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One mechanism by which disease-associated DNA variation can alter disease risk is altering gene expression.
However, linkage disequilibrium (LD) between variants, mostly single-nucleotide polymorphisms (SNPs),
means it is not sufficient to show that a particular variant associates with both disease and expression, as
there could be two distinct causal variants in LD. Here, we describe a formal statistical test of colocalization
and apply it to type 1 diabetes (T1D)-associated regions identified mostly through genome-wide association
studies and expression quantitative trait loci (€QTLs) discovered in a recently determined large monocyte ex-
pression data set from the Gutenberg Health Study (1370 individuals), with confirmation sought in an additional
data set from the Cardiogenics Transcriptome Study (558 individuals). We excluded 39 out of 60 overlapping
eQTLs in 49 T1D regions from possible colocalization and identified 21 coincident eQTLs, representing 21
genes in 14 distinct T1D regions. Our results reflect the importance of monocyte (and their derivatives, macro-
phage and dendritic cell) gene expression in human T1D and support the candidacy of several genes as causal
factors in autoimmune pancreatic beta-cell destruction, including AFF3, CD226, CLECL1, DEXI, FKRP, PRKD2,
RNLS, SMARCE1 and SUOX, in addition to the recently described GPR183 (EBI2) gene.

and/or splicing. Indeed, researchers have identified several
SNPs associated with both a disease and expression of a
nearby gene and proposed that this reflects a common causal
molecular mechanism (1). However, linkage disequilibrium

INTRODUCTION

Genome-wide association studies (GWAS) have identified
multiple markers, usually single-nucleotide polymorphisms

(SNPs), associated with risk of common diseases, and atten-
tion has now turned to explaining the underlying molecular
mechanisms. Currently, a common hypothesis is that a propor-
tion of the causal variants tagged by these disease-associated
markers may affect the abundance of a protein or the relative
abundance of its different isoforms by altering transcription

(LD) between variants means it is possible that the two
traits, disease susceptibility and gene expression, are affected
by distinct causal variants in LD. For example, association of
the same SNPs with both type 1 diabetes (T1D) and RPS26 ex-
pression in lymphoblastoid cell lines was previously inter-
preted to imply that RPS26 was the T1D causal gene in the
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region (2). However, a formal statistical analysis demonstrated
that it was considerably more likely that two distinct causal
variants existed, one underlying each trait (3).

T1D has now been associated with 53 loci across the human
genome (4—06). Although we, and others, have named attractive
candidate genes in >60% of these regions (6), the evidence
from direct functional studies supporting causality is often
limited. Many T1D loci will overlap with expression quantita-
tive trait loci (eQTLs), either by chance or due to common
mechanism, and therefore will contain SNPs associated with ex-
pression of nearby or distant genes. Together with other func-
tional evidence and results such as animal model data, such
observations have led to the localization of causal genes and
pathways, improving knowledge of the aetiology of this multi-
factorial disease. For example, the correlation between INS
alleles and /NS expression in human thymus (7) and correlations
between /L2RA SNPs and levels of RNA and protein (8) have
led to the identification of /NS and /L2RA as causal for T1D.
Statistical evidence that the T1D and expression signals coloca-
lize, i.e. are compatible with the hypothesis of a common causal
variant, would help prioritize a particular gene as potentially
causal in T1D and justify further exploration of the relevant
physiological pathway.

As gene expression and eQTLs may be tissue specific
(8—10), it is important to study disease-relevant tissues. T1D
is very strongly associated with functional amino acid poly-
morphisms of the antigen-presenting HLA class II molecules
(11), and one of the relevant cell types in T1D are monocytes,
which are the circulating precursors of the major antigen-
presenting cells in the immune system, dendritic cells and
macrophages. The T1D susceptibility gene, GPRI83, is asso-
ciated with monocyte gene expression (12); macrophages are
evident in the autoimmune infiltrate of pancreatic islets in
histological analysis of autopsy tissue from patients with
T1D (13); and their blockade reduces T1D frequency in non-
obese diabetic mice (14). The Gutenberg Health Study (GHS)
(15) has measured gene expression in fresh (purified) mono-
cytes in 1490 (1370 non-diabetic) subjects and, as such, is
the largest available data set for conducting colocalization
analysis with T1D (12).

In order to conduct a formal colocalization analysis across all
known T1D loci, we first considered an alternative derivation of
the statistical test presented by Plagnol et al. (3). The original
test relied on standard statistical asymptotics which may not
hold, because the likelihood is commonly bimodal and rarely
quadratic near a maximum (Supplementary Material, Fig. S1).
Here, we present this statistical method and use it to formally
test for colocalization between eQTLs in the GHS and T1D
signals across 49 regions outside of HLA known to be asso-
ciated with T1D (6). We use an additional monocyte expression
data set from the Cardiogenics Transcriptome Study (CTS) to
seek confirmation. Our results, identifying genes whose eQTL
signals colocalize with T1D signals, can be used to direct
detailed future study of certain T1D loci.

