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Abstract
Benzene-induced cancer in humans was first reported in the late 1920s. Carcinogenesis findings in
animals were not reported conclusively until 1979. Industry exploited this “discrepancy” to
discredit the use of animal bioassays as surrogates for human exposure experience. The cardinal
reason for the delay between first recognizing leukemia in humans and sought-after neoplasia in
animals centers on poor design and conduct of experimental studies. The first evidence of
carcinogenicity in animals manifested as malignant tumors of the zymbal glands (sebaceous
glands in the ear canal) of rats, and industry attempted to discount this as being irrelevant to
humans, as this organ is vestigial and not present per se in humans. Nonetheless, shortly thereafter
benzene was shown to be carcinogenic to multiple organ sites in both sexes of multiple strains and
multiple species of laboratory animals exposed via various routes. This paper presents a
condensed history of the benzene bioassay story with mention of benzene-associated human
cancers.
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Further to Peter Infante’s excellent investigative exposé of the truth behind some of the
benzene industry’s malpractices and abuses (e.g., withholding incriminating data) and
resultant OSHA standard-setting issues,1 there were similar shenanigans surrounding the
experimental findings from benzene-exposed animals. Following a series of early, albeit
patently inadequate, bioassay experiments on benzene—too few animals, lack of control
animals, low and short-term exposures, incomplete pathology often looking only for
leukemias2—the more modern animal bioassay data clearly confirm and extend the possible
cancer hazards of worker and consumer exposures to benzene. To complement the feature
by Infante,1 a brief history of benzene bioassays is given, accompanied by mention of
human cancer findings.

CARCINOGENESIS BIOASSAYS
Experimental chemical carcinogenesis bioassays are designed and carried out to identify
potential carcinogenic hazards and likely effects for humans.3 Carcinogenesis results in
rodents—mainly rats and mice—have been shown to be consistent and reliable indicators of
human cancer risks. All known human carcinogens that have been evaluated in animal
bioassays are also correlatively carcinogenic. Further, of the nearly 100 recognized human
carcinogens, about one third were shown first to be carcinogenic in experimental animals
and subsequently in humans.4 Hence, for chemicals discovered to be carcinogenic to
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laboratory animals, prudent public health policy suggests strongly that eliminating or
minimizing exposures to these carcinogens would reduce environmentally and in particular
occupationally associated cancers. Today, this primary prevention strategy serves
unfortunately only as a dim beacon of better times when the health of workers was more
prominent than profit. This has evolved into what is now referred to as the precautionary
principle,7–9 which poses to act earlier in the available albeit scanty data stream to initiate
health safety strategies and proactive occupational and public health measures, despite
possible scientific uncertainties.10

IARC BENZENE EVALUATIONS
Over the years, the International Agency for Research on Cancer (IARC) has evaluated
benzene on three occasions: 1974,11 1982,12 and 1987.13 In 1974,11 the IARC decided “The
data reported do not permit the conclusion that carcinogenic activity has been demonstrated”
based on “Benzene has been tested only in mice by subcutaneous injection and skin
application.” Regarding human carcinogenicity data, IARC noted “It is established that
exposure to commercial benzene or benzene-containing mixtures may result in damage to
the haematopoietic system. A relationship between such exposure and the development of
leukaemia is suggested by many case reports, and this suggestion is strengthened by a case–
control study from Japan.”

In 198212 IARC evaluated benzene as having “sufficient evidence that benzene is
carcinogenic to man,” but the available animal data on benzene as only “limited evidence of
carcinogenicity in experimental animals.” This animal-data conclusion was based on:

Benzene has been tested in rats by intragastric administration and inhalation
exposure, and in mice by skin application, inhalation exposure and subcutaneous
injection. Oral administration to rats resulted in an increase in the incidence of
Zymbal-gland carcinomas. Anaemia, lymphocytopenia and bone-marrow
hyperplasia and an increased incidence of lymphoid tumours occurred in male mice
exposed by inhalation to benzene; in similar inhalation studies with another strain
of mice and with rats there was no evidence of a leukaemic response. Experiments
involving skin application or subcutaneous injection of benzene did not produce
evidence of carcinogenicity, but most of these experiments were inadequate.

