phosphorylation of the
channel α subunit [59, 61, 62]. Only the nucleotide diphos-
phate kinase (NDPK) has been shown to phosphorylate the
KCa3.1 channel alpha subunit (at the hist358) [63], and a
similar action could be exerted by adenosine monophosphate
kinase (AMPK), although the aminoacid residue targeted
in this case has not been identified [64]. It is possible that
NDPK or AMPK represent integration points for other
kinases found to modulate KCa3.1 channels, as already dem-
onstrated for the PI3K class II [65].

3.2. Trafficking. The regulation of the pathways involved in
KCa3.1 channel trafficking has been proposed as a new strat-
egy for regulating the KCa3.1 current, since the inhibition of
endocytosis by the ubiquitin-activating enzyme E1 strongly
increases the number of KCa3.1 channels in the mem-
brane [66]. In expression systems, the KCa3.1 channels at
the plasma membrane have a relatively short life, being inter-
nalized within 60–90 min [67] and targeted for lysosomal
degradation [68]. This process requires components of the
ESCRT machinery and the small-molecular-weight guanine
nucleotide-binding protein Rab7 [68]. Polyubiquitylation
mediates the targeting of membrane-residing KCa3.1 chan-
nels to the lysosomes, while USP8 regulates the rate of KCa3.1
channel degradation by deubiquitylating KCa3.1 channels
prior to lysosomal delivery [69]. This modulation could
explain the increase of KCa3.1 current observed following
short exposure (90 min) of glioblastoma cells to CXCL12,
since noise analysis indicates that the KCa3.1 current increase
is due to an increased number of channels in the membrane
(our unpublished data), while no changes in the KCa3.1
channel mRNA levels are observed [70].

3.3. Transcriptional Regulation. Two main transcription fac-
tors have been found to regulate the KCa3.1 channel expres-
sion, AP-1 and REST. AP-1 was first identified in T lympho-
cytes where its activity, stimulated by the ERK1/2 pathway,
promotes an increase in KCa3.1 current and cell proliferation
[71]. In the glioblastoma cell line GL-15 the inhibition of
ERK1/2 by the MEK inhibitors PD98059 reduces the mRNA
levels for the KCa3.1 channels, suggesting that the same
modulation described in T lymphocytes is also working in
glioblastoma models [32]. This modulation is relevant as
the ERK1/2 pathway is deregulated in most glioblastomas,
because of the several mutations accumulated during glio-
magenesis [72]. The second transcription factor found to
modulate the KCa3.1 channel expression is REST (Repressor
Element 1-Silencing Transcription factor). The Kcnn4 gene
contains two RE-1 sites whose occupancy by REST represses
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gene transcription. In vascular smooth muscle cells the
downregulation of REST correlates with KCa3.1 channel up-
regulation and proliferation [73]. Thus, changes in glioblas-
toma REST levels could explain the ERK-independent Kcnn4
transcriptional downregulation we found in GL-15 glioblas-
toma cells with time of culture [32]. REST has in fact been
shown to negatively regulate the adult CNS differentiation
[74, 75], and KCa3.1 mRNA downregulation was found to
be accompanied by the appearance of several differentiation
markers [32].

4. Expression of KCa3.1 Channels in
Glioblastoma and Healthy Tissues

Early evidence for the expression of KCa3.1 channels in
glioma cells came from biochemical and electrophysiological
studies performed about twenty years ago. In rat C6 glioma
cell line it was first observed that Ca2+ ionophores induced a
rubidium flux sensitive to nanomolar concentration of ChTX
but not to IbTX, TEA, and apamin [76, 77]. Patch-clamp
experiments in the same cell line confirmed the presence of
a K-selective channel having a unitary conductance of 26 pS
in symmetrical K and a sensitivity to submicromolar [Ca2+]i

[77, 78]. This channel could also be activated by several
physiological Ca2+ agonists, such as endothelin, serotonin,
histamine, and bradykinin [23, 79–84].

Subsequent work from our laboratory showed that the
KCa3.1 channel was also expressed in human glioblastoma
cell lines (GL-15 and U251; [32, 85]). Coapplication of the
Ca2+ ionophore ionomycin with the KCa2/KCa3.1 channel
activator EBIO evoked in these cell lines a sustained K
current inhibited by ChTX, CTL, and TRAM-34 but not
by the KCa2 channel blocker d-TC. Single channel record-
ings confirmed the presence of a unitary K current with
biophysical and pharmacological properties congruent with
those reported for the cloned human KCa3.1 channel [32–
35, 85]. In accordance, the KCa3.1 channel transcripts could
be amplified from both GL-15 and U251 cells [32].