RESULTS

We generated a comprehensive map of both cis and trans
monocyte eQTL patterns found in 1370 non-diabetic subjects

from the GHS across 49 associated T1D loci listed in
T1DBase (6) (Supplementary Material, Table S1). The 49
regions in total comprise 19 Mb. The HLA region was
excluded from analysis as the complex pattern of LD, which
differs between cases and controls, would violate one of the
assumptions of the test—that LD does not differ between
cohorts. We identified a total of 60 genotype-probe expression
associations with P < 10~® (53 cis effects) or P < 10~ ' (7
trans effects) in the GHS data set (Supplementary Material,
Table S2). Fifty of these probes were also available in the
CTS and all showed normalized fold changes in the same dir-
ection in the two data sets.

There are a number of differences between the GHS and
CTS data sets; chief among them, the GHS is a cohort study
which used negative selection to isolate monocytes, whereas
the CTS is a study of coronary artery disease (CAD) and myo-
cardial infarction (MI) cases and controls which used positive
selection. Either case status or positive selection, which can
activate cells, may create differences in expression and
hence in eQTLs. For this reason, we took a cautious approach
to the inclusion of the CTS data, testing first for a significant
eQTL effect in the CTS data, and second for evidence of colo-
calization of the GHS and CTS, only including the CTS data
when there was no evidence against colocalization at a conser-
vative threshold of P > 0.01.

It is important to note that our statistical test is constructed
with a null hypothesis of colocalization. Thus, small P-values
allow us to reject the null and to conclude it is unlikely that
disecase susceptibility and gene expression share the same
underlying causal variant, i.e. unlikely that TID association
in a region is mediated by monocyte expression differences
of the gene under test. However, larger P-values could corres-
pond either to genuine colocalization or failure to reject the
null due to insufficient statistical power. For this reason, we
present our complete results sorted by an overall P-value (Sup-
plementary Material, Table S3). We could exclude colocaliza-
tion of T1D and monocyte expression signals for probes in 39
genes (P < 0.0008; Bonferroni correction of @ = 0.05 for 60
tests), including RPS26. This left 21 probes for which we
cannot exclude colocalization (Table 1), which are now
worthy of follow-up. These include one potential trans
effect at the T1D locus 12q13.2 corresponding to a probe in
DCAF16 on chromosome 4pl5 (6), a region which does not
contain any known T1D-associated SNPs, with the remainder
acting in cis.

The test statistic from our alternatively derived colocaliza-
tion test is, in fact, identical to that from Plagnol ef al.’s (3)
asymptotic derivation (see Supplementary Material), but infer-
ence is clearer under our alternative derivation, where we use
posterior predictive P-values (16,17) to evaluate significance.
We find that posterior predictive P-values are very close to
asymptotic P-values (Fig. 1), suggesting that our concerns
about the asymptotics were unfounded, in data sets of this
size at least. In smaller sample sizes, the new approach
could still be preferred.

Finally, one region included here, on chromosome 2ql1.2,
has been associated with rheumatoid arthritis (18—20) and ju-
venile idiopathic arthritis (21) and is known to function in the
immune system. It has been assigned previously as a T1D
locus (22) based on its association with the other autoimmune
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Table 1. Twenty-one probes which are consistent with colocalization of monocyte expression signals and T1D association (P > 0.0008)
Region Probe Gene GHS-CTS I Sign (7)) P-value
2ql1.2 ILMN_1775235 AFF3 No 0.030 + 0.082
6925.3 ILMN_1795937 EZR Yes 0.027 - 0.00486
6q25.3 ILMN_1788223 RSPH3 Yes 0.359 + 0.196
10g23.31 ILMN_1718520 RNLS Yes 0.043 + 0.252
12p13.31 ILMN_1782729 CLECLI No 0.711 + 0.0804
12q13.2 ILMN_1753440 DCAF16 Yes 0.122 + 0.109
12q13.2 ILMN_1803745 SUOX Yes 0.062 - 0.00171
12q13.3 ILMN_1725079 TSPAN31 i 0.041 + 0.0238
12q13.3 ILMN_1723846 FAMI119B Yes 0.518 - 0.0014
12q13.3 ILMN_2097954 TSFM i 0.058 + 0.0027
13q32 ILMN_2168217 GPRI183 Yes 0.043 - 0.214
16pl1.2 ILMN_1701477 CCDC101 Yes 0.117 + 0.135
16p13.13 ILMN_1738866 DEXI Yes 0.132 - 0.00245
16p13.13 ILMN_1655244 LOC642755 — 0.131 - 0.0010
17q21.2 ILMN_1747857 SMARCE1 No 0.260 - 0.139
18q22.2 ILMN_1687825 CD226 i 0.047 - "
19q13.2 ILMN_1681296 1CAM4 Yes 0.142 0.00145
19q13.2 ILMN_2212763 ICAM3 Yes 0.047 + 0.00195
19q13.32 ILMN_1753805 PRKD2 Yes 0.089 - 0.114
19q13.32 ILMN_2368617 FKRP Yes 0.085 - 0.00732
Xq28 ILMN_1808356 FAM3A4 Yes 0.185 + 0.0101
GHS-CTS indicates whether the CPG signal colocalizes with GHS (‘Yes’ or ‘No’); ‘—’ indicates cases where probe was not present in the CTS and { where the

