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Abstract
Approximately one-third of people who recover from a stroke require some form of assistance to
walk. Repetitive task-oriented rehabilitation interventions have been shown to improve motor
control and function in people with stroke. Our long-term goal is to design and test an intensive
task-oriented intervention that will utilize the two primary components of constrained-induced
movement therapy: massed, task-oriented training and behavioral methods to increase use of the
affected limb in the real world. The technological component of the intervention is based on a
wearable footwear-based sensor system that monitors relative activity levels, functional
utilization, and gait parameters of affected and unaffected lower extremities. The purpose of this
study is to describe a methodology to automatically identify temporal gait parameters of
poststroke individuals to be used in assessment of functional utilization of the affected lower
extremity as a part of behavior enhancing feedback. An algorithm accounting for intersubject
variability is capable of achieving estimation error in the range of 2.6–18.6% producing
comparable results for healthy and poststroke subjects. The proposed methodology is based on
inexpensive and user-friendly technology that will enable research and clinical applications for
rehabilitation of people who have experienced a stroke.

Index Terms
Gait parameters; stroke rehabilitation therapy; wearable sensors

I. Introduction
Stroke is the leading cause of disability in the United States [1]. It is estimated that 700 000
people in the United States experience a stroke each year with over 5 million Americans
currently having suffered from one [2]. Approximately one-third of these individuals will be
left with functional limitations as a result of their stroke [3]. Initially after a stroke, two-
thirds of individuals cannot walk or require assistance to walk. After three months, one-third
of individuals who experience a stroke still require some form of assistance or are not able
to walk [3].

Many of those who do regain walking ability do not have sufficient locomotor capacity for
independent mobility in their community. Regaining the ability to walk is an important goal
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for individuals who have experienced a stroke [4]–[8] and it is often a primary focus of the
rehabilitation of these individuals. Poststroke individuals who are independent walkers
require less care and their level of disability is reduced as they are better able to participate
in their societal roles [9]. As walking ability is a primary goal of clients and focus of
rehabilitation, it is important that effective interventions are developed to improve walking
ability in this population.

Current research suggests that rehabilitation strategies that are based on task-oriented,
intensive training are necessary to induce use of dependent neurological reorganization in
order to enhance motor and functional recovery after stroke [10], [11]. Dean et al. [12]
found that individuals with chronic stroke who participated in a task-related lower extremity
training program had a significantly greater improvement in locomotor capacity, compared
to a control group that received upper extremity training. Yang et al. [13] had similar results
where task-oriented interventions were designed to increase the strength of the affected
lower extremity in a functionally relevant way and to provide repetitive walking practice
under various conditions.

Locomotor training utilizing a body weight support and treadmill systems is another task-
oriented intervention that has a growing body of evidence to support its effectiveness [14]–
[17]. Although these studies have demonstrated that interventions utilizing task-oriented,
intensive training can improve walking ability in people with stroke, these rehabilitation
strategies may be missing a key training component that could promote further recovery of
locomotor capacity, behavioral enhancing strategies. Behavioral enhancing strategies are a
key component of constraint-induced movement therapy (CIMT), which has been shown to
be effective in improving upper extremity motor control and functional use of the affected
limb in real-world situations in people with stroke [18]–[20].

Adherence enhancing behavioral strategies include a variety of techniques that are used to
assist the patient in taking responsibility for actively engaging in the intervention strategy
and transferring gains from the clinic to increasing use of the affected limb in a real-world
setting. Elements of this transfer package include recording use of the affected limb in a
diary, performing home practice of functional tasks, and problem solving with the
rehabilitation therapist around barriers [20].