The last time IARC evaluated benzene was in 1987,13 with evidence of carcinogenicity
considered sufficient both for humans and for animals. In humans the evidence was based on
increases in leukemia in benzene workers.14,15 In animals, according to IARC

Benzene was tested for carcinogenicity in mice and rats by several routes of
administration. Following its oral administration at several dose levels, it induced
neoplasms at multiple sites in males and females of both species. After mice were
exposed to benzene by inhalation, a tendency towards induction of lymphoid
neoplasms was observed. Exposure of rats by inhalation increased the incidence of
neoplasms, mainly carcinomas, at various sites. Skin application or subcutaneous
injection of benzene to mice did not produce evidence of carcinogenicity, but most
of the experiments were inadequate for evaluation. In a mouse-lung tumour
bioassay by intraperitoneal injection, an increase in the incidence of lung adenomas
was observed in males.

Since the 1987 IARC evaluation, more confirmatory epidemiologic information has become
available,16,17 with multiple myeloma,18 lung cancer, and non-Hodgkin’s lymphoma19–23

now clearly attributable to benzene exposures. Risks of acute myeloid leukemia and other
malignant and nonmalignant hematopoietic disorders associated with benzene exposure in
China are consistent with known benzene exposures, hematotoxicity, and cancer risks,
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extending evidence for hematopoietic cancer risks to levels substantially lower than
previously established.24 From global public health and occupational perspectives, perhaps
IARC should consider updating its 20-year-old benzene and cancer evaluation. Granted the
human and animal data are considered already to be at the highest level of concern, new
cancer sites have been discovered and the carcinogenesis correlations between animals and
humans are mechanistically worth re-examining.

MALTONI AND CHEMICAL BIOASSAYS
From his early cocarcinogenicity studies of croton oil on rabbit skin25 and DMBA on
hamster skin,26 through seminal bioassays of vinyl chloride,27–29 gasoline products,30,31

including benzene and MTBE,32,33 and formaldehyde,34 up to consumer chemicals such as
ethyl alcohol,35 one can justifiably track the early history of chemical carcinogenesis by
following Cesare Maltoni and his colleagues’ dedicated work on identifying occupational
carcinogens36–38 for developing public health and occupational standards and polices of
primary prevention of human cancers.39

BENZENE BIOASSAYS
Following Maltoni and his colleagues’ seminal finding of the carcinogenicity of benzene to
laboratory animals in 1979,40 they and others more definitively elucidated the
carcinogenesis of benzene in a series of papers41–47 using their unique bioassay exposure
design with various experimental protocols.36–38

Near the beginning of Maltoni’s efforts evaluating benzene for carcinogenesis in animals the
National Toxicology Program,3,48–55 created by David Rall,56,57 also embarked on
unraveling the enigma of why benzene appeared to be an exception (along with arsenic58–64)
to the mammalian carcinogen paradigm2,65–67; that is, a chemical known to cause cancer in
humans had not been found to do so similarly in animals.* In this vein, I remember being
contacted persistently by industry to learn of early results of our bioassays on benzene. This
was a bit amusing, because we already knew that benzene caused cancers (leukemias) in
humans, and I wondered why the concentrated interest of industry in our animal findings.
Calls came at least weekly from the chemical and petroleum industries. Finally one frequent
caller told me that if the bioassays were negative then the industry would have some
mammalian biologic means to better challenge the human epidemiologic findings, which
industry was already confronting. If our bioassay were clearly negative this would help
bolster their argument that other chemical exposures and workplace circumstances
(confounders) would lend credence to their benzene-is-not-the-culprit rationale. In keeping
with the NTP’s open policy I responded with new pathology information as it came
available, reminding the inquisitors that until the data were peer-reviewed in public session,
our findings could only be considered preliminary. When our pancarcinogenesis findings
confirmed and complemented Maltoni’s, industry was seemingly taken aback, and
momentarily puzzled regarding their next strategy.68–70

Carcinogenesis results of 21 mutually tested chemicals including benzene were compared
between the Ramazzini Foundation and the NTP, finding remarkable concordance of overall
results, and identifying a combined total of 13 target sites of benzene-induced
carcinogenesis in animals67 (Table 1).