Besides the U251 cell line, the KCa3.1 channel transcripts
were also found by Sontheimer’s group in D54-MG, another
human glioblastoma cell line, as well as in a human glio-
blastoma biopsy [86]. These authors, however, found neither
evidence for a KCa3.1 current in these tissues (probed in
whole-cell configuration with a [Ca2+]i of 750 nM), nor for
the KCa3.1 channel protein (using western blot analysis and
commercially anti-KCa3.1 antibody) [86].

With regard to this apparent discrepancy on the func-
tional expression of KCa3.1 channels in human glioblastoma
cells, a third group recently found a substantial level of
KCa3.1 channel transcripts in U87 and U251 cell lines, as well
as in a glioblastoma biopsy [87]. Moreover, they found that
the same cells displayed a voltage insensitive, Ca2+-activated
K-selective current blocked by CTL and TRAM-34, indicat-
ing that the KCa3.1 channel was expressed in human glio-
blastoma cells. The expression of the KCa3.1 channel protein
in glioblastoma cells was further confirmed by the same
group with western blot analysis [88]. These authors tried
to explain the discrepancy of their results with those of Son-
theimer’s group by considering the different experimental

conditions used in the whole-cell recordings and the different
sensitivity of the antibodies used in the western blot analysis.

The high expression of the KCa3.1 channel in glioblas-
toma cells could have a major diagnostic and therapeutic rel-
evance, provided that its presence in the brain was restricted
to the transformed glial cells. Early work performed soon
after the cloning of the human KCa3.1 channel showed that
the KCa3.1 channel transcripts were not expressed in the
human central nervous system, although they were found in
many other human tissues (placenta, lung, salivary gland,
colon, prostate, thymus, spleen, bone marrow, lymph nodes,
lymphocytes, and in many of these tissues the functional
expression of the KCa3.1 channel was confirmed by patch
clamp experiments) [33–35]. This was confirmed by an RT-
PCR study showing that KCa3.1 channel transcripts could be
found in D54-MG and U251 human glioblastoma cell lines,
as well as in a human glioblastoma biopsy but not in a grade
III astrocytoma nor in normal human brain and in cultured
rat astrocytes [86]. All these studies strongly suggested that
the KCa3.1 channel was only scantly expressed in human
normal brain tissue, while being strongly upregulated in glio-
blastomas.

Data from nonhuman specimen appear instead less clear.
Earlier electrophysiological studies focused on normal rat
and mouse glial cells did not find any evidence for the
expression of the KCa3.1 channel, while reporting the pres-
ence of other Ca2+-activated K channels such as KCa1 and
apamin-sensitive SK channels [87, 89, 90]. The expression
of KCa3.1 channels was instead reported in cultured rat
microglia [91, 92], but these cells did not appear to express
KCa3.1 channels in in vivo slices [93]. Currents that could be
ascribed to the KCa3.1 channel were observed in rat dorsal
root ganglion and autonomous neurons [94–96], and most
recently in rat cerebellar Purkinje cells [97]. Immunohisto-
chemical analysis revealed the KCa3.1 channel protein in rat
ependymal cells [98]. More recent studies indicate, however,
that normal mouse astrocytes express low levels of KCa3.1
channels. More specifically, one study shows that about
10% of GFAP-positive mouse astrocytes is immunoreactive
to antibody against KCa3.1 channels, and this percentage
increases 5-fold following spinal cord injury. This latter result
is consistent with the observation that KCa3.1 channels are
highly expressed in activated astrocytes [93]. A second study
also reports KCa3.1 immunoreactivity in mouse astrocytes
(mostly at the endfoot) and shows that the channel partici-
pates to the neurovascular coupling. The study further shows
that 50% of GFAP-positive astrocytes in slice preparation
expresses TRAM-34 sensitive and NS309-activated KCa3.1
currents [99]. Taken together, these data would suggest that
KCa3.1 channels are present in a fraction of normal mouse
astrocytes. Further dedicated experiments are needed to con-
clusively clarify whether human normal astrocytes express
KCa3.1 channels, and whether interspecies differences exist
in the expression of KCa3.1 channels in the brain.

