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Bioceramics, because of its excellent biocompatible and mechanical properties, has always
been considered as the most promising materials for hard tissue repair. It is well know that
an appropriate cellular response to bioceramics surfaces is essential for tissue regeneration
and integration. As the in vivo implants, the implanted bioceramics are immediately
coated with proteins from blood and body fluids, and it is through this coated layer that
cells sense and respond to foreign implants. Hence, the adsorption of proteins is critical
within the sequence of biological activities. However, the biological mechanisms of the inter-
actions of bioceramics and proteins are still not well understood. In this review, we will
recapitulate the recent studies on the bioceramic–protein interactions.
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1. INTRODUCTION

The word ceramic was developed a long time ago; it is
said to come from a Greek word for pottery [1]. A
traditional ceramic is an inorganic solid prepared gener-
ally by heating and subsequent cooling. Ceramics may
be crystalline, partly crystalline or amorphous [2].
Because most common ceramics are crystalline [3], the
definition of traditional ceramic often referred to inor-
ganic crystalline materials, as opposed to glass [4–6].
With the rapid development of interdisciplinary,
including materials, medicinal and ecological sciences,
bioceramics also emerged and developed rapidly [7,8],
and the definition of bioceramics is far beyond tra-
ditional ceramics. As a multi-disciplinary outcome,
the relative products of bioceramics have reached a
flourishing stage [9,10].

Bioceramics arouse great interest because of their
excellent biocompatibility [11,12]. During recent decades,
a vast number of bioceramics have been developed and
applied [13,14], such as calcium phosphate (Ca-P)-
based ceramics, titania, alumina, zirconia, bioglass, etc.
Among these bioceramics, the Ca-P-based ones, e.g.
hydroxyapatite (HA), tricalcium phosphate (TCP),
biphase calcium phosphate (BCP) are the most studied
[15–17]. Because of similar chemical components, these
ceramics have excellent biocompatibility and bioactivity
[18,19]. However, medical applications of the Ca-P-based
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ceramics are limited to small filler implants, grains
and coatings owing to their poor mechanical properties
[20]. Titania, alumina and zirconia are the most
frequently used inorganic metal-based ceramics [21,22].
These metal-based bioceramics exhibit high mechanical
strength, excellent corrosion and wear resistance and
good biocompatibility [10,23]. They are, therefore, fre-
quently used in high load-bearing sites such as the
pygal, dental and submaxillary implant.

To fabricate the bioceramics, the chemical, physical
and mechanical properties of these materials have
been extensively studied in previous research [24–27].
Since the osteoinductivity and bone regeneration of
bioceramics are well-known and proved [28,29],
research is further focused on understanding the
mechanisms of bioactivity [30–33]. The works that
are in progress mainly cover two aspects. One focuses
on studying the biological events that occur in vivo
between bioceramics and living tissues [34–38]. The
other tries to reveal the mechanisms of apatite layer
formation or the regeneration process on the
implanted bioceramics [18,39]. However, both works
are closely related to protein adsorption on the
bioceramic surface.

Protein adsorption is a unique property of
bioceramics [11,40]. When bioceramics are implanted
into a living body, proteins from the surrounding
body fluids will be spontaneously adsorbed onto their
surfaces, and then cellular attachment, proliferation
and migration occurs [41–43]. Thus, the protein-
adsorption behaviour plays a vital role during bone
tissue regeneration [44,45].
This journal is q 2012 The Royal Society
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Figure 1. A schematic of the evolution of bioceramics.
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In this paper, we primarily focus on the protein
adsorption of bioceramics; in particular we divide the
bioceramics into two classes: Ca-P and non-Ca-P cer-
amics. Because the chemical elements of Ca-P
ceramics are similar to natural bones, Ca-P as bone sub-
stitute materials show excellent biocompatibility,
bioactivity and osteoconductivity. However, their appli-
cations are limited to small non-bearing implants,
grains or as coatings of metals because of their poor
mechanical properties. Another category is generally
classified into non-Ca-P, such as titania, alumina, zirco-
nia, etc. These ceramics are traditional and have been
widely used in hard tissue repair. The phenomenon of
protein adsorption has attracted much attention in
the field of tissue engineering. However, the protein-
adsorption characteristics of different biomaterials and
the mechanisms on the effect of adsorption efficiency
need to be further clarified. An intensive knowledge of
protein adsorption is not only beneficial to the optimiz-
ation of the surface structure of biomaterials, but also
helpful to develop specific applications within the field
of biomedicine.
2. EVOLUTION OF BIOCERAMICS IN
HARD TISSUE ENGINEERING

To review the development of bioceramics [22,46–48],
we can generally classify it into three stages. Figure 1
shows the schematic of the bioceramics evolution. The
first generation is called inert ceramics, which aimed
to substitute natural bone. For example, zirconia [49–
52], titanium [53–55] and alumina [56–58] are primar-
ily used in fabrication of femoral heads to substitute the
damaged bones [59]. Although these ceramics are bio-
compatible, the living body usually reacts against the
implants because they are foreign, and these implants
themselves are likely to never transform into bone.
The second generation is called bioactive ceramics,
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which aimed to mimic some biomineralization-related
functions. Bioactive ceramics yielded promising results
in the 1970s. These ceramics can react with physiologi-
cal fluids and form a biological-type apatite. In the
presence of living cells, this apatite can form new
bone. HA and some other Ca-P composites are typical
bioactive ceramics [60–62]. These bioceramics show
excellent biocompatibility properties, but medical
applications are limited to small fillers [63,64], grains
and coatings [65–68] due to poor mechanical properties.
The third generation of bioceramics aimed to provide an
adequate scaffolding system which can help drive the
living tissue regeneration [69]. By optimizing the bioma-
terials and controlling the implant–tissue interface, the
sophisticated implant system can induce tissue regener-
ation and help to recover it. Some reported Ca-P
ceramics show osteoinductivity and are considered to
have the capacity of bone regeneration to a certain
degree. The final purpose of tissue engineering attempts
to develop artificial materials that are able to replace
the function of biological tissues in situations where
the living body is damaged and cannot perform by
itself [70]. Ideal bioceramics [69,71] not only need the
ability to recover or regenerate the damaged tissue,
but also request to perform their natural functions.
3. PROTEIN ADSORPTION ON CA-P
CERAMICS