*Both of these “exceptions” have been appropriately debunked, solidifying the inexorable correlation that all known human
carcinogens that have been tested in laboratory animals are likewise carcinogenic.3,71–77
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In 1928, Delore and Borgomano78 reported the first human case of leukemia associated with
benzene exposure.2,65,78 Prior to 1928, of course, benzene was known to cause “benzene
poisoning,” a sequela typically involving bone marrow damage. Chronic benzene poisoning
among workers leads to various blood disorders such as leukopenia, agranulocytosis,
anemia, pancytopenia, aplastic anemia, myelodysplastic syndrome (MDS; preleukemia), and
leukemias.24,79–81 More recently, occupational exposures to benzene have been causatively
linked with multiple myeloma,18 non-Hodgkin’s lymphoma,23 acute82,83 and chronic84–87

lymphocytic leukemia, chronic myelogenous leukemia,82,83 and at lower exposures,24,84,87

with some indications for lung cancer.19–21 All of these and additional target sites have been
identified in animals as well.2,47,65,67 Another prime use of chemical carcinogenesis results
allows the identification of other potential presumptive target sites that may be added to or
looked for distinctly in epidemiologic investigations.

Speculatively, perhaps other sites of human carcinogenicity have not been either looked for
or seen in benzene-exposed workers because death from leukemia is relatively rapid after
onset and diagnosis. This could also be because available benzene cohorts individually have
been small, except for the one in China. Humans showing the later-aged or latency-
occurring lung cancers likely escaped developing leukemias.13,16,19–21 This concept of
competing risks of cancer is shown experimentally quite nicely with the potent carcinogen
1,3-butadiene: as exposure concentrations are lowered different tumor patterns become
manifest.88,89 As with benzene or other chemicals, early lethal tumors such as lymphocytic
lymphomas or leukemias often reduce the number of animals at risk for expressing later-
developing and -occurring neoplasms at other sites. The same, of course, pertains to humans
exposed to different exposure levels, patterns, and durations.

Before, at, and subsequent to Maltoni’s first reports of clear evidence of benzene
carcinogenicity in laboratory animals (and arsenic as mentioned above), intense industry
propaganda and pressure attempted to discount long-term animal bioassays as being
irrelevant to human risk identification; this strategy certainly had much to do with stifling
evidence of benzene carcinogenicity, and extended to many other economically important
chemicals showing positive cancer findings in animals as well.3,69 For some years before the
benzene issue, industry and others had mounted a strenuous effort to dismiss the value of
bioassays in a concerted global attempt to continue unabated marketing and use of chemicals
shown to cause cancers in laboratory animals, and not yet examined epidemiologically.90

To justify its basic premise, industry seized and campaigned on the then-notion that arsenic
and benzene were both considered to be carcinogenic to humans and yet had not been shown
to cause cancer in laboratory animals. Now that these two temporarily, albeit historically
non-concordant chemicals have been tested adequately in animals and shown to be classic
and multifarious carcinogens (benzene2,47,65,67; arsenic57–64), this once-dynamic duo touted
by industry for vested purposes no longer serves its needs (see footnote on page 214). Now
industry uses other arguments such as those based on threshold differences,91 “non-
genotoxic” carcinogens,92,93 mechanisms or “modes-of-action” being unique to animals and
not relevant to humans,91–100 even hormesis,101,102 cell proliferation,92,192–109

inflammation and general toxicity,110–112 hormonal mediation,113–115 mouse liver
tumors,116 and benign tumors,117 to name a few obfuscatory issues industry has latched onto
to cloud bioassay results and impede or derail regulatory actions.