5. Functional Roles of KCa3.1 Channels in
Glioblastoma Cells

5.1. Cell Proliferation and Growth. KCa3.1 channel expres-
sion has been shown to be upregulated in many cancer cell
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types, and in most of them a role of this channel in promot-
ing cell growth and cell cycle progression has been evidenced
(reviewed in [25]). A similar role in glioblastoma cells is
suggested by data showing that CTL inhibits the growth
of glioblastoma cell lines (by inducing a cell cycle arrest at
G1-S transition) and delays the development of intracranial
glioblastoma tumor formation [100–102]. However, given
the several unspecific effects of CTL, these data do not con-
clusively show whether KCa3.1 channels have a role in the
growth of glioblastoma cells. A recent work aimed at spe-
cifically addressing this issue found that both CTL and the
more specific CTL analog TRAM-34 inhibited the growth of
U87 and U251 cells, although with IC50s much higher than
those needed to inhibit channel activity. By contrast, when
inhibition of KCa3.1 current (down to 20%) was attained
by RNA interference, no measurable effect was observed on
cell growth [88]. Based on these observations the authors
concluded that KCa3.1 channel activity is unlikely to have a
major role in glioblastoma cell proliferation, and the effects
of KCa3.1 channel inhibitors are most likely unspecific. It
should be noticed, however, that under the assumption that
the effect of KCa3.1 channel on cell growth is mediated by
the channel-induced hyperpolarization (that would facilitate
Ca2+ influx through the membrane), an IC50 for cell growth
inhibition higher than that for channel block has to be
expected, as documented for many K channel blockers
(reviewed in [103]). A role of KCa3.1 channels in glioblas-
toma cells proliferation cannot thus be excluded based on the
available data, and further experiments addressing this point
are needed.

5.2. Cell Migration and Invasion. More conclusive data assign
a role to KCa3.1 channels in glioblastoma cell migration.
Cell migration plays a crucial role in the pathophysiology of
glioblastomas, and several ion channels have been shown to
have a major role in this process (cf. Section 1). Given the
abundant expression of KCa3.1 channels in glioblastoma
cells and the substantial role this channel has in the migra-
tion of other cell types [27], we recently verified whether
glioblastoma cells require KCa3.1 channel activity to move.
More specifically, we asked whether physiological motogens
likely surrounding glioblastoma cells in vivo use KCa3.1
channels for their promigratory activity. Among them, the
chemokine CXCL12/SDF-1 appeared of interest as its recep-
tors CXCR4 are widely expressed in glioblastoma tissue [104–
107], and their activation plays a key role in the migration
of glioblastoma cells [108–110]. Interestingly, we found that
KCa3.1 channel activity was required in the chemotactic
response to SDF-1 of GL-15 and U251 cell lines, primary cul-
tures and freshly dissociated tissue [70]. The chemotac-
tic response, probed with standard transwell chamber, was
indeed strongly attenuated both in presence of TRAM-34
and by KCa3.1 channel silencing by RNA interference. In
patch-clamp experiments we found that in a fraction of GL-
15 cells brief applications of SDF-1 activate KCa3.1 channels
by increasing the intracellular [Ca2+]i. More prolonged SDF-
1 applications (three hours incubation) on GL-15 cells
induced instead an upregulation of the maximal KCa3.1

channel conductance, suggesting a posttranslational upreg-
ulation of the channel protein.

We further found that the KCa3.1 channel activation is
not a general requirement for motogen-induced migration
in glioblastoma cells. KCa3.1 channel inhibitors were in fact
ineffective in modulating the chemotactic response to epi-
dermal growth factor (EGF), another physiologically relevant
chemotactic inducer in glioblastoma [111]. Patch-clamp
experiments on GL-15 cells showed that EGF activates a
KCa3.1 current very similar to that seen in response to SDF-
1. Additional experiments showed that EGF, unlike SDF-1,
was not able to upregulate the KCa3.1 channel functional
expression following prolonged incubation, suggesting this
SDF-1-induced modulation may be the relevant one for
chemotaxis.