CTS effect was not significant. »* shows the proportion of variance in expression explained by the best SNP(s) in the GHS data set. Sign (7) indicates whether 7 is
positive or negative, i.e. whether increased expression correlates with T1D susceptibility (‘+”) or protection (‘—’) in GHS versus WTCCC. “** indicates cases
where only one SNP is required to capture both the eQTL and T1D signal, i.e. where the data are consistent with the null and a formal colocalization test is neither

needed nor possible.

posterior predictive p
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Figure 1. Comparison of asymptotic and posterior predictive P-values, log;o
scale.

diseases and on evidence of association of SNPs in the region
with T1D at a threshold of P < 10~ *. In the present study, we
present stronger evidence that the 2q11.2 locus is significantly
associated with T1D risk (P = 8.95 x 10~%; Table 2), using
additional genotyping and samples. We find no evidence
against colocalization of increased monocyte AFF3 expression
with T1D risk in this region, suggesting AFF3 as the potential
causal gene in the region.

We have prepared an R (23) package, coloc, which imple-
ments the tests described here and is available from CRAN
(http://cran.r-project.org).

DISCUSSION

The close correspondence between the asymptotic and the pos-
terior predictive P-values suggests that our caution regarding
whether asymptotics would hold for non-quadratic, bimodal
likelihood was overstated. However, we show (Supplementary
Material, Fig. S2) that, with smaller sample sizes, this is gen-
erally not the case and we recommend that both tests are con-
sidered, rather than assuming the asymptotic theory will
always hold.

Previous colocalization analyses have taken a conditional
approach, considering the degree to which each expression
trait was explained by the most strongly disease-associated
SNP in a region [e.g. using lymphoblastoid cell lines expres-
sion data (24)] or examining by eye the similarity between
the association profiles [e.g. comparing expression from
whole blood and celiac disease association (1)]. Conditional
approaches tend to begin with the most strongly associated
SNP in each data set and then consider how the evidence for
association in one data set changes when the best SNP from
the other data set is included in the model. Methods which
depend on single-SNP analyses may fail to capture the com-
plexity of the data when either multiple signals exist or mul-
tiple SNPs are needed to explain a signal. Even where a
single SNP is sufficient, if the most associated SNP is not
the causal variant, as is commonly the case in existing
GWAS, we would expect some residual association to
remain even in the case where the two traits share a causal
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Table 2. Association of rs4851256 C >T/rs4851253 T > G with T1D in case, control and family samples

Cohort N MAF OR/RR (minor) 95% CI P-value
Barrett et al. (4): 1s4851256 C >T
4913/7341 0.384° 0.86 0.79-0.94° 8.6 x 1077

Replication: rs4851253 T >G

Families 3411 0.376 0.93 0.87-1.00 0.0489

Replication case—control 4215/4428 0.366 0.93 0.88-0.99 0.0317

Combined (Mantel-Haenszel method) 0.00358
Combined result (Fisher’s method) 8.95x 1078

rs4851256 was the most associated SNP in the AFF3/2q11.2 region in the GWAS meta-analysis (4), but we could not design a TagMan assay to genotype the
replication resource. In the present study, a proxy was selected, rs4851253, which has *= 1 with rs4851256 in the HapMap CEU samples. N is the number of
cases/controls or the number of informative transmissions for family data. MAF, frequency of the minor allele (the minor allele is listed as the second allele after

the rsnumber) in controls or parents; OR, odds ratio; CI, confidence interval.

“Estimated from 3342 controls genotyped directly by the WTCCC, as genotypes were imputed in the TIDGC cohort.

Estimated from 1930 cases/3342 controls genotyped directly by the WTCCC.

variant, potentially biasing any test towards rejecting colocali-
zation. Further, the null hypothesis implicitly tested by condi-
tional methods, namely that the most associated SNP in one
data set can completely explain the genetic association in a
region in a different data set, is not the same as the null hy-
pothesis that is likely to be of scientific interest, namely that
the same variants underlie both traits. We do not replicate
here any of the putative T1D colocalizations identified by
these studies. Of the three colocalized loci identified by Nica
et al. (24), we excluded the HLA locus from study and the
other two do not appear to be monocyte eQTLs. We also
rejected colocalization of T1D with monocyte expression of
the genes listed by Dubois et al. (1) in these regions:
TMEMI116 and ALDH2 in 12q24.2 (P=1 x 10"%* and P =
1 x 1072, respectively) and TLRS in Xp22.2 (P =3 x 10~ %).