Additionally, Maltoni’s first findings of benzene cancer induction in animals40,41 were
heavily disputed by industry because the organ affected by cancer was the zymbal gland
(located in the inner ear canal), which humans have as a vestige. This issue of zymbal glands
has been addressed and debunked, along with other so-called “rodent-unique” organs
susceptible to benzene-induced carcinogenesis.118 Fortunately, this issue became moot
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given the plethora of tumors and tumor types and organ sites seen in the benzene studies.
The other issue making the benzene-is-safe argument less tenable, as with arsenic, was that
benzene was already long known to be carcinogenic to humans. If this had not been the case,
the battle for more stringent and better worker protection and reduction of occupational
standards for acceptable exposure levels would have been even more difficult. As it was,
lowering of the occupation exposure standard took ten years longer than anticipated because
of adverse decisions issued by the U.S. Supreme Court.119

We witness this animal-only argument every single time a chemical of some economic
importance is found to cause cancer in laboratory animals in the absence of epidemiologic
data. What we never encounter is industry’s questioning or disputing the many “negative”
bioassay results on big-volume chemicals.

BENZENE METABOLITES
Mammalian metabolism of benzene is complex, with multiple pathways and diverse
metabolites. Despite abundant research, neither the most active carcinogenic metabolite(s)
nor a detailed well-accepted mechanism(s) of carcinogenicity of benzene is known with
even a modicum of certainty.2,120,121 Tsutsui et al.,120 for example, studied benzene- and
key metabolite-induced cell transformation, gene mutations, chromosome aberrations,
aneuploidy, sister chromatid exchanges, and unscheduled DNA synthesis in Syrian hamster
embryo cells. They found an array of effects for these endpoints but no one metabolite of
benzene consistently drove the results. Another way to shed light on those is to investigate
carcinogenicity of individual metabolites. Fortunately, several of the most abundant or long-
lasting metabolites (or those that could be gotten in sufficient quantity) have been tested for
carcinogenic activity: catechol, hydroquinone, and phenol. The designs and findings for
these carcinogenicity studies are summarized.

Catechol
Naturally occurring in fruits and vegetables, present in cigarette smoke, and an industrial
chemical, catechol is used to make insecticides, perfumes, drugs, and polymerization
inhibitors. Catechol has been used as an antiseptic, in photography, and in dyestuffs.

Catechol has been shown to have strong promoting activity in mice, and alone induces
forestomach hyperplasia, generally a few papillomas of the forestomach (non-glandular),
and adenomatous hyperplasia and adenocarcinomas of the glandular stomach in near all
rats.122–126 Administered with known carcinogens, catechol typically increased the
occurrence of initiator-targeted tumors of the forestomach and stomach, tongue, and
esophagus, but did not enhance their occurrence in liver, urinary bladder, or thyroid.122–126

Thus, catechol exhibited strong cancer-promotion activity.

Hydroquinone
Used an antioxidant in the rubber industry, as a developing agent in photography, and as an
intermediate in the manufacture of rubber and food antioxidants and monomer inhibitors,
hydro-quinone products are also used as depigmenting agents to lighten skin. Hydroquinone
in deionized water was given by gavage for two years to groups of rats and mice of each sex,
five days per week at 0, 25 (rats), 50, or 100 (mice) mg/kg.127,128 Nephropathy was
common among the rats, with hyperplasia of the renal pelvic transitional epithelium and
renal cortical cysts increased in male rats. In mice, thyroid follicular cell hyperplasia was
increased (males: 9% vs 28% and 35%; females: 24% vs 85% and 82%). Increases of
anisokaryosis, multinucleated hepatocytes, and basophilic foci occurred in the livers of male
mice.127,128

HUFF Page 5

Int J Occup Environ Health. Author manuscript; available in PMC 2012 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Regarding carcinogenic responses, renal tubular cell hyperplasia was seen in two top-dose
male rats, with dose-related increases in renal tubular cell adenomas in 0% vs 7% and 15%.
Mononuclear cell leukemia in female rats was increased: 16% vs 27% and 40%. In low-dose
male mice liver tumors were marginally elevated: 36% vs 54% & 45%, whereas in female
mice liver tumors were intensified in both hydroquinone groups: 5% vs 29% and
24%.127,128

Hydroquinone made available to rats and mice of both sexes at 0.8% in the diet for two
years induced renal tubular cell hyperplasia as well as adenomas, mainly in males of both
species, and was associated with chronic nephropathy in rats.129 Also, epithelial hyperplasia
of renal papilla was increased in male rats. Hepatocellular adenoma was enhanced in male
mice. Squamous-cell hyperplasia of the forestomach epithelium was higher in mice of both
sexes given hydroquinone, but no increase in tumor development was observed.129

Thus, hydroquinone caused kidney tumors in male (and possibly in female) rats and mice,
leukemia in female rats, thyroid follicular cell hyperplasia in mice, and liver tumors in male
and female mice.127–130 Overall, there is clear evidence that hydroquinone causes cancer in
laboratory animals.