Other in vivo promigratory signals for glioblastoma cells
could be present in the serum that can infiltrate into the
tumor area of glioblastomas as result of the blood-brain
barrier breakdown [112, 113]. Several studies show that fetal
calf serum (FCS) enhances the migration of glioblastoma
cells by inducing oscillations of the [Ca2+]i. [Ca2+]i oscilla-
tions are thought to facilitate the detachment of focal adhe-
sions, through stimulation of focal adhesion kinase, and the
retraction of the cell rear towards the direction of movement
[21]. However, since the FCS-induced [Ca2+]i oscillations
reach peaks sufficiently high to activate KCa3.1 channels, we
hypothesized that K efflux through KCa3.1 channels could
serve for the volume changes needed during cell migration.
We found that in about 40% of U-87 cells, acute application
of 10% FCS resulted in an oscillatory activity of a K-
selective, TRAM-34 sensitive current, displaying frequencies
well within those observed for the FCS-induced [Ca2+]i

oscillations [114]. Beside inducing a cyclical activation of
KCa3.1 channels, FCS also promoted the stable (nonoscilla-
tory) activation of a Cl-selective current having biophysical
and pharmacological properties resembling those found for
the volume-activated Cl current (ICl, swell) widely expressed
in glioblastoma cells. Coherently, transwell migration assays
performed in the presence of KCa3.1 and Cl channel
inhibitors indicated that the activity of these two channels
was needed for the promigratory activity of FCS [114].
Finally, the Cl channel blocker 5-nitro-2-(3-phenylpropil)
benzoic acid (NPPB) has been shown to block KCa3.1 chan-
nels at concentrations often used to block Cl channels [85],
suggesting that the particularly high efficacy of this com-
pound on glioblastoma cell migration [115] is due to its inhi-
bitory effects on both channel types.

5.3. Mechanistic Roles of KCa3.1 Channels in Cell Migration.
As discussed in the Introduction and illustrated in Figure 1,
there are two possible mechanisms through which KCa3.1
channels could subserve glioblastoma cell migration. The
first mode holds that the channel is instrumental, together
with the Cl channel and aquaporins, to the combined out-
ward ion flux needed for cell volume decrease. At relatively
low [Ca2+]i, shown to correspond to the lamellipodium
protrusion, the membrane conductance is dominated by the
ICl, swell, and the membrane potential is very close to the Cl
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Figure 1: Schematic drawing illustrating the main properties and roles of the KCa3.1 channel expressed in glioblastoma cells. KCa3.1
channels can be activated by elevations of the [Ca2+]i originating either from the PLC- and IP3-dependent Ca2+ release from intracellular
stores triggered by G-protein-coupled receptors or from Ca2+ influx through TRPC channels. The KCa3.1 channel activity can also
be regulated by several kinases, such as PI3K, PKC, and PKA. The expression of the channel is under the control of the RTK/ERK/MAPK-
dependent AP-1 and REST transcription factors acting on the Kcnn4 gene and further depends on the balance between endo- and exocytosis
of KCa3.1 channel-containing vesicles. The drawing further highlights the two basic mechanisms sustained by the KCa3.1 channels: (i)
inserted in the Ca2+ regulation module, in synergy with Ca2+ permeable channels (a TRPC in the scheme), the KCa3.1 channel amplifies the
Ca2+ signals by hyperpolarizing the membrane, thus increasing the driving force for Ca2+ influx; (ii) in the cell volume regulation module,
in synergy with Cl and aquaporin channels, the KCa3.1 channel controls the cell volume by contributing to changes in the intracellular
osmolarity and water content. Inset: Top: KCa3.1 subunit topology showing the six transmembrane domain signature. The calmodulin-
binding domain and the histidine phosphorilation site at the C-terminus have been indicated. Bottom: Schematic drawing showing the
homotetrameric nature of functional KCa3.1 channels.

equilibrium potential (ECl). Under these conditions no
transmembrane ion flux through the KCa3.1 and Cl channels
is present, since there is no driving force for Cl ions, and
KCa3.1 channels are closed. During this period the mem-
brane transporters, usually located at the front of migrating
cells [27] will bring ions and water inside the cell, thus
allowing the cell volume expansion needed for cell protru-
sion. By contrast, the opening of KCa3.1 channels during the
peaks of [Ca2+]i oscillations will move the resting membrane
potential to values between EK and ECl, a condition pro-
moting both K and Cl efflux, followed by water for osmotic
requirements. The resulting reduction in cell volume, accom-
panied by the detachment of focal adhesions located at the
cell rear [21], would thus facilitate the retraction of the cell
body.