One of the most striking features of our results is that the
expression of relatively few genes appears consistent with
colocalized T1D signals. Colocalization can be excluded for
39 out of 60 probes (P < 0.0008), and none of these is
among our online list of the 36 most likely T1D candidate
genes in 35 regions (6) (http://wwww.tldbase.org/page/
Regions). Among the remaining 21 probes which were con-
sistent with colocalization (P > 0.0008, Table 1), the
P-values appear to be skewed towards smaller values than
might be expected by chance if all were genuinely colocalized.
This may reflect the method by which eight of these P-values
were calculated (the minimum of P-values from three non-
independent tests in the case where colocalization testing
was not possible in the CTS), a lack of power to detect depar-
tures from the null, and/or a combination of subtle differences
in LD between populations and the use of imputation, all of
which would tend to create bias against the null. This empha-
sizes that neither the existence of an eQTL nor lack of evi-
dence against colocalization is enough to confirm a gene as
causal for T1D. As with any colocalization analysis, these
results are merely a tool that will enable prioritization of
genes for detailed functional follow-up work.

Partially as a consequence of these results, we are actively
pursuing DEXT (16p13.3) as a T1D candidate gene, finding,
for example, that sequences in intron 19 of CLECI6A4,
where many of the most strongly T1D associated SNPs lie,
interact physically with the promoter of DEXI, supporting

our hypothesis that DEXI expression is a causal factor in
TID (25). Previously, CLECI164 itself was considered the
favoured candidate gene (26). SUOX, one of a cluster of
eQTL genes in the 12q13.2 region, most of which can be com-
prehensively rejected (P <1 x 1077), encodes sulphite
oxidase and occurs in the mitochondrial membrane. Our
results point to SUOX as a potential candidate for T1D, and,
despite a lack of strong candidature, links can be drawn
from the literature (27). Bisulphite and sulphite food preserva-
tives have been associated with allergy and asthma and could
affect the immune system and beta-cell functions, and our
results point to SUOX as a new candidate gene for T1D. Simi-
larly, our results suggest that, in 19p13.2, /CAM4 and/or
ICAM3 may be worth consideration alongside the currently
favoured TYK2 (5).

A very strong candidate gene that our results point to is
CLECLI, and this could be particularly informative since the
region contains two other strong functional candidates,
CD69 and CLEC2D. The CLECLI eQTL is particularly
strong, with associated SNPs explaining 71% of the variation
in expression levels (Table 1) and each copy of the A allele of
the most associated SNP, 157970116, leading to a 0.6-fold in-
crease in normalized expression (Supplementary Material,
Table S2). CLECLI encodes C-type lectin 1 or DCALI (den-
dritic cell associated lectin 1), which functions as a receptor on
myeloid cells, such as dendritic cells, to deliver costimulatory
signals to subsets of T cells, and can affect the maturation of
monocytes into dendritic cells (28). Coincident T1D and ex-
pression signals for both 12p13.31/CLECLI and 12ql13.2/
SUOX were also identified in a recent study in CD4+ lympho-
cytes (29). A smaller expression data set was available (200
samples), and the analysis was restricted to testing whether
the disease-associated SNP showed association with the ex-
pression, but our evidence which suggests cross-tissue coloca-
lization adds further support to these genes as possible T1D
candidates.

Two regions with eQTL-associated genes which are consist-
ent with colocalization, RSPH3 and EZR (or VIL) in 6q25.3,
and CCDC101 in 16p11.2 (Table 1), contain previously iden-
tified strong immune functional candidate genes, TAGAP and
IL27, respectively. However, as neither of the candidate genes
shows an eQTL in monocytes in the GHS data set, these data
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cannot provide further information on their candidacy, and
they remain strong candidates because of their major roles
in the adaptive immune system. Expression of /L27, in particu-
lar, has been correlated with an inflammatory bowel
disease-associated SNP (30), emphasizing the tissue-specific
nature of gene expression and the need to study a relevant
tissue for any colocalization study.

Another region of interest is on chromosome 13q32. We,
and collaborators, recently identified an interferon regulatory
factor 7 (IRF7)-driven inflammatory network (IDIN) in both
rats and humans. This was controlled in humans by a locus
on chromosome 13q32 which was also associated with T1D
(12). The gene regulating this IDIN was shown to be
GPR183, a G-protein-coupled receptor that controls B-cell mi-
gration and for which the ligands, oxysterols, have recently
been discovered (31-34). However, we could not demonstrate
that the T1D association in the region was mediated by
GPRI183 expression because the likelihood for Plagnol
et al.’s (3) test was bimodal and we were not confident in
the statistical asymptotics. GPRI83 has a strong monocyte
eQTL in the region, and with the newly developed test pre-
sented here, we find no evidence against colocalization (P =
0.13), supporting GPRI183 as potentially causal for TID in
this region. Also interesting are AFF3, in 2q11.2, a region pre-
viously associated with arthritis (18,21) and for which we
present further evidence of association with TID in this
paper (Table 2) and SMARCE] in 17q21.2.