As the main inorganic composition of a body’s hard
tissue, Ca-P bioceramics have excellent bioactivity and
good capability in osteoconduction or osteoinduction
[8,72–79], and have been widely adopted in bone repair
or orthopaedic application. Table 1 lists most of the
Ca-P compounds and their calcium to phosphorous
molar ratio (Ca/P ratio) and stability [78]. It is well
known that protein adsorption plays an important role
in determining the biological properties of Ca-P. Many



Table 1. The Ca-P bioceramics [78].

name symbol formula Ca/P stability

monocalcium phosphate monohydrate MCPM Ca(H2PO4)2.H2O 0.5 stable
dicalcium phosphate dihydrate DCPD CaHPO4 .2H2O 1.0 sub-stable
dicalcium phosphate anhydrate DCPA CaHPO4 1.0 stable
octacalcium phosphate OCP Ca8(HPO4)2(PO4)4.5H2O 1.33 sub-stable
tricalcium phosphate TCP Ca3(PO4)2 1.5 sub-stable
amorphous calcium phosphate ACP Cax(PO4)y .nH2O 1.2–2.2 sub-stable
hydroxyapatite HA Ca10(PO4)6(OH)2 1.67 stable
tetracalcium phosphate TTCP Ca4(PO4)2O 2.0 sub-stable

Table 2. Properties of proteins that affect protein adsorption [80].

property effect

size larger molecules can have more sites of contact with the surface
charge molecules near their isoelectric point generally adsorb more readily
structure stability less stable proteins, such as those with less intra-molecular cross-linking, can unfold to a greater extent and

form more contact points with the surface
unfolding rate molecules that rapidly unfold can form contacts with the surface more quickly

Table 3. Properties of surfaces that affect protein adsorption [80].

feature effect

topography greater texture exposes more surface area for interaction with proteins
composition chemical makeup of a surface will determine the types of intermolecular forces governing interaction with

proteins
hydrophobicity hydrophobic surfaces tend to bind more protein
heterogeneity non-uniformity of surface characteristics results in domains that can interact differently with proteins
potential surface potential will influence the distribution of ions in solution and interaction with proteins
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studies about protein adsorption behaviours have been
done in order to better understand the mechanism of
protein adsorption and the reasons that Ca-P biocera-
mics have excellent biological properties. The results
and conclusions have greatly expanded our knowledge
of bioactivity and osteoinductivity.

In recent years, the biological, physical–chemical
methodologies and their combination have been wildly
adopted in the research of protein adsorption on
materials. With the rapid development of computer
technology, the simulation method has been increas-
ingly applied in this area and provided us much
adsorption information at the atomic level. Many
facets in protein adsorption have attracted much atten-
tion. For example, the effect of different material
properties on adsorption behaviour, such as chemical
component and surface properties; the effect of different
protein properties and environments on the adsorption
behaviour, such as the pH of a protein solution, the
acidity/basicity or electric charge of proteins and the
conformation change of protein upon adsorption onto
the surface. Dee et al. [80] have shown the main proper-
ties of proteins and surfaces that affect adsorption in
tables 2 and 3.
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We will review protein adsorption on Ca-P biocera-
mics based on these properties in detail in the
following sections.
3.1. The effect of Ca-P–protein properties on
protein adsorption

3.1.1. Surface features of Ca-P

Topography. The physical–chemical feature of material
surface is one of the decisive factors of protein adsorp-
tion. Surface topography, such as roughness, porosity,
pore size and particle size, etc., determines the scale
of the surface area that interacts with the protein mol-
ecules. More exposed surface area can provide more
interaction sites for protein adsorption. These sites
bond protein molecules through different ways, such
as electrostatic force, hydrophobicity and so on. It is
generally accepted that the higher surface area/specific
surface area (SSA), the higher the quantity of protein
adsorption, based on lots of experimental results. Essen-
tially, modulating the roughness, porosity, pore size and
particle size of material creates more surface area that
can benefit protein adsorption. Note that increasing
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surface area is not only valid for improving protein
adsorption on Ca-P bioceramics, but also valid for
other materials.

Greater roughness could lead to a greater surface area,
but this may not be invariable at the nano scale. Dos
Santos et al. [81] found that the albumin and fibronectin
adsorption on HA (Au-coated or not) with lower nano-
roughness (32+6 nm) was higher than that observed
on b-TCP (Au-coated or not) over time. Cai et al. [82]
also showed that the nanoscale roughness on titanium
surfaces had little effect on the structure and the
amount of adsorbed albumin and fibrinogen. However,
the adsorption of larger molecules like collagen can be
influenced by the different degrees of roughness on poly-
mer surfaces [83]. Differences were observed not only in
the amount of proteins but also in their structure. The
reason may be that when the roughness scale increases
from nanometres to micrometres, the topography may
appear smooth to the protein, considering the protein
size, and have little effect on the adsorption process
[84,85]. Presently, it is known that nanoscale roughness
of Ca-P can affect the protein-adsorption process, but
more studies need to be done to understand the influen-
cing trends, especially for different protein adsorption
on different Ca-P surfaces.

