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ABSTRACT A cardinal feature of neurons in the cerebral
cortex is stimulus selectivity, and experience-dependent shifts
in selectivity are a common correlate of memory formation.
We have used a theoretical ‘‘learning rule,’’ devised to account
for experience-dependent shifts in neuronal selectivity, to
guide experiments on the elementary mechanisms of synaptic
plasticity in hippocampus and neocortex. These experiments
reveal that many synapses in hippocampus and neocortex are
bidirectionally modifiable, that the modifications persist long
enough to contribute to long-term memory storage, and that
key variables governing the sign of synaptic plasticity are the
amount of NMDA receptor activation and the recent history
of cortical activity.

Learning from Learning Rules

Among the insights attributed to Hebb (1) are the notions that
memories of sensory experiences are stored by synaptic mod-
ifications, and that these changes occur in the same regions of
the brain that are used to process sensory information. Thus,
memories of visual experiences would be stored in visual
cortex, auditory experiences would be stored in auditory
cortex, and so on. Within each of these regions of cortex,
memory of a sensory event would result from the permanent
modification of the synapses between the cortical neurons that
are activated by that event.
Research using neural network models confirms that mem-

ories can be stored by small but coherent modifications of
synapses that may be widely distributed among many neurons
(2). At the single cell level, the occurrence of such modifica-
tions would be manifest as a change in neuronal selectivity for
particular input patterns (3). Consider as an example the
simple model shown in Fig. 1. Three neurons (labeled 1, 2, and
3) receive excitatory synaptic inputs that convey information
about three stimuli (labeled A, B, and C). Initially, before
learning, each neuron responds similarly to each stimulus;
there is no pattern of cellular output that uniquely represents
each stimulus. After learning, however, the synapses have
modified so that different stimuli yield different responses.
Note that although each stimulus evokes a maximal response
from a different neuron, the neural representation of a stim-
ulus is distributed over all three cells. Stimulus A, for example,
evokes a large response in cell 1, a moderate response in cell
2, and a weak response in cell 3. The representation of stimulus
A is this unique combination of responses across the cells in the
network. This is what is meant by distributed memory storage.
Such representations are resistant to the loss of individual
neurons. For example, loss of cell 1 would still leave an activity
ratio in cells 2 and 3 that is unique to stimulus A. Also note that
the memories are encoded by both increases and decreases in
synaptic effectiveness. In principle, modifications of both signs

can contribute equally to memory formation in neural net-
works.
Models of distributed memory storage such as that in Fig. 1

suggest that a cellular correlate of memory is experience-
dependent changes in neuronal stimulus selectivity. Indeed,
neurophysiological studies of neurons in the hippocampus and
neocortex have revealed precisely this type of change as
animals learn to recognize and discriminate stimuli. For
example, neurons in rat hippocampus show selectivity for
positions in space, and this selectivity shifts as animals learn a
new spatial environment (4, 5); neurons in primary auditory
cortex show selectivity for tones of particular frequencies, and
this selectivity is altered as animals learn to perform auditory
discriminations (6–8); neurons in the primate inferior tempo-
ral cortex show selective responses to faces that are altered as
the animal learns to recognize new faces (9), and so on
(10–14). Thus, a question of extraordinary interest concerns
how cortical synapses modify under the influence of experi-
ence such that stimulus selectivity is altered.
Serious theoretical analysis of the problem of experience-

dependent changes in neuronal selectivity began in the 1970s
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FIG. 1. A model of distributed information storage. Three neurons
(1, 2, and 3) receive inputs carrying information about three stimuli (A,
B, and C). Before learning, all neurons respond equally to all stimuli.
After learning, the neurons show stimulus selectivity, reflecting the
modification of synapses in the network.
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(15–19). This work was inspired by experiments showing that
neurons in the primary visual cortex exhibit selectivity for
stimuli of particular orientations (20), and that elaboration of
this property during postnatal development requires visual
experience (21). A number of ‘‘learning rules’’ were proposed
to account for experience-dependent development of orien-
tation selectivity, each making slightly different assumptions
about how synapses would modify during various combinations
of presynaptic and postsynaptic activity. Although this work
explicitly concerned visual cortical development, for which
there was a wealth of experimental data, it was implicit in these
studies that the same principles could apply to the synaptic
changes that underlie adult learning and memory.
One such synaptic learning rule, from the work of Cooper

