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More and more applications of nanomaterials have been achieved in the biomedicine field.
Numerous nanomedical devices, such as bone grafts with nano-hydroxyapatite and the
silver-based anti-bacteria products, have been developed and have been trying to enter
into the Chinese market. The State Food and Drug Administration of China (SFDA) is
facing a critical challenge of how to explore and supervise the safety assessment of the nano-
medical products. This paper briefly introduces the approval status of nanomedical products
and the current advances of the safety assessment of nanomaterials in China.
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1. CURRENT STATE OF THE
NANOMEDICAL PRODUCTS IN CHINA

Recently, with the intense interest in nano-biotechnology,
more and more nanomaterials have been widely involved
in biomedical studies. A large number of nanomedical
devices have been successfully developed. So far, there
are two categories of device with nanomaterials that
have been approved for clinic applications in China by
the State Food and Drug Administration of China
(SFDA). One is nano-hydroxyapatite as bone repair
materials, and the other is the silver-based anti-bacteria
product for wound-protection etc.

Regarding the above two categories of nanomater-
ials, there are already 190 medical devices approved to
enter the market by the SFDA, in which there are six
products imported from other countries while the rest
are all made in China. There are 53 nanomaterial pro-
ducts in the approval process of the SFDA. Among
the 190 medical products, about 60 per cent are
silver-based anti-bacteria products and 40 per cent
are bone repair materials in which one main compo-
nent is nano-hydroxyapatite. The SFDA-approved
nanomedical devices are listed in table 1.

The volume of nanomedical devices made in China has
been more than one billion Chinese Yuan per year since
2010, which is shared by approximately 100 enterprises.
As many enterprises have been involved in the research
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and design of nanomedical devices, a big challenge
to the SFDA nowadays is how to explore and supervise
the safety assessment of these nanomedical devices.
2. CURRENT STATE OF THE SAFETY
ASSESSMENT OF NANOMATERIALS IN
CHINA

According to the number of patents filed, China cur-
rently ranks second to the United States in the field of
nanoscience and nanotechnology research [1]. Concerning
the increase in applications of nanomaterials in medicine,
China has begun to pay more attention to the risk analy-
sis and safety evaluation of nanomaterials. Herein, we try
to review the latest advances in the safety assessment of
some typical nano-biomaterials in China, including
carbon nanomaterials, metallic and metal oxide nanoma-
terials, polymer nanomaterials, nano-hydroxyapatite, etc.
3. CARBON NANOMATERIALS

Carbon nanomaterials such as carbon nanotubes,
fullerene, graphene and their derivatives have a broad
range of potential applications in multiple biomedical
fields, especially in cancer therapy and diagnosis [2,3].
Recently, the potential toxic effects of carbon nano-
materials have attracted much attention. Carbon
nanotubes were found to cause oxidative damage in
living cells [4], produce a series of multiple lesions
in rats [5] and also cause an indirect cytotoxicity
through affecting immune functions [6]. In the mean
This journal is q 2012 The Royal Society
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Table 1. Nanomedical devices approved for clinical applications by SFDA.

production place
(province) number product description

Guangdong 33 silver-based anti-bacteria products
Inner Mongolia 29 silver-based anti-bacteria products
Jilin 25 silver-based anti-bacteria products
Henan 24 silver-based anti-bacteria products
Jiangsu 12 silver-based anti-bacteria products
Hubei 11 silver-based anti-bacteria products
Heilongjiang 8 nano-treatment instrument
Guizhou 8 silver-based anti-bacteria products, nano energy for pain relief card
Hunan 8 silver-based anti-bacteria products
abroad 6 NANOSIT, Ceram X, Ketac N100 Light-Curing Nano-Ionomer Restorative, 3M ESPE