In one region, 18q22.2, we did not apply our test because a
single SNP was sufficient to capture both the expression and
T1D signals, a situation which is compatible with the null.
CD226 encodes a cell surface receptor involved in adhesion,
signalling and effector functions of lymphocytes and natural
killer cells and is thought likely to be the causal gene in the
18g22.2 interval, given that the same non-synonymous SNP
(Gly307Ser, rs763361) is associated with multiple auto-
immune diseases, including multiple sclerosis (MS) (35),
and that anti-CD226 treatment can delay the onset of disease
in an experimental model of MS (36). However, our results,
which imply that TID risk correlates with reduced CD226
mRNA, suggest that the T1D association may also be
mediated by the direct effect of Gly307Ser on the CD226
protein (35), and it has been proposed previously that this
variant could affect splicing of exon 7, which contains the
SNP (26). Reduced CD226 mRNA could cause reduced cell
activation on cross-linking, and these results highlight the im-
portance of studying the expression and function of CD226 in
purified monocytes and the interactions of monocytes with
lymphocytes and other immune cells and the CD226 receptors,
CD112 and CD155.

As the adoption of dense, disease-specific genotyping
chips such as Immunochip (37; Immunobase, http://www.
immunobase.org) increases, it is possible that the situation of
single SNPs explaining two trait signals may become more
common, implying that any formal colocalization test would
become redundant. This scenario would be consistent with a
hypothesis of a single causal variant common to both traits.
Alternatively, if there exist multiple common causal variants,
then dense genotyping should enable the multiple SNPs
required to describe the SNP-trait associations to be identified,
and this test will be more widely applicable, with the caveat
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that all causal variants must operate in the same manner for
the data to appear consistent with the null. Early indications
are that both of these situations will arise, with multiple
signal regions forming a substantial minority (38).

All of our results will need follow-up work, and we have
begun this with CD226. As a first step, we have confirmed
the existence of the eQTL in monocytes, using the alternative
approach of allele-specific expression and observed that the
direction of allelic imbalance is the same as observed here,
with reduced expression correlated with the T1D risk allele
(see Supplementary Material).

Our formal colocalization analysis of T1D and monocyte
gene expression has identified genes that should be prioritized
for follow-up work in regions associated with T1D, and
excluded some genes as likely to be causal through their
action in monocytes. However, as eQTLs can be tissue specif-
ic, we cannot exclude the possibility that there is an alternative
expression altering mechanism in another relevant tissue (such
as CD4+ T cells) which would explain the T1D association.
The test as designed could be applied to any pair of traits,
and interesting future applications of our test include analysis
of eQTL signals from different tissues or overlapping disease
loci for T1D and other autoimmune diseases. A formal ana-
lysis is particularly useful, we believe, because it allows the
researcher to explicitly evaluate the strength of evidence
against colocalization and to rank genes for follow-up.
Further analysis with denser SNP genotyping chips, locus-
specific allele-specific expression analyses and more inform-
ative arrays (or even RNA sequencing) is now strongly
justified, alongside investigations of which cellular phenotypes
are altered by the CD226 causal variant, using flow cytometry
as we have previously described for the T1D and MS locus
IL2RA (8).

MATERIALS AND METHODS

Samples

Gutenberg Health Study samples

Subjects. A total of 1490 study participants of both sexes aged
35-74 years were successively enrolled into the GHS, a white
European, community-based, single centre, prospective cohort
study in the Rhein-Main region in western mid-Germany (15).
All subjects gave written informed consent. Ethical approval
was given by the local ethics committee and by the local
and federal data safety commissioners.

Genotype Data. Genome-wide variability genotyping was per-
formed using the Affymetrix Genome-Wide Human SNP
Array 6.0 and the Genome-Wide Human SNP Nspl/Styl 5.0
Assay kit. Genotypes were called using the Affymetrix
Birdseed-V2 calling algorithm and quality control was per-
formed using GenABEL (39). Sample and SNP exclusion cri-
teria were as applied previously (15). Briefly, samples were
excluded if the per-sample call rate fell below 97%, if the
autosomal heterozygosity (false discovery rate, FDR < 0.01)
was too high or if they duplicated or were closely related to
another sample in the study. Relatedness between study parti-
cipants was estimated by the identity-by-state (IBS) statistic.
In each pair showing an estimated proportion of alleles
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IBS > 0.95, the sample with the lower call rate was excluded
from further analyses. Quality control was performed on
900 392 SNPs. SNPs were excluded if the minor allele fre-
quency (MAF) fell below 1%, if they deviated from Hardy—
Weinberg equilibrium (HWE) (P < 10™%) or if the per-SNP
call rate fell below 98%; 675 350 SNPs were left for analysis.