and colleagues (19), is illustrated in Fig. 2. Cooper et al. (19)
considered a single neuron receiving an array of excitatory
synapses carrying information about the sensory environment.
To account for the development and plasticity of neuronal
stimulus selectivity, they proposed that active synapses are
potentiated when the total postsynaptic response exceeds a
critical value, called the ‘‘modification threshold’’ (um), and
that active synapses are depressed when the total postsynaptic
response is greater than zero (assumed to be the average
‘‘spontaneous’’ level), but less than um. It is readily apparent
how this rule leads to stimulus selectivity. Consider the situ-
ation in Fig. 2 where postsynaptic responses to stimuli A–C are
initially clustered around the value of um. Because the response
to C is greater than um, the synapses that are active during
presentation of C potentiate. Likewise, because the responses
to A and B are less than um, the synapses that are active during
presentation of A and B depress, and the neuron becomes
selectively responsive only to stimulus C.
While ‘‘Cooper synapses’’ do yield stimulus selectivity under

the appropriate conditions, a fixed um can have unfortunate
consequences. For example, if patterns A–C all initially yielded
responses below um, then all synapses would depress and the
cell would cease responding to any stimulus. On the other
hand, if patterns A–C all initially yielded responses greater
than um, then all synapses would potentiate to their saturation
limit and the cell would lack selectivity. An elegant solution to
this problem was introduced by Bienenstock, and colleagues
(59) in what is known as the BCM algorithm. They showed that
if the value of um was allowed to vary as a nonlinear function
of the average integrated postsynaptic activity, then the cell
would evolve to a stable, selective state in a patterned input
environment regardless of the initial condition.
Consideration of learning rules such as BCM is instructive

because it allows one to connect the elementary mechanisms
of synaptic plasticity with the systematics of learning and
memory. However, showing that a learning rule yields desir-
able properties in artificial neural network models is no proof

that it is actually implemented by synapses in the brain.
Therefore, about 10 years ago I initiated a research program
aimed at investigating whether the synaptic modifications
assumed by the BCM theory have a biological basis in the
cerebral cortex. In this paper, I will describe our progress to
date.

Cooper Synapses in the Hippocampus

It has been known for many years that certain excitatory
synapses in the hippocampus can be potentiated following
high-frequency tetanic electrical stimulation (22). In the CA1
region of hippocampus, it has been shown that this long-term
potentiation (LTP) of synapses is a specific consequence of the
coincident release of the neurotransmitter glutamate from
presynaptic axon terminals and the strong depolarization of
the postsynaptic membrane (23–26).
The initial steps in LTP induction have been well-

characterized. Glutamate bound to N-methyl-D-aspartate
(NMDA) receptors results in postsynaptic Ca21 entry when the
postsynaptic membrane is depolarized. Elevated [Ca21] acti-
vates certain protein kinases, including Ca21-calmodulin-
dependent protein kinase II and protein kinase C. These
kinases phosphorylate specific substrate proteins that ulti-
mately lead to enhanced synaptic effectiveness, but precisely
how and where synaptic effectiveness is increased remains
controversial (27).
Potentiation of synapses that are active at the same time as

strong postsynaptic activation is an assumption of most ‘‘Heb-
bian’’ learning rules, including the Cooper synapse (28). Thus,
we suggested that the modification threshold, um, corresponds

FIG. 2. Function controlling synaptic plasticity at the Cooper
synapse.

FIG. 3. Homosynaptic LTD in adult hippocampus in vivo. (A)
Schematic of the stimulation-recording configuration used in anes-
thetized rats. (B) LTD induced by a single episode of LFS (1 Hz, 900
pulses) is stable for as long as the preparation is viable. In this example,
LFS of the ipsilateral Schaffer collaterals produced LTD that was
stable for .6.5 hr. Displayed field potentials were evoked by stimu-
lation of the ipsilateral Schaffer collaterals (averages of 10 consecutive
sweeps) at times indicated by numerals. Scale bars: 2 mV, 10ms. Figure
modified from ref. 39.
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to the level of postsynaptic activation at which a critical level
of Ca21 passes through the glutamate-bound NMDA receptor
channel (29, 30). Associating um with a critical level of NMDA
receptor activation and postsynaptic Ca21 entry led to the
additional hypothesis that input activity that fails to activate
NMDA receptors beyond the level required to trigger LTP
should cause long-term depression (LTD) of the active syn-
apses. We initially turned to slices of hippocampus to test this
hypothesis.
High-frequency stimulation is particularly effective in in-