FiltekTM Z350 XT
Shanghai 5 nano-acupoint application
Sichuan 5 infrared-cured pain post; hydroxyapatite/polyamide 66 composite bone graft
Beijing 4 nano-functional magnets, mineralized collagen bone graft
Jiangxi 2 nano-oxygen running water
Shanxi 2 anti-bacteria nano-film
Guangxi 2 silver-based anti-bacteria products
Liaoning 2 silver-based anti-bacteria products
Zhejiang 2 silver-based anti-bacteria products
Shandong 2 silver-based anti-bacteria products
Tianjin 2 nanocomposite antibacterial condoms
Anhui 1 silver-based anti-bacteria products
Fujian 1 silver-based anti-bacteria products
Shanxi 1 silver-based anti-bacteria products
Ningxia 1 silver-based anti-bacteria products
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time, Bai et al. [7] showed that carbon nanotubes only
cause reversible testis damage without affecting the fer-
tility in mice. Many efforts were also made to reduce the
cytotoxicity of carbon nanotubes by functionalizing
carbon nanotubes [8] or binding human serum proteins
with carbon nanotubes [9].

The cytotoxicity and bioactivity of carbon nano-
materials presented a structure-dependent property.
With different geometric structures, the cytotoxicity is
different. For example, the cytotoxicity of fullerene is
much lower than that of carbon nanotubes for lung
macrophage cells [10]. Chang et al. [11] also found
that fullerene derivatives C60(C(COOH)2)2 have no
cytotoxicity to the Rh35 and HepG2 cells. However,
Su et al.’s [12] research indicated that the cytotoxicity
of C60(OH)x was cell type-specific.

Graphene, a two-dimensional sp2-carbon nano-
material, has attracted more attention in many more
fields than carbon nanotubes and fullerene in recent
years. However, in China, the potential toxicity of gra-
phene has been relatively less explored until recently.
A number of researchers demonstrated that graphene
oxides (GO) showed very good biocompatibility with sev-
eral types of cells and animals at low concentration
[13,14], and even the ability to promote neurite sprouting
of mouse hippocampal cells [15,16]. However, owing to its
high accumulation and long-term retention, graphene
oxides can cause oxidative stress to cells and animals
and induce cell apoptosis and lung granuloma formation
at high concentration (at a dose of 10 mg kg21) [13,17].
On the other hand, Hu et al. [18] found that foetal bovine
serum can reduce the cytotoxicity of GO, owing to the
high protein adsorption capacity of GO. Yang et al. [19]
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demonstrated that poly(ethylene glycol)(PEG)-ylated
graphene oxides showed significantly improved biocom-
patibility, not causing appreciable toxicity at a dose of
20 mg kg21 to mice. The toxicity of carbon nanomaterials
is a subject of ongoing debate, and much work should be
done before carbon nanomaterials can be applied in clinic.
4. METALLIC AND OXIDE
NANOMATERIALS

Metallic and metal oxide nanomaterials such as quantum
dots (QDs), gold and silver nanoparticles (NPs), magnetic
NPs, TiO2 and SiO2, have been widely used in biosensors,
cell tracking, molecular imaging, photothermal therapy
and drug delivery [20]. The research of potential toxic
effects of metallic compound nanomaterials has become
a critical issue in China.

QDs, which are also known as semiconductor nano-
crystals, are generally composed of metal elements
such as Cd, Se, Zn, Te, Ag. CdSe and CdTe QDs are
the most widely studied, owing to their unique optical
properties. The in vitro cytotoxic effects of QDs in
numerous cells have been studied by many groups. Su
et al. [21] showed both the release of free Cd2þ and
the specific properties of NPs contribute to the cytotox-
icity of CdTe QDs. Yan et al. [22] reported that
mercaptosuccinic acid-capped CdTe QDs can cause
direct toxic effects on human vascular endothelial
cells both by impairing mitochondria and inducing
endothelial apoptosis. Furthermore, Li et al. [15,16]
found microRNAs as participants in cytotoxicity of
CdTe QDs in NIH/3T3 cells by using the SOLiD
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sequencing method. Potential toxicity of QDs in animals
has also been investigated by several groups. Liu et al. [23]
showed that CdSe QDs can promote the production of
intracellular reactive oxygen species and induce signifi-
cant impairments to the liver in mice. Appropriate
surface modification can enhance the stability of QDs
in physiological solutions and improve the biocompati-
bility of QDs. Su et al. [24] found that ZnS layer
coating can greatly reduce cytotoxicity and improve the
biocompatibility of CdTe QDs. Guo et al. [25] showed
surface modification with F-68 and sodium dodecyl
sulphate could reduce the cytotoxicity of CdSe QDs. Li
et al. [26] found a chirality-dependent cytotoxicity of
QDs, that is, D-glutathione (D-GSH)-coated QDs
showed less cytotoxicity than L-GSH-coated QDs.