Porosity, pore size/distribution and particle size also
impact protein adsorption through regulating the surface
area. The presence of porosity greatly increases the sur-
face area of materials and improves the protein
adsorption. Zhu et al. [86] reported that the amount of
the total adsorbed proteins on porous biphasic Ca-P
(BCP (HA/TCP¼ 7 : 3)) was far beyond that on dense
BCP. Lots of pores with the size distribution from 100
to 500 mm diameter presented on porous BCP, and
many micropores distributed on the wall of the macro-
pores. The increased surface area of materials is mainly
attributed to the presence of macropores and micropores.
Higher porosity leads to higher surface area. The porosity
could further increase protein adsorption and the sub-
sequent cell attachment [87]. Many other studies also
proved the effect of porosity on protein adsorption on
Ca-P [88–90]. Most proteins would suffer structural or
conformational rearrangement after adsorption on the
substrate surface [80]. The behaviour of proteins adsorbed
on porous Ca-P is a multi-layer adsorption process and
that on dense Ca-P is a monolayer one. It could be attrib-
uted to the hold-back effect of porous structures [86].
Furthermore, the effect of porous structures on protein
adsorption has been considered as an interpretation of
the osteoinductive potential of Ca-P bioceramics after
implanting to ectopic sites [91,92]. Ca-P bioceramics
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can adsorb and enrich native bone morphogenetic
proteins (BMPs) from body fluid, which induce bone for-
mation in a dose-dependent manner [93]. If the threshold
of BMP local concentration for triggering osteoinduction
is satisfied, the Ca-P bioceramics could have the potential
to be osteoinductive. The porous structure of Ca-P
increases the SSA, which leads Ca-P to bond more
BMPs, and plays a vital role for the osteoinductivity of
Ca-P bioceramics. Meanwhile, pore size is another
factor that controls protein adsorption. It should correlate
with protein size and cell size. If the nano/meso-pore is
smaller than the protein, the protein could not be
adsorbed in the pores and thus the efficient surface area
for this protein adsorption must be decreased. Contrarily,
the protein is easily trapped in the meso-pores and
improves adsorption. Many experimental results have
validated this phenomenon. Fujii et al. [94] reported
that zinc-substituted HA (Zn-HA) nano crystals with
some Zn content was more appropriate for b2-microglo-
bulin (b2-MG) adsorption than for bovine serum
albumin (BSA) adsorption, which is attributed to the
pore size presented on Zn-HA being suitable for b2-MG
adsorption. The same story also happened on carbonate
HA and other Ca-P [95–97]. Meanwhile, the cell size is
a key benchmark for macro-pore size selection. The aver-
age size of body cells is about 50 mm, thus 0–100 mm
micro-pores were adopted in porous Ca-P bioceramics
for benefiting cell adhesion, and 100–500 mm macro-
pores benefiting tissue ingrowth [91,92]. As for the par-
ticle size, it mainly correlated with the SSA. Smaller
particle size leads to higher SSA, which enhances protein
adsorption [96,98]. Rouahi et al. [88] reported that HA
powder with 100 nm particles led to higher adsorption
of proteins than that on HA powder with 1 mm particles.
This was attributed to the higher SSA of nano-scale HA
powder compared with the micro-scale HA. Thus, the
quantity of proteins adsorbed on powders was positi-
vely correlated with their SSA. Combining the effect of
porosity, it should be that the higher the SSA of Ca-P
particles, the higher their protein adsorption, the lower
the micro-porosity of ceramics, the lower their protein
adsorption, and the lower the initial cell attachment as
shown in figure 2.

It should be noted that increasing SSA does not mean
the size of particle is as small as possible. Because, when
the size is on the order of nanometres, many factors are
likely to change (e.g. the surface defects increase in inverse
proportion to the particle size) [99]. Certain specific
effects of nanomaterials could impact on protein adsorp-
tion. Unfortunately, there are few studies of the nano
effect on protein adsorption on the Ca-P surface.
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Chemical properties of Ca-P. It is well known that
protein-adsorption behaviours can be controlled by sub-
strate surface parameters [100–103]. The chemical
properties of the material surface play an important
role on determining the efficiency of protein adsorption
and the amount of protein adsorbed by interaction
between the functional groups on substratum and pro-
teins, and even the conformation of adsorbed proteins.
The chemical nature of the surface can induce greater
protein–surface interactions through either electrostatic
or hydrophobic interactions [104]. It is generally accepted
that electrostatic force played a vital role in the protein
adsorption process and has been proved by lots of exper-
imental and computer simulation studies [98,105–107].
The charged ions or groups on the substrate surface can
bond the charged functional groups, including amino
group, carbonyl group, carboxyl group and aromatic
group, etc., on the protein molecules to dominate the
protein adsorption. The bonded ions or groups on sub-
strate surface or proteins are generally called adsorption
sites. Much research has focused on the effect of chemical
component or solubility/degradation rate and zeta
potential of material on protein adsorption. Essentially,
these effects are just to regulate the charge density,
charge distribution or adsorption sites distribution on
the substrate surface so as to benefit protein binding.
Ca2þ and PO4

32 are believed to be the protein binding
sites on Ca-P surfaces and provide the major driving
force for protein adsorption [105,108,109]. Different com-
ponent substrate materials have different structures that
can lead to different charge/adsorption site distribution
on the surfaces. For instance, the distribution of charged
ions or groups (mainly Ca2þ and PO4

32) on HA is far
different from that on OCP (figure 3). The same story
also happened on other Ca-P. This difference could
induce the discrepancy of net charge on the substrate sur-
face. It is known that proteins can be divided into two
types generally, one is acidic protein whose isoelectric
point (pI) , 7 and the other is basic protein whose
pI . 7. When the pH is 7.4, which is equal to that of
the physiological environment, acidic protein and basic
protein carry a negative charge and positive charge,
respectively. The electrostatic interaction between sub-
strate surface and proteins could be affected by the
surface charge and protein net charge in different sol-
utions. Zhu et al. [98] reported that HA, BCP and TCP
had negative surface charge, and preferred to adsorb
more basic protein lysozyme (LSZ) than acidic protein
BSA in pH 7.4 phosphate-buffered saline (PBS) solution.
HA with higher surface net charge and thus higher value
of zeta potential exhibited higher LSZ adsorption owing
to the stronger electrostatic attraction between them.
Another basic protein, transforming growth factor-b1
(TGF-b1), which can promote the proliferation and
differentiation of bone-forming cells [110], also preferred
to adsorb on the porous BCP with higher zeta potential
than that on dense BCP in rat serum and in vivo [86].
Ohta et al. [111] reported that positive charge Ca2þ

sites adsorbed acidic proteins and negative PO4
32 sites

bonded basic proteins. The order of the ratios of Ca to
P sites was estimated to be DCPD . OCP . HA�
DCPA� b-TCP, which is in agreement with the order
of the surface zeta potentials. And the amount of the
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adsorbed proteins is proportional to the surface charge.
The type of adsorbed proteins is dependent on the distri-
bution of Ca, P sites. The effect of distribution of charged
ions or groups on protein adsorption is relatively obvious
on the amorphous Ca-P. There is no significant difference
in protein adsorption found between amorphous HA and
fluorapatite since their surface structure is not highly
ordered with respect to the position of Ca2þ, PO4

32,
OH2 and F2 ions. Thus, the difference in the number
of binding sites and the adsorption strength that also
depends on the proteins is minimized [112].