Besides controlling cell volume KCa3.1 channels could
promote glioblastoma cell migration through the modula-
tion of [Ca2+]i signals. Several works have indeed shown that
the activity of KCa3.1 channels facilitates the entry of Ca2+

ions from the extracellular medium by providing a counter
ion to limit cell depolarization and also by hyperpolarizing
the cell membrane and increasing the driving force for Ca2+

influx. This was first demonstrated in activated T lympho-
cytes [115] and subsequent works confirmed this role in
other cell types expressing this channel [116–118]. In GL-
15 cells we found that prolonged applications of histamine
induced an increase of [Ca2+]i consisting of a fast peak caused
by the release of Ca2+ from the intracellular stores, followed
by a sustained phase dependent on Ca2+ influx through a
lanthanium-sensitive pathway. Interestingly, the activation of
KCa3.1 channels significantly enhanced the sustained phase,
as indicated by a reduction of the histamine-induced [Ca2+]i

in the presence of TRAM-34 [119]. This result strongly sug-
gests that the activation of KCa3.1 channels could contribute
to glioblastoma cell migration by modulating the shape
of [Ca2+]i oscillations. In accordance with this hypothesis,
we recently built a theoretical model of [Ca2+]i oscillations
incorporating the dynamics of the membrane potential and
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found that a channel activity with the properties of KCa3.1
channels could sensibly affect IP3 driven [Ca2+]i oscillations
(it increased both the amplitude and duration of each [Ca2+]i

spike and the oscillatory frequency) [118]. Interestingly,
we found that under particular conditions the presence of
KCa3.1 channel activity is necessary in order for the cell to
generate [Ca2+]i oscillations [120, 121]. This last result would
explain old experiments showing that the KCa3.1 channel
inhibitor ChTX is able to abolish the bradykinin induced
[Ca2+]i oscillations in C6 glioma cells [23]. Which of the two
mechanisms (cell volume regulation or control of the Ca2+

influx) is the prominent one in the control of glioblastoma
cell migration by KCa3.1 channels remains to be established.

6. Concluding Remarks

The data presented here indicate that KCa3.1 channels play a
relevant role in cell migration, a critical process in glioblas-
tomas where the spreading and infiltration of their cells into
the normal brain parenchyma represent major causes for
tumor progression and recurrence following tumor surgical
resection. They show in addition that KCa3.1 channels are
abundantly expressed in glioblastoma cells, whereas they are
only scantly present in healthy human brain tissues. These
results combined would point to the KCa3.1 channels as
a potential target for newer therapeutic approaches against
glioblastomas. KCa3.1 channel blockers are indeed beginning
to be considered in therapy, and certain results appear
encouraging. First, the KCa3.1 channel blocker TRAM-34,
as well as more recently developed analogs have been found
to effectively penetrate into the brain and reach interesting
brain concentrations after intraperitoneal injection [40, 53].
Second, a KCa3.1 channel inhibitor, Senicapoc from Icagen
Inc., has already been used in phase II clinical trials for sickle
cell disease and asthma and appears to be well tolerated and
safe in humans [26]. Thus this compound could be a con-
venient starting point to develop effective drugs against glio-
blastoma. It would be most interesting to investigate whether
KCa3.1 channels are expressed in glioblastoma stem cells,
and whether they underlie, as in the ordinary glioblastoma
cells, the main processes of cell growth, migration, and
angiogenesis. This information would also contribute ro-
bustly to the comprehension of the glioblastoma pathophys-
iology. Much remains to be done instead to clarify the diag-
nostic and prognostic relevance associated with the expres-
sion of the KCa3.1 channel in glioblastoma cells. It would be
important to this respect to verify whether the level of KCa3.1
channel expression is correlated with the grade of the tumor
and the expression of other recognized tumor markers.

It would also be very important to conclusively clarify the
involvement of KCa3.1 channels in the cell cycle progression
of glioblastoma cells, and whether their activity is needed
for other functional roles relevant to this pathology. Notably,
we have preliminary evidence for an effect of TRAM-34 in
the glioblastoma-induced angiogenesis, a process that allows
glioblastoma cells to ensure themselves for the necessary
oxygen and nutrients [122, 123]. The relevance of this study
is underpinned by the observation that antiangiogenic ther-
apies are considered clinically very effective and promising

[124]. In the hypothesis that a role of KCa3.1 channels in
the glioblastoma-induced angiogenesis will be confirmed,
the use of KCa3.1 channel inhibitors may be expected par-
ticularly effective in the treatment of this pathology, given
their inhibitory action on two distinct vital functions for the
tumor mass, namely, cell spreading and angiogenesis.
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