Owing to the wide applications of gold nanoparticles
(AuNPs), the cytotoxicity of AuNPs has become a big
issue in China. Investigators have observed that AuNPs
can induce oxidative stress in blood serum [27] and
cause cytotoxicity in human K562 cells at a high concen-
tration [28]. Lin et al. [29] found that the cytotoxicity of
AuNPs increases as the percentage of ammonium-
functionalized ligands on an AuNP increases. Yi et al.
[30] reported that AuNPs exposure-induced osteogenic
differentiation and inhibited adipogenic differentia-
tion of mesenchymal stem cells by activating the p38
mitogen-activated protein kinase signalling pathway.

The cytotoxicity of silver nanoparticles (AgNPs) has
also been well studied in China owing to their wide appli-
cations in biomedicine as antivirus and antibacterial
reagents. Wei et al. [31,32] reported that AgNPs
could be phagocytized into the cells, thus inducing cell
apoptosis, and smaller nanoparticles may cause higher
toxic effects than larger ones owing to their easier entry
into cells. AgNPs may also alter the action potential
of hippocampal CA1 neurons by depressing the voltage-
gated sodium current [33]. Moreover, Yang et al. [34]
showed AgNPs can interfere with DNA replication
fidelity and bind with DNA. However, there are some
conflicting results owing to the difficulty of obtaining
different-sized AgNPs as standards for their safety evalu-
ation. More recently, Li et al. [35] prepared a series of
monodispersed AgNPs and standardized their size- and
dose-dependent cytotoxicity.

Fe2O3 and Fe3O4 nanoparticles are the most widely
used magnetic nanoparticles. Both of them were found
to generate oxidative stress in human umbilical endo-
thelial cells [36]. In addition, Wei et al. [37] found that
Fe3O4, oleic acid-coated Fe3O4 and carbon-coated Fe
could affect the viability of human hepatoma BEL-7402
cells via cell arrest and induce apoptosis through the
mitochondrial-dependent pathway. The potential tox-
icity of magnetic nanoparticles in animals has also been
explored. Zhu et al. [38] found potential lung and sys-
temic cumulative toxicity of Fe2O3 nanoparticles in
rats, even at a low concentration. Moreover, smaller
Fe2O3 nanoparticles could induce more severe oxidative
stress and nerve cell damage in the brain than larger par-
ticles [39]. On the other hand, Song et al. [40] showed Fe
nanowires had a good biocompatibility and a very low
cytotoxicity with HeLa cells.

The toxic effects of other metallic and metallic com-
pound nanomaterials such as TiO2, SiO2, copper and
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zinc NPs have also been explored in China. For TiO2

NPs, much research focused on the potential neurotox-
icological effects. TiO2 NPs could be translocated into
the brain and cause brain injury in mice [41,42].
Additionally, the cytotoxicity of TiO2 NPs was found
to be dependent on their size, shape and surface modi-
fication [43,44]. For SiO2 NPs, Wang et al. [45] showed
that SiO2 NPs can cause a dose-dependent cytotoxicity
in cultured HEK293 cells by increasing oxidative stress.
Moreover, SiO2 NPs have a potential risk for neuro-
degenerative diseases [46]. On the other hand, Liu
et al. [47] showed mesoporous hollow SiO2 NPs had a
low toxicity in mice with intravenous injection, and
could be excreted from the body over four weeks. For
copper and zinc NPs, research found the toxicity of
these NPs was size-dependent [48,49].
5. NANO-HYDROXYAPATITE-
CONTAINING BIOMATERIALS