Expression Data. Separation of monocytes was conducted
within 60 min of blood collection. Blood was collected using
the Vacutainer CPT Cell Preparation Tube System (BD, Hei-
delberg, Germany) and the blood samples were enriched in
monocytes by negative selection, using RosetteSep Monocyte
Enrichment Cocktail (StemCell Technologies, Vancouver,
Canada). This cocktail contains antibodies directed against
cell surface antigens on human haematopoietic cells (CD2,
CD3, CDS, CD19, CD56, CD66b) and glycophorin A on red
blood cells. Total RNA was extracted the same day using
Trizol extraction and purification by silica-based columns.
Genome-wide expression assessment was performed using
the Illumina HT-12 v3 BeadChip. Raw intensities were nor-
malized in R (23), using VST transformation and quantile nor-
malization as implemented in the lumi package (40,41).
Probes were included in analysis if expression was considered
detected (Illumina detection P < 0.01) in at least 90% of
samples.

Cardiogenics Transcriptome Study Samples

Subjects. A total of 917 patients and healthy individuals of
European descent were recruited in five centres within the
CTS. Healthy individuals were recruited in Cambridge (n =
458; UK). CAD and MI patients (n = 459) were recruited in
Leicester (n=161; UK), Libeck (»=102; Germany),
Regensburg (n = 122; Germany) and Paris (n = 74; France).
The study was approved by the Institutional Ethical Commit-
tee of each participating centre. We restricted analysis to 558
non-diabetic samples who had genetic, phenotypic and expres-
sion data available at the time of this study.

RNA Extraction. Monocyte isolation and RNA extraction were
performed separately in each centre according to standardized
procedures. All RNA samples were subsequently sent to the
Paris centre for amplification, whole-genome microarray
gene expression profiling and bioinformatics analysis.

Blood samples (30 ml) from fasting subjects were collected
into EDTA, and monocytes were isolated by positive selection
with CD14 microbeads (Miltenyi) according to the manufac-
turer’s instructions. Monocyte purity was measured as the per-
centage of CD14+ cells analysed by flow cytometry. Half of
the isolated cell preparation was immediately used for RNA
extraction. Isolated monocytes were lysed in Trizol, and
RNA was extracted in chloroform and ethanol, washed in
RNeasy columns and incubated with DNasel before extracting
in RNase-free water (Qiagen). RNA was quantified by the
Nanodrop method before being transferred to Paris on dry ice.

Genotyping. EDTA anticoagulated venous blood samples were
collected from all participants. Genomic DNA was extracted
from peripheral blood monocytes by standard procedures
(Qiagen) and genotyped at either the Wellcome Trust Sanger
Institute on the Human 610 Quad Custom Array (594 398

SNPs and 66 049 CNVs), or the SNP&SEQ Technology Plat-
form at Uppsala University, using the Sentrix Human Custom
1.2M array (1115839 SNPs and 80 128 CNVs). Samples
were excluded based on per-sample call rate, outlying auto-
somal heterozygosity, non-European ancestry, duplication
and being closely related to another sample in the study;
802 samples were kept for eQTL analyses. SNPs were
excluded if the MAF fell below 1% in cases or in controls,
if they deviated from HWE (P < 10~°) in controls, if the
per-SNP call rate fell below 95% in cases or controls on the
two Illumina arrays or if the MAF in controls was significantly
different between the two Illumina arrays (P < 10™°).

Expression Data. Gene expression profiling was performed
using the Illumina Human Ref-8 Sentrix Bead Chip arrays
(Illumina Inc., San Diego, CA, USA) containing 24 516
probes corresponding to 18311 distinct genes and 21 793
Ref Seq annotated transcripts. mRNA was amplified and la-
belled using the Illumina Total Prep RNA Amplification Kit
(Ambion, Inc., Austin, TX, USA). After hybridization, array
images were scanned using the Illumina BeadArray Reader,
and probe intensities were extracted using the Gene expression
module (version 3.3.8) of the Illumina BeadStudio software
(version 3.1.30). Raw intensities were processed using the
lumi (40,41) and beadarray (42) packages in R (23). All
array outliers were excluded and only arrays with high con-
cordance in terms of gene expression measures (pairwise
Spearman correlation coefficients within each cell type
>0.85) were included in the analyses. After data quality
control, 849 monocyte RNA samples were available for statis-
tical analyses. We analysed 558 non-diabetic samples in the
eQTL analyses.