The vacancies and defects in the Ca-P crystal surface
also impact protein adsorption [109]. Webster et al.
[113] and Ergun et al. [114] reported that the amount of
adsorbed BSA was decreased by the Zn2þ substituted
into the HA crystal. Fujii et al. [94] found that the SSA
of Zn-HA increased with increasing Zn content and the
amounts of BSA adsorbed on Zn-HA decreased with
increasing Zn content in spite of the increase in SSA. It
could be attributed to the special arrangement of ions
or groups on the substituted HA, which led Zn-HA to a
highly selective adsorption of b2-MG combining with
the topography effect. Elangovan et al. [115] reported
that less proline-rich acidic salivary protein (PRP1) was
adsorbed onto carbonated HA (CHA) than onto HA,
and a smaller degree of BSA adsorption on CHA than
HA with increasing carbonate content, citing changes
in crystal morphology and texture as a possible cause
[116]. However, Takemoto et al. [96] found that higher
carbonate content of CHA adsorbed more b2-MG than
lower ones. Segvich et al. [89] also reported the different
adsorption behaviours of three artificial peptides on
CHA and HA. Accordingly, these differences in adsorp-
tion caused by material defect/substitution are
attributed to the difference in bonding site distribution
or surface charge density/distribution on the substrate
surfaces. Considering the variation of charge groups on
proteins, the selective adsorption of proteins on different
component/structure Ca-P is easy to understand.

The incubation environment is also an important
factor that impacts on protein adsorption. Different
kinds of ions in the solution are redistributed under con-
trol of substrate surface charges, which results in the
properties of solution around the surface changing. The
counter ions in the solution are attracted to the surface
of substrate and make the nearby water molecules more
orderly. These differences in the surface charge distri-
bution caused by incubation in the solution have the
potential to improve or inhibit protein adsorption on
the material surfaces. Therefore, different solutions
could induce different protein adsorption behaviours.
However, for Ca-P bioceramics, the incubation solutions
have similar properties according to the Ca-P application
field. PBS, Hanks’ balanced salt solution (HBSS), serum
and in vivo are mostly employed for the investigation of
protein adsorption on Ca-P. But differences in different
solutions are rarely reported. The pH is an important
factor that affects the electrical properties of the incu-
bation solution. Studies showed that a decrease in pH
led to an increase in acidic protein adsorption and bind-
ing affinity [117]. Meanwhile, the solubility of Ca-P is
an important parameter for influencing the properties
of the solution. A representative example on protein
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Figure 3. The top view of charged ions or groups distribution on (a) HA (001) and (b) OCP (100) planes. Ca, green; P, violet; O, red.
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adsorption on BCP and HA occurred. It is known that b-
TCP has a higher solubility than HA [118] and the dissol-
ution of Ca2þ, PO4

32 and other ions from b-TCP would
lead to increasing ionic strength of the solution. Higher
ionic strength in the solution could induce the protein
to expose more polar-ionized residues to the solvent
[117,119]. Thus, the amount of the protein adsorbed on
BCP could be increased by the stronger interaction
between protein and the surface-binding sites of BCP,
which always has a higher ability to adsorb proteins
than HA, considering the effect of topography at the
same time [97]. This also could be the reason that BCP
has better osteoinductivity than HA. For bioceramics,
the sintering temperature has a great effect on the solubi-
lity of Ca-P in the incubation solution according to the
differences in their thermodynamic properties [88].
Higher temperature leads to higher crystallinity, there-
fore lower solubility [25,120–122].
Hydrophobic properties of Ca-P. Besides the electro-
static force, the hydrophobic interaction is another
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important way to induce greater protein–surface affi-
nity. It is generally true that a hydrophobic surface
will adsorb proteins more strongly than a neutrally
charged hydrophilic surface and thus adsorb a greater
amount of proteins [123–125]. The proteins will tend
to adsorb on the hydrophobic surface by hydrophobic
patches of residues present in the protein’s amphiphilic
structure. Protein would unfold and spread its hydro-
phobic core over the surface owing to the
thermodynamic driving force to reduce the net hydro-
phobic surface area of the system exposed to the
solvent [125,126]. The charged and polar functional
groups of proteins will tend to interact with the hydro-
philic surface. For Ca-P bioceramics, BCP has a higher
hydrophobicity than that of HA, but lower than that of
b-TCP according to the contact angle measuring results
[127,128]. This could be another reason that BCP has a
higher ability to adsorb proteins than HA.

Overall, the effect of chemical and hydrophobic prop-
erties of biomaterial on protein adsorption can be
illustrated in figure 4 [80]. All the variation in par-
ameters of substrate materials, such as component,
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zeta potential, defect of crystalline and solubility, etc.
are just to regulate the chemical properties or hydro-
phobicity of materials so as to obtain suitable surface
charge, binding sites and polar site distribution to
improve or inhibit protein adsorption.

Based on the above review, it is clear that Ca-P bio-
ceramics also obey the general regulation of protein
adsorption on substrate materials. In summary, the
higher porosity and SSA, relative smaller particle size,
suitable surface charge distribution, binding and hydro-
phobic/polar sites distribution for different kinds of
proteins and incubation environments benefit protein
adsorption on Ca-P bioceramics.