A key component of adherence enhancing behavioral strategies is the ability to monitor the
use of the affected limb in the patient’s home and community. This is necessary so the
patient can gain an accurate view of their use of the limb and it provides important
information for the rehabilitation therapist to assist with problem solving in order to
overcome barriers to use. Incorporating two of the three components of CIMT therapy into a
comprehensive rehabilitation strategy aimed at improving walking ability and lower
extremity function poststroke may be beneficial. Incorporating adherence enhancing
behavioral strategies with repetitive task-oriented gait interventions is feasible and may
enhance the effects of massed, task-oriented interventions; however, to the best of our
knowledge this combined intervention strategy has not been reported in the literature.

There is a strong need for developing systems that enable the evaluation and progress of the
therapy in free-living conditions, capable of accurate monitoring and comparing the
performance of the affected limb versus the unaffected one during walking. The
measurement of temporal gait parameters such as percentage of time in swing and stance
provides important information on the symmetry of the person’s walking patterns. These
measures provide an accurate assessment of motor recovery after stroke [21] and can be
used as feedback to the patient and therapist. Here, we propose the use of a shoe-based
wearable sensor system consisting of pressure sensors and accelerometers to accurately
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detect temporal gait parameters in people with stroke. This system has been successfully
used for automatic monitoring of posture allocation and activities in healthy [22] and
poststroke individuals [23].

This study is organized as follows: Section II describes a background on different sensors
used for gait parameters analysis. In Section III, the methodology used to obtain gait
parameters in poststroke individuals is described in detail. Results are presented in Section
IV. Sections V and VI, respectively, present discussion and conclusion.

II. Background
The methodology proposed here for estimation of temporal gait parameters in poststroke
individuals is based on direct measures of pressure distribution under the feet when
performing walking activities. Several works have proposed different approaches for the
task of gait analysis using different sensors such as force-sensitive resistors (FSR) [24], [25]
and/or kinematic sensors like accelerometers [24], [25] and gyroscopes [24]–[27].

Saremi et al. [26] tested an integrated system of five accelerometers to determine if these
sensors could offer an option for acquisition of spatiotemporal gait parameters in healthy
and hemiplegic individuals. Comparison of the acceleration system was performed with a
commercial footswitch that has shown high reliability in gait parameters’ estimation. No
statistically significant differences for spatiotemporal measures of gait were found between
both systems, which suggest valid and reliable measures of gait for each lower extremity.
However, measures were only reliable for speeds from 0.5 to 1.8 m/s and walking speed was
accurate as long as walking was continuous.

On the other hand, Aminian et al. [24] suggest the use of gyroscopes located in any segment
of the body, as long as its axis is parallel to the mediolateral axis, to estimate spatial gait
parameters in addition to temporal parameters, in young and elderly subjects using wavelet
transformation to find gait events, i.e., Heel-strike and Toe-off. With these sensors, the
angular rate signal is less noisy than the one from accelerometers since acceleration is the
derivative of velocity and involves higher frequency components. This system was
compared to a two-FSR array by thresholding the pressure signals obtained while walking at
the exact time of Heel-strike and Toe-off. The authors reported no significant error observed
for Toe-Off detection, while a 10-ms average delay was observed between Heel-strike
obtained from gyroscopes and the FSR sensor. However, the static threshold for FSR
measurements can modify the results of the performance obtained from the gyroscopes; also,
the system worked under the assumption that subjects had a symmetrical stride length,
which could be not true in real-life situations or in people with stroke or other neurological
disorders.

A similar approach was used by Salarian et al. [27] where body attached gyroscopes were
used to estimate spatiotemporal parameters of gait in patients with Parkinson’s disease (PD)
where angular velocity of shank was used to estimate gait events of Heel-strike and Toe-off.
Error estimation of this system was obtained in comparison with a motion-capture system
where a human scorer carefully examined the recorded video. Error results obtained for
Heel-strike and Toe-off were −8.7 ± 12.5 and −2.9 ± 26.8 ms, respectively. Gait cycle and
stance times error reported were 2.2 ± 23.2 and 5.9 ± 29.6 ms, respectively.