Hydroxyapatite (HA) and its derivatives have been
widely studied to explore their biocompatibility with
tissue. Cui et al. developed a nano-hydroxyapatite/
collagen composite and tested its ability in bone repair-
ing. The composite showed some features of natural
bone in both composition and microstructure. The
inorganic phase in the composite was carbonate-
substituted HA with low crystallinity and nanometre
size. HA crystals grew on the surface of these fibrils
in such a way that their c-axes were oriented along
the longitudinal axes of the fibrils. The mineralized col-
lagen fibrils aligned parallel to each other to form fibres,
and the hierarchical fibres of collagen–hydroxyapatite
composite were observed under transmission elec-
tron microscopy [50]. For example, Figure 1 shows the
microstructure of the composite of bone graft that had
been used in clinics. At the interface of this implant
and marrow tissue, solution-mediated dissolution
and macrophage-mediated resorption led to the degra-
dation of the composite, followed by interfacial bone
formation by osteoblasts. The process of implant degra-
dation and bone substitution was reminiscent of
bone remodelling. The composite can be incorporated
into bone metabolism instead of being a permanent
implant [51].

Wang et al. [52] found that nano-HA/polyamide
composite scaffolds exhibit good biocompatibility and
extensive osteoconductivity with host bone. Xu et al.
found that polyvinyl alcohol hydrogel modified with
nano-HA can improve biocompatibility [53]. Lin et al.
[54] showed a nano-grade HA/collagen composite
which had an excellent biocompatibility in mice.
6. POLYMER NANOMATERIALS

Polymer NPs are generally designed for targeted deliv-
ery of drugs. The toxic effects of several polymers have
been explored in China. Hu et al. [55] found polymeric
NP–aptamer bioconjugates exhibited little toxicity
and could diminish the toxicity of mercury. Huang
et al. [56] showed poly (1-caprolactone)-poly (ethylene
glycol)-poly (1-caprolactone) nanomaterials did not
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Figure 1. Higher magnification of the mineralized collagen
fibrils. Selected area electron diffraction pattern of the miner-
alized collagen fibrils in the area of the asterisk in this figure
revealed that nano-HA crystals are ordered assembled with
the collagen fibres.
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cause any acute toxicity and genotoxicity. He et al. [57]
synthesized a family of novel MeO-poly (ethylene
glycol)-poly (D,L-lactic-co-glycolic acid)-poly (ethylene
glycol)-OMe triblock copolymer nanoparticles, and
showed the cytotoxicity and haemocompatibility of
copolymer were dependent on the molecular weight of
PEG used in the synthesis of polymers.
7. PROSPECT ON THE SAFETY
ASSESSMENT OF NANOMATERIALS
IN CHINA

Special attention should be paid to nanomaterials when
they are used for implants in human body, because they
could invade through three body barriers of lung, intes-
tines and skin and directly enter the circulation system.

Based on the research listed above, nanomaterials pre-
sent two distinct biological characteristics. First, in the
level of the whole body, nanomaterials tend to target
and accumulate in certain organs, such as the liver,
spleen and kidney. Second, in the cellular level, nanoma-
terials sized in the range of smaller than about 40 nm can
easily enter cells in different ways and cause changes
and even the loss of cellular functions. Therefore, for
the clinical applications of nanomaterials, more detailed
systematic investigations on the nanomaterials per-
formance, in terms of transformation, distribution,
transference, metabolism, drainage and accumulation
inside the human body, are seriously needed. The
SFDA will make efforts to work together with
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the scientists to continue exploring and supervising the
safe clinical applications of nanobiomaterials in medicine.

This work is in part supported by NSFC grant 50573044, and
Chinese National Hi-tech programme No. 2011AA030105.
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