3.1.2. Properties of proteins and its conformational
changes up on adsorption onto the Ca-P surface

The structure properties of proteins. The structure
properties of proteins that influence surface activity
are related to the primary structure of the protein,
meaning that the sequence of amino acids affects
protein–surface interactions. The bigger proteins have
more binding sites to interact with the substrate sur-
face. Thus, larger molecules have the potential to be
adsorbed more on the surface. However, for a multi-
component system, the mass transfer rate of solute mol-
ecule to a surface is directly related to its concentration
and inversely to its molecular weight [126,129]. Accord-
ingly, for multi-protein systems such as serum, the
more concentrated and smaller proteins that would
have greater diffusion rate tend to adsorb onto the sur-
face first, and then are displaced by larger, more
strongly interacting proteins that may be later adsor-
bed. This is known as the Vroman effect [130,131].
Meanwhile, the hydrophobicity-charged amino acids
are generally located on the outside of proteins and
are mainly responsible for adsorbing on surfaces. The
same as the surface properties of Ca-P, the charge/
binding site distribution on proteins also plays an
important role in protein adsorption. Interestingly, pro-
teins often show greater surface activity near their
isoelectric point [80,132–134]. This could be attributed
to the weaker interaction between protein molecules.
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Unfolding/spreading properties of the protein and its
stability also impact on adsorption. Unfolding/spreading
of a protein is likely to expose more sites for protein-
surface contact. Less stable proteins are likely to unfold
more, or faster. Although hydrophilic polar and charged
amino acids are generally located on the exterior of
the molecule and hydrophobic residues on the interior,
hydrophobic amino acids also have the chance to interact
with the surfaces. At the same time, unfolding/spreading
of proteins can expose hydrophobic regions and allow
interaction with the surface [80].

Considering the application field of Ca-P bioceramics,
the most adopted target proteins in the investigation
include acidic proteins, such as serum albumin, fibronec-
tin, fibrinogen and bone-related phosphoproteins, and
basic proteins, such as lysozyme and TGF-b1. But sys-
tematic research for kinds of protein adsorption on Ca-P
is rarely reported. However, more detailed studies must
be carried out. Recently, artificial peptides have been
employed to further investigate the meticulous behaviour
of protein adsorption [89].
The conformation changes of proteins on adsorption
onto the Ca-P surface. Many of the studies have
shown that the conformation of proteins would be chan-
ged when they are adsorbed onto the substrate surface,
and the extent is mainly related to the surface pro-
perties of substrate and features of protein solution
[135–140]. Conformation changes in adsorbed proteins
have great effects on the biological activity of substrate
materials and cellular interactions greatly depend on
the nature of conformational change [141]. Note that
not all the changes are beneficial for cell attachment:
denatured fibronectin will no longer support the
adhesion and the growth of cells [112]. In particular it
is a vital factor for influencing the bioactivity of Ca-P
bioceramics. For instance, Gibbons et al. [142] reported
that there were significant differences in the affinity of
oral bacteria for salivary proteins adsorbed on HA
versus proteins in solution. On the other hand, if the
conformation is altered, different amino acids could be
exposed on the surface of the protein, which could con-
sequently change the way the molecule binds to the
substrate. Atomic force microscopy (AFM), Fourier
transform infrared spectroscopy (FTIR)/attenuated
total internal reflectance (ATR) and time-of-flight
secondary ion mass spectrometry (ToF-SIMS) are the
most adopted methods for the investigation of protein
conformation [83,112,138,140,142–145].

Zeng et al. [112] showed that the higher increase in
the Amide I/Amide II ratio of BSA was seen on BSA
adsorbed on a Ca-P surface, rather than on titanium
(Ti) and germanium (Ge) surfaces. A greater amount
of protein was adsorbed on the Ca-P surface. This
result indicated that BSA lost a-helix structure owing
to adsorption on all the surfaces and the greatest loss
happened on the Ca-P surfaces. Still, it is difficult to
know what the a-helix structure has transformed into
owing to the adsorption. The great conformational
changes of BSA adsorbed on the Ca-P could also be
attributed to the electrostatic interactions. The distri-
butions of binding sites play an important role in this
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process. Xie et al. [145] showed that the conformation of
the adsorbed BSA changed during the brushite trans-
formation to HA. In this process, the FTIR/ATR
results showed that the percentage area of the dominant
band (Amide I) at 1650 cm21 was decreased and that of
1630 cm21 was increased. Elangovan et al. [115] studied
the conformational changes of acidic PRP1 upon
adsorbing onto HA and CHA. In solution, large por-
tions of PRP1 have the hydrated polyproline-type II
(PPII) helical structure in addition to the random coil
structure. After adsorbing onto HA and CHA, PRP1
loses a considerable portion of hydrated PPII and
random coil domain, indicating that a large proportion
of the proteins is composed of b turns. The confor-
mational changes were greater in PRP1 adsorbed on
HA than that on CHA, and less protein adsorbed
onto CHA than onto HA. It is also attributed to the
different distribution of binding sites or electrostatic
ions/groups on CHA and HA. At the same time, the
carbonate content of Ca-P could have a notable effect
on the extent of conformational changes of proteins.
On the other hand, the conformation and the struc-
ture of residue, peptide and protein also affect the
Ca-P precipitate nucleation behaviour. A molecular
dynamics (MD) simulation of nucleation of Ca-P on
model peptides, from bone sialoprotein (BSP), with a
different conformation presented, indicated that
highly conserved contiguous Glu sequences have been
demonstrated to be the nucleating domains of Ca-P,
which is consistent with experimental results. In some
simulations of the a-helical conformation, the possi-
bility of promoting template nucleation of HA was
seen, but not in random coil conformation [146].