Phenol
Approximately 90% of phenol is used in the manufacture of phenolic (phenol formaldehyde)
resins, caprolactam, bisphenol A, alkyl phenol, and adipic acid. The remainder is used to
produce an assortment of products: salicylic acid, phenacetin, dyes, metal cleaners,
disinfectants, antiseptics, photographic chemicals, wood preservatives (pentachlorophenol),
paints, paint and varnish removers, and agricultural chemicals (2,4-D and parathion).131

For two years rats and mice of each sex were given drinking water containing 0, 2,500, or
5,000 ppm phenol. The only carcinogenic response was increases in leukemia, 36% vs 62%
and 50%, that may have been associated with the phenol administration.131,132 Even though
the NTP considered an association with administration of phenol was not established, the
incidences in both exposure groups were greater than in controls and the low dose showed a
statistically significant effect. No other carcinogenic response was observed in rats or mice.
Other low dose increases in male rats included C-cell tumors of the thyroid (8% vs 14% and
2%), adrenal gland pheochromocytomas (26% vs 44% and 18%), and interstitial-cell tumors
of the testes (88% vs 98% and 94%).131,132

In other studies, phenol given orally with benzo(a)-pyrene produced sixfold increases in
malignant tumors of the forestomach over BaP given alone.112 Phenol also promoted mouse
skin carcinogenesis in two-stage protocols.133

Scientific evidence indicates that multiple mechanisms are likely to contribute to benzene-
induced leukemias and cancers in other target organs; whether these include individual or
co-mechanisms for the individual metabolites remains to be ascertained. (Reasonably
straightforwardly, this of course tends to represent universal thinking in chemical
carcinogenesis, and leads to the notion that unique chemicals or classes of chemicals induce
cancers by “different” mechanisms.) Increasing information lends further credence that
metabolites of benzene are primarily responsible for its carcinogenic activity.2,120,121,134–137

Phenol, hydroquinone, and catechol are the major metabolites of benzene in mammals,
established in analyses of human urine,135 and have been tested for long-term
carcinogenicity. Phenol, to a lesser extent, and hydroquinone are associated individually
with inducing leukemia in animals, and we might opine in humans as well. One wonders
what would be the result(s) if the two chemicals were tested together; that is, whether these
findings would be more or less potent than those for benzene or either of these metabolites
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alone. Catechol causes forestomach and stomach tumors in animals, whereas benzene causes
forestomach tumors but does not cause stomach tumors. Some of the other carcinogenic
effects of benzene may be due to combinations of the metabolites or to others not yet
evaluated for carcinogenic activity.

At the same time, carcinogenic concordance in target sites between animals and humans
need not be sacrosanct. Typically in animals there are more tumor sites identified simply
because more pathology is done on animals than on humans. One suspects that if all organs
were evaluated in humans when people died of “old age” or with cancers other organs would
be found to be neoplastic as well. Meanwhile, epidemiology might best broaden the organ
scope for future studies.

CONCLUSIONS
The clear findings of cancers in animals resulting from exposures to benzene (and to
arsenic), and to all other known human carcinogens that have been tested in animals,
confirm and validate once again the value of long-term animal bioassays for identifying
potential cancer risks to humans.3,5,67–77,138–173 Virtual acknowledgement of this led
industry to new strategies to deny bioassay results: posing that mechanisms (or “modes of
action”) of carcinogenesis in animals are unique and hence not relevant to humans.
Interestingly most of these claims are based on supposition and not data regarding either the
exact mechanism in animals or the lack thereof in humans. A key to reducing damage from
all carcinogens, whether identified in animals or in humans or in both mammalian species,
centers on reducing exposures.
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