T1D Case and Control Samples

The case and control samples have been described before
(4,43). Samples come from the Wellcome Trust Case
Control Consortium (WTCCC) and the Type 1 Diabetes
Genetics Consortium (T1DGC) GWAS. The WTCCC
samples consist of 1930 T1D cases and 3342 controls geno-
typed on the Affymetrix 500k chip, and the TIDGC
samples consist of 3983 T1D cases and 3999 controls geno-
typed on the Illumina 500 k chip. Sample and SNP exclusion
criteria were as applied previously (4). All subjects were of
self-reported white European ancestry, samples were excluded
based on per-sample call rate, outlying autosomal heterozy-
gosity, non-European ancestry, duplication and being closely
related to another sample in the study. SNPs were excluded
if the MAF fell below 1% in cases or controls, if they deviated
from HWE (P < 5.7 x 10~) in controls or if the per-SNP call
rate fell below 95%.

Alternative derivation of colocalization test

We developed an alternative to the asymptotic likelihood-
based approach of Plagnol et al. (3). Our alternative approach
was necessary because the likelihood can be bimodal and is
rarely quadratic near a maximum (Supplementary Material,
Fig. S1), rendering the applicability of asymptotic likelihood
ratio test theory questionable. There are some parallels
between the alternative derivation and Fieller’s theorem
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(44), which allows for disjoint confidence intervals when like-
lihoods are multimodal.

We have two traits measured in independent cohorts Y; and
Y,. Assume these traits are regressed (using linear or general-
ized linear regression, as appropriate) on genotypes from the
same set of p explanatory SNPs, X, producing maximum-
likelihood estimates b; and b, of regression coefficients [
and 3, with variance—covariance matrices V; and V>, respect-
ively. Since sample sizes are very large, the combined likeli-
hood may be closely approximated by a Gaussian likelihood
for b; and b,, assuming V; and V, are known and that
cov(by, by) =0.

We assume equal LD in the two cohorts, i.e. that the rela-
tionship between the causal variant and the genotyped SNPs
associated with either trait does not differ between cohorts.
Then, under the null hypothesis of colocalization, B; o< 3,
ie. B1=(1/m)B, =B (3). From Fieller’s theorem (44), we
may derive the y* statistic:

X2=u"v"y N)(z,

where u = by — (1/m)b, and V= Vi+ (1/n*)V>.

Note that this test statistic turns out to be identical to that
proposed by Plagnol ef al. (3) (see Supplementary Material).
If  were known, X* would have a x* distribution on p
degrees of freedom. The difficulty arises because it is not
known, and we must replace it by its maximum-likelihood es-
timate, 7 (which also minimizes X?). The asymptotic likeli-
hood theory advanced by Plagnol et al. suggests that this
results in min(X?) having a x> distribution on p — 1 degrees
of freedom, but this requires the log-likelihood for 7 to be
well behaved (i.e. near quadratic) and this is not always the
case; indeed, it is often bimodal. It is this behaviour of the
likelihood for the ratio of regression coefficients which has
given rise to the extended literature on Fieller’s theorem.

Instead, we use a posterior predictive P-value, first proposed
by Rubin (16) and further developed by Meng (17) to allow for
nuisance parameters (7 in our case). We begin by reparameter-
izing the problem in terms of 6 = tan~'n. Then, replacing X>

by
1 T
T(6) = (bl —taneb2> V1<b

the posterior predictive P-value is defined as

r T*(0)P(6)d6,
0

where 7%(6) is the P-value associated with 7(6), and P(0) is
the posterior distribution of 6, which we estimate assuming
flat priors for 6 and S (see Supplementary Material).

We also estimate a 95% credible interval for 1 by choosing
values of m which have equal probability such that the area
included between these limits is 95% of the total area under
the posterior. Note that the credible interval may be disjoint
in the case of a bimodal likelihood, as with Fieller’s confi-
dence intervals. In all cases where the credible interval is dis-
joint, the two peaks of the bimodal likelihood are either side of
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zero, and therefore both positive and negative values of 7 are
supported.

T1D association testing of AFF3/2q11.2

Previously, we found an association between T1D and AFF3/
2ql1.2 in a GWAS meta-analysis (4). The most associated
SNP in the region was rs4851256, but we could not design a
TagMan assay to genotype the replication resource. In the
present study, a proxy was selected, rs4851253, which has
r* =1, with rs4851256 in the HapMap CEU samples.

The replication case and control samples and family
samples have been described previously (4). Case and
control samples were analysed using logistic regression,
adjusting for 12 broad geographical regions within Great
Britain  (southwestern, southern, southeastern, London,
eastern, Wales, Midlands, North Midlands, northwestern,
East and West Riding, northern and Scotland) to exclude the
possibility of confounding by geography. These regions cor-
respond to the place of collection for case and control subjects.
We performed a 1 degree of freedom (df) likelihood ratio test
to determine whether a 1 df multiplicative allelic effects
model or a 2 df genotype effects model (no specific mode of
inheritance assumed) was more appropriate. We assumed a
multiplicative allelic effects model because it was not signifi-
cantly different from the genotype model for rs4851253.