The conformation of proteins is very important for
the bioactivity or osteoinductivity of Ca-P bioceramics;
however, there have not many studies focussing on this
area for Ca-P. Importantly, further research for the
effect of conformational changes of proteins on the bio-
logical response for Ca-P are rarely reported. The
factors that could impact the conformation of proteins
and the extent of its influence are still unclear. A sys-
tematic investigation of the relationship among Ca-P
bioceramics properties, protein conformation and their
biological response is very necessary.
3.2. Interactions between proteins and Ca-P

3.2.1. Interactions
All the protein-adsorption behaviours on Ca-P are the
result of the interaction between proteins and Ca-P.
Different interaction behaviours at the organic–
inorganic interface can lead to different properties of
protein adsorption and structure, morphology, size,
orientation, nucleation and growth of Ca-P precipi-
tates. Investigations of interaction between proteins
and Ca-P, combining the theoretical analysis method,
are helpful to better understand the mechanism of
protein adsorption, even biomineralization.

Protein interaction with Ca-P mainly depends on the
electrostatic force, and sometimes on the hydrogen bond,
which was proved by experimental and computer simu-
lation results [106,107,117]. Proteins adsorbed on the
surfaces of Ca-P mainly through positive Ca sites,
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binding negative carboxylate groups, and negative P/
OH sites, binding positive amino groups in protein,
while other groups such as the charged guanido group,
neutral amino and hydroxyl groups, have relatively
weak interaction with the surfaces. Different proteins
have different arrangements of charged groups that
lead to different adsorption behaviours. As the Ca-P crys-
tals have different structures on their planes, considering
the pattern recognition between crystal surfaces and mol-
ecules [147], proteins could have the property of selective
adsorption on Ca-P surface planes, which could be the
reason for protein effects on morphology, size and orien-
tation of Ca-P crystals. For instance, acidic proteins are
preferentially adsorbed on the (100) face of HA and
OCP crystals [148]. Whereas the strength of interaction
between amelogenin and the crystal faces of OCP was
in the order of (010) . (001) . (100), which indicated
that amelogenin adsorption on OCP should block the
growth of (010) face [149]. Different arrangements of car-
boxylate groups and amino groups results in different
types of residues in protein, called acidic residue and
basic residue that are negative and positive, respectively.
Thus, based on the electrostatic attraction, the acidic
proteins should preferably be adsorbed on the Ca site-
based surfaces, basic proteins preferentially adsorbed on
the P/OH site-based surfaces; acidic residues preferably
bonded to the Ca sites, basic residues preferentially
bonded to the P/OH sites. Overall, many of the mineral-
ization-related proteins are acidic and phosphorylated,
and are believed to play a key role in biomineralization
[150]. The acidic phosphoproteins are obviously rich in
acidic residues, aspartic acid (Asp) and glutamic acid
(Glu), but also contain basic residues, arginine (Arg)
and lysine (Lys). Glu preferred to adsorb strongly onto
the HA (001) face, which resulted in the formation of
plate-like HA; glycine (Gly) did not show any signifi-
cantly preferential adsorption on HA surfaces, which
resulted in rod-like HA [86,111,151].
3.2.2. Molecular dynamics simulation of protein
adsorption
With the rapid development of computer technology, the
simulation method has been increasingly applied in
the field of protein adsorption and provided us with
much of the Ca-P—proteins interaction information at
the atomic level. The MD simulation method is mostly
employed and has been widely applied in chemistry and
biology. MD simulation is a technique that is based on
classical mechanics, and calculates the time-dependent
behaviours of a molecular system. In this computational
methodology, the atoms are described as soft bodies.
Combining suitable force-field parameters for proteins,
the MD simulation has been widely applied in the
research of protein adsorption on solid substrate
[152,153]. In the research of biomaterials, it has also
begun to play an increasingly prominent role. For
example, The oligopeptide, Arg-Gly-Asp (RGD) tripep-
tides, fibronectin and HSA adsorption behaviour on
rutile (110) surface have been studied by MD based on
the Amber force field [154,155] and the Charmm force
field [156]. The conformational change of HSA in the pro-
cess of adsorption on a carbon nanotube surface also is
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simulated by the MD method based on the Charmm force
field [157]. The interactive behaviours between different
subdomains of HSA and graphite surfaces with or with-
out water [158,159], and adsorption behaviour of
certain oligopeptides on quartz surfaces have been evalu-
ated by MD based on the CVFF force field [160].

Meanwhile, lots of MD work of the interaction
between protein and Ca-P has been done. The
Charmm force field-based simulations of fibronectin-
type III with different orientations and BMP-7 adsorp-
tion on HA (001) surface indicated that electrostatic
energy plays a dominant role in the interaction; the
charged –COO2 and –NH3

þ are the strongest groups
that interact with the HA surface [106,107]. The
CVFF force field-based simulations of polyacrylic acid
adsorption on HA surface indicated that potential
sites for chelation and hydrogen bond formation
between HA and polyacrylic acid exist, which depend
on the exposed surface of HA. The COO2 group
strongly attached to calcium atoms and is a more pro-
minent site for HA mineralization than the COOH
group [161,162]. The Amber force field-based simu-
lation of interaction between Hyp-Pro-Gly tri-peptide
in collagen protein and the HA surfaces indicated that
this tri-peptide interacted primarily with HA (110),
rather than the HA (001) plane according to the results
of adsorption energy, which is in agreement with an
experiment that in natural bone the (110) surface
grows preferentially from a collagen matrix [163–165].
Adsorption of Gly and Glu amino acids on the HA sur-
face has been investigated by MD based on a mixed
BHM and the Lennard_Jones force field. Its results
indicated that the amino acids adsorbed on the HA
(001) and (100) surfaces, with their positive amino
groups occupying vacant calcium sites, and their nega-
tive carboxylate groups occupying vacant P or OH
sites, precisely and formed an ordered adsorption
layer; Glu preferred to adsorb strongly onto the HA
(001) surface, which resulted in the formation of
plate-like HA. However, Gly did not show any signifi-
cantly preferential adsorption between these two HA
surfaces [151]. Moreover, the issue of how BSP promotes
the nucleation of HA was also investigated by MD simu-
lation based on the Charmm force field, which simulated
the interaction between different conformational pep-
tides in BSP and Ca/P ions in aqueous solution. The
results showed that a Ca2þ equilateral triangle formed
around the surface of a peptide with a-helical confor-
mation, which matched the distribution of Ca2þ on the
(001) surface of the HA crystal. It indicated that the
highly conserved contiguous Glu sequences should be
the nucleating domains [146].