ducing LTP in CA1 because it produces a strong postsynaptic
response due to the temporal summation of dendritic excita-
tory postsynaptic potentials. In an effort to provide a high level
of presynaptic input activity without producing a postsynaptic
response so large that it yielded LTP, we tried extended
periods of low-frequency stimulation (LFS) in the range of
0.5–10 Hz. We discovered that stimulation of the Schaffer
collaterals at frequencies between 0.5 and 3 Hz did indeed
trigger a long-lasting, homosynaptic LTD in CA1 (31).
Considerable progress has been made identifying the mech-

anisms of LTD induction in hippocampus. Surprisingly, induc-
tion of LTD, like LTP, requires NMDA receptor activation
and a rise in intracellular Ca21 (31, 32). Available data suggest
that the information encoded by the pattern or amount of
NMDA receptor activation alone may be sufficient to trigger
both forms of synaptic plasticity (33). Lisman (34) showed the
feasibility of this type of regulation in a model in which modest
elevations of postsynaptic Ca21 caused LTD by selectively
activating protein phosphatases, and large increases in Ca21
caused LTP by activating protein kinases. Mulkey et al. (35, 36)
provided data that support this model in CA1 by showing that
LTD is completely blocked by application of several phospha-
tase inhibitors.
Although homosynaptic LTD has been widely replicated in

slices of hippocampus from young animals (37), its relevance
to memory has been questioned because of failures to observe
it in the adult brain in vivo (38). We recently reexamined this
important issue, and found that homosynaptic LTDwith all the
properties described in vitro can also be elicited in the adult
hippocampus in vivo (ref. 39; see also ref. 40). LTD induced in
vivo remained stable for many hours without any sign of decay
back to baseline (Fig. 3). Thus, LTD, like LTP, can store
information long enough to contribute to a hippocampal
memory store.
By varying the stimulation frequency, but holding the stim-

ulation intensity and total number of pulses constant, it is
possible to derive a function relating synaptic plasticity to
stimulation frequency (31, 39, 41). Little or no plasticity is
observed at frequencies less than 0.1 Hz, robust LTD is
observed using 1 Hz stimulation, and LTP is observed using
stimulation frequencies greater than 10 Hz (Fig. 4). Interest-
ingly, 10Hz stimulation produces, on average, neither LTD nor
LTP. Because the amount of presynaptic activity is held
constant (900 pulses) in these experiments, the frequency-
response function of Fig. 4D is equivalent to the Cooper
synapse modification function in Fig. 2, if it is assumed that the
measure of postsynaptic response relevant to synaptic plasticity
(possibly Ca21 current) is proportional to the stimulation
frequency (see Appendix 1). Indeed, it is now well-established
that the critical variables are postsynaptic depolarization and
Ca21 entry, and not stimulation frequency per se. For
example, while 1 Hz stimulation normally produces LTD,
postsynaptic hyperpolarization during conditioning prevents
any change, and depolarization leads to induction of LTP
(42). Likewise, while high-frequency stimulation normally
produces LTP, it produces LTD instead if delivered in the
presence of subsaturating concentrations of an NMDA
receptor antagonist (33).
Additional experiments, performed both in vitro and in vivo,

have shown that the same CA1 synapses support both LTD and

LTP; that is, synapses are bidirectionally modifiable (35, 39,
43). Together, these data show that Cooper synapses exist in
the CA1 region of hippocampus, and suggest that the mech-
anisms of LTP and LTD are equal partners in the storage of
information in hippocampal neural networks.

FIG. 4. Effects of conditioning stimulation delivered to the Schaf-
fer collaterals at different frequencies. (A–C) Normalized averages
(6SEM) of experiments in which 900 pulses were delivered at different
frequencies: A, 3 Hz, n 5 5; B, 10 Hz, n 5 6; C, 50 Hz, n 5 5. (D) The
mean (6SEM) effect of 900 pulses of conditioning stimulation deliv-
ered at various frequencies on the response measured 30 min post-
conditioning. For each point, n $ 5. Figure modified from ref. 31.
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Cooper Synapses in the Neocortex