The replication family samples were analysed using the
transmission disequilibrium test and conditional logistic re-
gression. The method proposed by Mantel (45) was used to
combine the scores from replication case, control and family
samples. However, as the SNP genotyped in the replication
was a proxy SNP for rs4851256, we used Fisher’s combined
probability test to produce an overall statistic for association
with T1D summarizing evidence in the GWAS and replication
samples combined.

eQTL identification

We first used genome-wide genotype and fresh monocyte ex-
pression data from 1370 non-diabetic subjects from the GHS
(15) to generate a comprehensive map of both cis and trans
monocyte eQTL patterns across known T1D loci listed in
T1DBase (6) (Supplementary Material, Table S1). We con-
ducted T1D locus-wide association testing of every probe in
the GHS data set against every genotyped SNP which lay
within the 19 Mb which comprise the T1D regions, using
the snpMatrix (46) package in R (23). We excluded probes
which were not determined to be expressed significantly
above background in 90% of samples; annotated as ‘bad’
quality according to detailed analysis of [llumina expression
arrays (47) or overlapped SNPs which were validated in
dbSNP version 131 and, if frequency information was avail-
able, not monomorphic in Europeans. We defined significant
associations as those which had P < 10™% for cis effects
(SNP < 5Mb from probe) or P <10~ '° for trans (SNP >
5Mb from probe or located on different chromosome)
effects. These thresholds are two orders of magnitude lower
than those established in the eQTL literature, as we are study-
ing <1% of the genome and because our aim here is to find
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results worthy of follow-up, rather than to identify eQTLs
definitively.

Application of colocalization test

Expression and disease status are rarely available in a single
large cohort; the TID GWAS and the GHS have been
carried out using samples from different individuals. Instead,
we test whether the coefficients from two separate regressions
(expression and T1D against the same SNPs) may be consid-
ered proportional. T1D cases and controls came from two
GWAS, which had used different genome-wide SNP chips:
the WTCCC (43) used the Affymetrix 500 k chip and
the TIDGC (4) used the Illumina 550 k chip. In contrast, the
GHS wused the more recent Affymetrix 1 M chip and the
CTS a combination of the Illumina 670k and 1.2 M chips.
Consequently, we need to take special care with imputation,
which is now commonly used to expand the number of
SNPs tested. When SNPs are imperfectly imputed, regression
coefficients are biased towards the null. Thus, if the same SNP
is imputed with different efficiency in the T1D and expression
data sets, this could lead to perhaps false evidence against the
null hypothesis of colocalization. On the other hand, restric-
tion to SNPs directly genotyped in both data sets may not be
appropriate when different chips have been used, as this can
restrict the number of SNPs available to test and fail to
capture the individual association signals adequately. We
chose to use imputed SNPs across chips, using IMPUTE v2
(48), but restricted analysis to well-imputed SNPs (info >
0.8), likely to induce only small bias in coefficients.

We, therefore, conducted an initial colocalization analysis
on these 60 genotype-expression associations, using directly
genotyped and well-imputed SNPs in the GHS and WTCCC,
both of which used Affymetrix chips. We attempted to
expand the analysis into the CTS when data for the same
probe were available; there was evidence of probe—genotype
association in the region in the CTS (P < 0.0008; Bonferroni
correction of a = 0.05 for 60 tests) and there was no strong
evidence against colocalization of the GHS and CTS signals
(P > 0.01). For such probes (50/60 occasions), we compared
expression and T1D signals in the CTS and TIDGC data,
using directly genotyped and well-imputed SNPs (both
studies used Illumina chips). We combined the P-values
from the two tests, using Fisher’s method. When it was not
possible to extend the analysis into the CTS, we used imput-
ation to compare signals from the GHS with the TIDGC,
the WTCCC and the combined T1D data in turn. In this
case, the tests are not independent, and we used the
minimum observed P-value as an overall measure of
significance.

For each putative eQTL, we extended the T1D region to
include a 0.1 cM window surrounding the best eQTL SNP.
Then, for each expression-T1D data set under test, we took
all SNPs in the extended window, and used lasso regression
(49) to determine a subset which best explained the association
of both the probe and T1D, according to the Bayesian informa-
tion criterion. We tried two approaches: lasso on the expres-
sion data set first, followed by the T1D data set including all
SNPs chosen in the first stage, or vice versa. The model

with the smallest combined Bayesian information criterion
was preferred.

Genotypes were imputed using CEU data from HapMap
version 2, release 24, using IMPUTE v2 (48). All analysis
was carried out using R (23) and the packages snpMatrix
(46) for initial association testing of expression measures
and glmnet (50) for lasso regression.

URLS

1000 Genomes, http://www.1000genomes.org; Cardiogenics
Transcriptome Study, http://www.cardiogenics.eu; CRAN,
http://cran.r-project.org; HapMap, http://www.hapmap.org;
T1DBase, http://www.tldbase.org; Immunobase, http://www.
immunobase.org.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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