Although MD simulation has been used in many
research fields, we should note the limitation of MD calcu-
lations when applying the results to experiments. The
simulation scales of time and space cannot match the
real environments for the limitation of computer power.
Moreover, differences between the parameters of force
fields which were calculated based on quantum mechanics
and practical results also existed. Thus, there is still a
degree of discrepancy between computational results
and experimental data. Nevertheless, the general trend
and detailed information at the atomic level are useful
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in predicting and explaining the adsorption phenomena
and are sufficient to narrow the experimental tests or
reduce the analysis cost, even though the simulation
results may not be the exact results.
4. PROTEIN ADSORPTION ON NON-CA-P
CERAMICS

Beyond Ca-P ceramics, protein adsorption on non-Ca-P
ceramics is more complicated because the adsorbent sub-
strates are uncertain [166,167]. Unlike Ca-P ceramics, the
physical and chemical characters of non-Ca-P ceramics
surface are different, and they are more sensitive to
protein adsorption [168].

Many factors could affect protein adsorption. The
dominant factors in non-Ca-P ceramics are different.
However, protein adsorption is primarily determined by
three categories: the properties of the proteins
[169,170], the properties of the substrates and media
[171–173], and the protein–substratum interactions
[37,174–177]. Figure 5 shows a schematic of the influen-
cing factors with respect to protein adsorption.

4.1. Influencing factors from proteins

The properties of the materials are natural characteristics
to decide their adsorption affinity [178,179]. The adsorp-
tion phenomenon, firstly, is highly affected by the nature
of the adsorbent proteins themselves. Norde & Anusiem
[180] divided the proteins into two classes, ‘hard’ and
‘soft’ proteins. ‘Hard’ proteins have strong internal coher-
ence and structural rearrangements that only make small
contributions to the adsorption process. These proteins
prefer to be adsorbed onto hydrophobic surfaces, whereas
they can also be adsorbed on hydrophilic surfaces if they
are electrostatically attracted [181,182]. ‘Soft’ proteins,
which have lower structural stability, can be adsorbed
even under more rigorous conditions. For example, on
hydrophilic, electrostatically repelling surfaces, these
proteins also show a large driving force for adsorption
as a result of their structural rearrangements [183]. On
this point, the famous ‘Vroman effect’ [184–186] also
supports that the properties of proteins can greatly
decide their adsorption. That is, on the same adsorbent
surface, the natural property of protein can be critical
factors for adsorption.

A study by Jachimska & Pajor [187] observed that
the contact angle is very sensitive to the degree of
protein adsorption on a solid surface. The maximum
contact angle was observed when BSA and mica were
oppositely charged. They also observed that higher
positive zeta potential of BSA correlates with a higher
contact angle. And at a higher positive zeta potential,
BSA exhibited a higher binding affinity. This agrees
with the opinion that hydrophobic surface shows
better protein-adsorption affinity [188,189]. Jachimska
also observed that even when the effective zeta poten-
tial of BSA was negative, which showed poor
hydrophobic properties, a certain amount of BSA was
also adsorbed. This phenomenon may originate from
the heterogeneous charge distribution across the BSA
molecules. Because the distribution of charge across a
BSA molecule is heterogeneous and contains positive
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and negative plots, the positive plots would be the effec-
tive bonding area, so as to help the adsorption.
4.2. Influence factors from the substrates
and media

The physico-chemical characteristics of adsorbent sub-
strates and media are the other category of factors
responsible for protein-binding capacity. Many influence
factors from adsorbents should take into account,
for example, chemical composition [190], dissolution
behaviour or pH [79,191–193], degree of crystalliza-
tion [194], microstructure, hydrophobicity [195–198],
z-potential [199], surface roughness [200–202] surface
reactivity [203], etc.

Obviously, different types of adsorbent substrates
would greatly affect the protein-adsorption results.
In research from Rosengren et al. [204], two bioactive
glass-ceramics, RKKP and AP40, which differ only with
respect to their Lanthanun and Tantalum content,
have shown great differences in osteo-integrative ability
when implanted into osteogenic rats [205,206]. Their
investigation reveals that the differences of the osteo-
integrative ability presented by two materials are because
the two materials attract either different sets of proteins or
different amounts of specific proteins, which can activate
or suppress host response. Van Oss et al. [207] presented
research about albumin adsorption on different inorganic
oxide surfaces. They compared the adsorption of HSA on
SiO2, SnO2 and ZrO2, and the corresponding results
showed that the adsorption of HSA was 500.8 mg m2 on
the SiO2 surface, whereas it was 968.2 mg m2 and
1157.9 mg m2 on the SnO2 and ZrO2 surface, respectively.
SiO2 was quite hydrophilic and bears a higher negative
charge, both the hydrophilicity and the strong negative
z-potential resulted in the silica surfaces being repulsed
by the adsorbed proteins at neutral pH. Rosengren et al.
[204] revealed that the amount of plasma proteins
adsorbed on the different materials could be very differ-
ent. After the same adsorbed treatment, the binding
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plasmas were 0.42 mg m22 on hydroxyapatite,
0.22 mg m22 on zirconia and 0.20 mg m22 on alumina.
In addition, different forms of the materials also influence
the adsorption, e.g. dense, solid plate, porous structure or
powder depositions, etc.

A hydrophobic surface is ideal to promote protein
bonding. Tanaka et al. [208] and Jeyachandran et al.
[209] observed that BSA would rather adsorb to the
hydrophobic surfaces than the hydrophilic ones.
According to their report, the electrostatic force of
attraction or repulsion between the BSA molecules
and the surface does not play a primary role on deter-
mining the adsorption behaviour of the protein.