It has been appreciated for some time that the neocortex is the
major site of storage of nonspatial declarative memory. How-
ever, for many years it appeared that NMDA-receptor-
dependent LTP might be a phenomenon expressed primarily
in the hippocampus because of difficulties in reliably eliciting
it in neocortex. Fortunately, the procedural difficulties have
been overcome, and recent studies have shown that neocortical
synapses also support both robust LTP and LTD (44, 45).
In rat visual cortex, Artola et al. (46) presented evidence

suggesting that active synapses (i) are not modified if the level
of postsynaptic activation during a high-frequency tetanus is
low, (ii) are depressed if the level of postsynaptic activation is
moderate, and (iii) are potentiated if the level of postsynaptic
activation is high. We used a different approach but reached
a similar conclusion. We found that stimulation of neocortical
layer IV reliably induces synaptic LTP and LTD in layer III
with precisely the same types of stimulation protocols that are
effective in the CA1 region of hippocampus (47). Specifically,
low frequency stimulation produces LTD and high frequency
stimulation produces LTP (Fig. 5). As for hippocampus,
neocortical LTP and LTD are specific to the conditioned
pathway and are dependent upon activation of NMDA recep-
tors (47, 48). Furthermore, homosynaptic LTD in visual cortex,
like in hippocampus, is blocked by phosphatase inhibitors (48).
We have obtained similar results using slices of mouse, rat,

and cat visual cortex, prepared from neonatal and adult
animals. LTP and LTD of synaptic responses in layer III
following high-frequency stimulation and LFS of layer IV has
also been observed in slices of rat somatosensory cortex (49).
In guinea pig visual cortex, it has been shown that low-
frequency electrical stimulation of white matter paired with
postsynaptic depolarizing or hyperpolarizing current injections
can produce transient synaptic enhancements and decrements,
respectively (50). Very recently, by recording from synaptically
coupled layer V neurons, Markram and Sakmann (51) beau-
tifully confirmed that neocortical synapses are bidirectionally
modifiable, with a critical variable being the pattern or amount
of NMDA receptor activation. Finally, in slices of human
inferotemporal cortex, a region believed to be a repository of
visual memories (10), Lee et al. (52) have demonstrated LTD
and LTP using the same protocols we introduced to study rat
visual cortex. Together, the data support the idea that very
similar principles guide synaptic plasticity in widely different
regions of the cerebral cortex. Excitatory synapses in the CA1
region of hippocampus and in the superficial layers of sensory
neocortex are bidirectionally modifiable, and these modifica-
tions follow the Cooper synapse learning rule.
Are the receptive fields of cortical neurons actually modified

by these rules and mechanisms? It is possible to manipulate
receptive field properties in visual cortex by pairing visual
stimulation with various imposed patterns of postsynaptic
activity (53, 54). The modifications of receptive fields observed
in these studies conform well with theoretical predictions. It
will be interesting to see if these changes employ the same
mechanisms as LTP and LTD.

Evidence for a Sliding Modification Threshold
in Visual Cortex

With the addition of a variable modification threshold pro-
posed by Bienenstock et al. (59), Cooper synapses can account
for many aspects of naturally occurring receptive field plas-
ticity. Thus, we have searched for evidence that the value of um
varies according to the history of postsynaptic cortical activity.
Postsynaptic activity can be manipulated in slices simply by
stimulating synaptic inputs, and this has been shown in hip-
pocampus to alter the thresholds for LTP and LTD (55). So far,
however, these alterations in plasticity have been restricted to

the stimulated synapses. Theoretical requirements for the
BCM modification threshold, um, are that its value (i) is a
function of the history of the entire cell’s (or relevant com-
putational unit’s) postsynaptic activity, and (ii) is the same at
all modifiable synapses on this cell. It is possible that the failure
to observe the heterosynaptic ‘‘sliding threshold’’ envisaged by
BCM is because detectable alterations require more hours of
stimulation than are available in a slice experiment, or that the
mechanism is greatly reduced or absent in vitro.
We recently approached the issue of a sliding modification

threshold by comparing the frequency-response function in
visual cortex of animals reared in complete darkness with that
in normally reared animals (56). In accordance with theoret-
ical predictions, we found in visual cortex of light-deprived rats
that LTP is enhanced, and LTD is diminished, over a range of
stimulation frequencies (Fig. 6). Control experiments sug-
gested that the alteration in synaptic plasticity was restricted to
visual cortex, as similar changes were not observed in hip-
pocampus. These findings support the concept that um is set
according to the activation history of the cortex.
As a test of the hypothesis that the value of um actually

adjusts to a change in cortical activity, visually deprived rats
were exposed to light for various times, and the effects of LFS
were investigated. We found that the magnitude of LTD in
light-deprived visual cortex returned nearly to control levels
after only 2 days of light exposure. These data are consistent
with the hypothesis that um ‘‘slides’’ as average cortical activity
increases. It is of interest to note that the time course of the
observed change in visual cortical LTD closely corresponds to
that predicted for um in modeling studies of visual cortical
plasticity (57).
There are many questions remaining. Are changes caused