Demaneche et al. [210] studied the BSA adsorption
onto a mica surface, observing that BSA protein-
adsorption patterns are a function of pH. Bergers
et al. [211] also revealed that the adsorption of protein
was pH-sensitive. They studied the role of electrostatics
and pH effect in the process of protein adsorption, and a
result was observed that at low ionic strength a set of
model proteins is responsible for the pH of the incu-
bation medium. This pH dependency could be
ascribed to the mean positive charge of the protein.

According to some previous studies, the protein-
bonding capacity on Ca-P ceramics and non-Ca-P cer-
amics is different. For example, bioactive glass only can
absorb a small amount or a few kinds of proteins. In con-
trast, many more proteins and greater amounts can be
adsorbed on Ca-P ceramics [86,212–214]. Accordingly,
it was confirmed that the bone-like apatite deposition
was one of the factors responsible for the acceleration of
bone regeneration. Therefore, researchers tried to
modify the surface properties of the bioceramics to
improve the protein adsorption and cell attachment.
Pre-formation of a layer of apatite is a prevailing idea
[215,216]. Biomimetic and plasma-spraying techniques
are two popular methods used to fabricate the hydro-
xyapatite layer on the ceramics surface [217–219]. The
biomimetic technique treats the substrates within simu-
lated body fluid (SBF) to form an apatite layer on the
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surface. Both these methods have shown good results for
promoting protein adsorption and cell attachment.

4.3. The protein-adsorbent substratum
interactions

Bioceramics do not work alone during protein adsorp-
tion. The proteins, on the other hand, also play vital
roles on determining the protein-adsorption process
[220]. The mechanism of protein-adsorbent substrate
interactions has been widely investigated. It was found
that although most proteins are subject to macro-scale
repulsion when approaching the hydrophilic surfaces in
a neutral pH environment, they also undergo local
micro-scale attraction onto a variety of sites, with the
hydrophilic surfaces driven by the plurivalent cations
embedded in these sites. Some studies found that cationic
exchange (for example, the bioceramics are treated by
the Ca2þ and La3þ ions) can make the negatively charged
surface much more hydrophobic, thereby strongly pro-
moting adsorption of various proteins.

When hydrophilicity and hydrophobicity are close to
each other on the bioceramics surface, the hydrophobic
effect does not play an important role in protein adsorp-
tion. The electrostatic interactions between ceramics and
proteins may take the dominant role. From the protein
adsorption results presented in the work of Beurer et al.
[221] and Wierenga et al. [222], it can be concluded that
the amount of adsorbed protein strongly corresponds to
the net charge of the protein and ceramics surface.
Rezwan et al. [220] studied the adsorption of lysozyme
and BCA on silica and AlOOH-coated silica particles,
where the uncoated and AlOOH-coated silica particles
represent negatively and positively charged oxide
surfaces. It was found that at the same pH (at pH 7), a
protein oppositely charged to the oxide surface adsorbed
much higher amounts. In contrast, proteins of the same
charge did not, or only in very low amounts, adsorb on
the oxide surface. During the absorption process, proteins
with charged amino acid side chains may experience
repulsive and attractive coulomb interactions, which
could play an important role on protein adsorption.

Van Oss et al. [207] studied discrete cationic sites and
electrostatic interactions in plurivalent cation-containing
particle solution. They observed that washing with
Na2EDTA can desorb proteins from inorganic particle
surfaces. Na2EDTA comprises many discrete sites with
local excess positive charge owing to the presence of plur-
ivalent cations. These local positively charged sites
attract negatively charged proteins not only through
electrostatic attraction, but also as a consequence of the
fact that they are electron acceptors, which will bind to
proteins that are electron donors.
5. MULTI-PROTEIN COMPETITION
ADSORPTION AND THE
VROMAN EFFECT

Another interesting aspect of protein adsorption to
bioceramics is competition adsorption between two or
more proteins on the same adsorbent surface [223–225].
Leo Vroman firstly observed that fibrinogen preferentially
adsorbed onto tantalum surfaces from blood plasma.
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From then on, many researchers have found and proved
this phenomenon [186,226]. This kind of multi-protein
adsorption phenomenon is finally named as ‘the Vroman
effect’. The Vroman effect describes that in a mixed
protein system, protein adsorption usually involves a
series of adsorption-displacement steps, in which the pro-
teins with low molecular weight are adsorbed on the
surface first and then are displaced by those proteins
with relatively higher molecular weight [227,228]. For
example, some researchers [186] found that the high mol-
ecular weight of kininogen would displace the low
molecular weight of fibrinogen. However, certain proteins,
such as human serum albumin, are observed to be rela-
tively resistant to displacement at hydrophobic surfaces.

The competitive adsorption of proteins is highly
dependent on the concentrations and competing com-
ponents [223,226]. Brash & Lyman [229] demonstrated
that protein adsorption is in direct proportion to the
protein concentration. Hyeran Noh et al. [230,231] per-
formed the standard depletion method to measure
multi-protein adsorption by using SDS-gel electrophor-
esis as a separation and a quantification tool. They
observed the competitive adsorption behaviour of pro-
teins on the same hydrophobic adsorbent surface, and
thereby they concluded that the change of protein size
(mainly molecular weight of proteins) affected
protein-adsorption kinetics. In addition, it seems that
the Vroman effect, at least in part, is due to a purely
physical process unrelated to protein biochemistry or
protein-adsorption kinetics.

Actually, the competitive adsorption of proteins is
more realistic to the situation in the living body. However,
nowadays, the Vroman effect is a visible phenomenon but
the underlying molecular mechanisms with respect to this
process have not yet been well explored.
6. CONCLUSIONS

Protein adsorptions are highly complicated matters and
more research into the mechanisms regarding the
nature of the adsorption is needed. Especially, under
the requirement of regenerative medicine, more efforts
need be paid to explore the adsorbed proteins on the
surface of bioceramics, such as adsorbed protein species,
protein conformation and protein–protein interactions.
These factors are likely to definitively regulate adhered
cells, especially stem cells, to differentiate special tis-
sues. Additionally, up to now available and feasible
methods and devices have been lacking. Thus, another
important task is to develop rational methods and
devices to precisely analyse the adsorbed proteins.
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