by dark rearing, which is a profound form of sensory
deprivation, also produced by brief deprivation of pattern
vision in light-reared animals? Do manipulations of other
types of sensory experience produce similar changes in other
areas of cortex and at all ages? Does um move in both
directions at the same rate? Is the critical determinant of the
value of um actually the average postsynaptic response and,
if so, what is the relevant measure of the postsynaptic
response? And of course the big question remains: What is
the mechanism whereby um adjusts? Work is in progress to
answer these questions.
In the meantime, however, it is interesting to consider the

consequences of what apparently is a slow rate of change for
um. First, it suggests that under natural conditions the magni-
tude of a synaptic change occurring over a period of seconds
(the ‘‘step size’’) is quite small. Large, rapid synaptic modifi-
cations would require a faster moving um to avoid stability
problems; for example, to prevent runaway potentiation and
saturation of synaptic weights. Thus, the commonly used
experimental model of LTP, while very useful for understand-
ing the principles and mechanisms of synaptic plasticity, may
be a gross exaggeration of the changes that occur naturally.
This may explain why changes equivalent to the magnitude of
experimental LTP have not been observed in behaving ani-
mals during learning (58). The slow time course of um adjust-
ment, and the fact that it has the same value at all synapses on
the same neuron, also places constraints on the possible
mechanisms. Activity-dependent regulation of gene expres-
sion in the postsynaptic neuron seems ideally suited to account
for this form of cellular memory.

Conclusion

In this paper, I have attempted to show how consideration of
a theoretical ‘‘learning rule’’ has helped guide experiments
into the elementary mechanisms of synaptic plasticity in the
cerebral cortex. The data clearly indicate that the key assump-
tions of the BCM theory have a biological basis in hippocam-
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FIG. 5. Common forms of synaptic plasticity in slices of adult rat hippocampus (A) and adult rat visual cortex (B). The top row shows the
stimulation-recording configurations. DG, dentate gyrus. The second row shows changes in the extracellular field potential induced by theta-burst
stimulation (TBS) and by LFS (900 pulses delivered at 1 Hz in A2 and at 3 Hz in B2). Response magnitude was measured as the change in the
initial slope of the negative field potential in A2 and as the peak negativity in B2. The third row shows averages of four consecutive field potentials
taken in each preparation before conditioning stimulation, after TBS, and after LFS for the experiments in row 2. The fourth row shows the average
change in response magnitude after TBS (n 5 4 for A4; n 5 19 for B4). The fifth row shows the average change in response after LFS (900 pulses
at 1 Hz), starting from an unpotentiated state (n 5 5 for A5; n 5 5 for B5). Figure modified from ref. 47.
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pus and neocortex. Active synapses are bidirectionally modi-
fiable, the key variable determining the sign of the modifica-
tion is the level of postsynaptic response, and the depression-
potentiation crossover point um varies depending on the
history of cortical activity. In addition to serving as a guide,
theoretical analysis can also be used as a bridge to connect
these mechanisms with their consequences. A natural conse-
quence is the experience-dependent modification of stimulus-
selective receptive fields, reflecting the distributed storage of
information in the cortical network.

Appendix 1: Relating Theoretical and Experimental
Modification Functions

According to BCM,

dm
dt

5 fd , [1]

wherem is the weight of a synaptic junction, d is the presynaptic
axon activity of that synaptic junction, and f is a function of
the integrated response of the postsynaptic neuron (c). The
theoretical modification function f (c) is shown in Fig. 7A.
FromEq. 1, it follows that the total change in synaptic weight

(Dm) across n time steps is

Dm 5 O
i51

n

fidi. [2]

Because frequency ( f ) is constant during conditioning stim-
ulation, it is assumed that the integrated postsynaptic response
(c) is constant across the n iterations. If we also assume that
the value of um is unchanged during this short period, then the
value of f is constant during a bout of conditioning stimula-
tion. Therefore,

Dm 5 f O
i51

n

di [3]

Let O
i51

n

di 5 D so that Dm 5 fD.

Because the same number of stimulation pulses are delivered,
D is the same for each frequency. The measured Dm therefore

is proportional to the value of f. Thus, a plot of Dm (change
in synaptic effectiveness) against log f (Fig. 7B) is equivalent to
plotting f against c, if we assume that c } f. Plotting f on a
logarithmic scale is for convenience.
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