A more elaborated wearable system was proposed by Bamberg et al. [25] named GaitShoe,
where accelerometers, gyroscopes, pressure sensors, bend sensors, and electric field height
sensors were used for quantitative gait analysis in healthy and Parkinsonian subjects. The
sum of four FSR sensors was used here to obtain the Heel-strike by setting the first time
point after the local maxima that exceeds the previous by more than 0.005 kg; the Toe-off
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was set at the first time point after the local minima within 0.005 kg of the following point.
This method proved to be highly successful with average rms error results of −6.7 ± 22.9 ms
for Heel-strike detection and −2.9 ± 16.9 ms for Toe-off detection.

In summary, although several works have focused on gait analysis, there is still a need for
development and testing of the methodologies that perform well in stroke individuals who
can exhibit highly asymmetrical gait patterns. In addition to asymmetry, the gait patterns of
poststroke individuals also exhibit high degree of intersubject variability and thus require
adaptation to individual traits. In previous work, we reported the development of a wearable
shoe-based device to detect and identify different postures and activities of poststroke
subjects by monitoring signals extracted from five FSR sensors located in the insole of a
shoe, and a 3-D accelerometer located at the heel [23]. The methodology described in [23]
enables monitoring of activity levels expressed categorically (e.g., sitting, standing, and
walking). The methodology for estimation of temporal gait parameters proposed in this
study enables the assessment of functional utilization and motor recovery of the affected
extremity in stroke patients during locomotion.

III. Methodology
A. Sensor Description

A detailed description of the wearable shoe-based sensor system can be found in [22] and
[23]. Each shoe comprises five FSR sensors (Interlink, Inc.), and a 3-D accelerometer based
on MEMS technology (LIS3D02AS). The FSR sensors were located in different foot contact
points, the heel, the heads of the metatarsal bones, and the great toe, soldered into a flexible
printed circuit board (PCB); these sensors were used to capture variations of pressure in the
plantar area at all times (see Fig. 1). The FSR sensors respond approximately linearly to
pressure exerted by the feet in different postures (standing, sitting) or activities (walking)
[23]. However, the quantitative measure of the pressure is not of interest for this study, but
the qualitative measure is.

The accelerometer was mounted on the heel at the back of the shoe together with the battery,
power switch, and wireless board in a rigid PCB (see Fig. 1). Data were sampled from these
sensors at 25 Hz with a 12-bit ADC and sent to a portable computer system using a wireless
intelligent sensor and actuator network (WISAN) wireless link [28] and stored on a hard
drive. The choice of sampling frequency was made as a design tradeoff between battery life
and physical size, both defined by power consumption during sampling and wireless
transmission and time resolution of temporal gait parameters. The proposed algorithms
should perform equally well for higher sampling frequencies [22]. The combination of these
sensors has been successfully used to automatic recognize different postures and activities of
stroke patients [23]. In this study, the variations of pressure captured by the FSR sensors
were used to detect the temporal gait parameters.

The integrated sensors add no significant weight to the shoe (a five-pad sensor insole with
connector weighs 17 g) and do not cause observable interference with normal motion,
posture, or normal activities. Subjects who participated in the data collection expressed no
discomfort or apparent change of walking behavior while wearing the shoe sensors. The
wireless sensor system is also inexpensive: the cost of parts per shoe-sensor pair is less than
U.S.$ 100 in single quantities and can scale down substantially in mass production.

B. Signal Processing
Data obtained from the FSR sensors was used to estimate the following temporal gait
parameters: cadence, step time, cycle time, percentage of gait cycle in swing for each lower
extremity, percentage of gait cycle in stance for each lower extremity, percentage of gait
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cycle in single limb support for each lower extremity, and percentage of gait cycle in double
limb support for each lower extremity. These temporal gait parameters are most relevant for
clinical practice [29], [30] as they provide a method of assessing gait symmetry and serve as
an accurate measure of motor recovery after stroke [21].

First, for each subject’s foot the sum of all five FRS sensors was calculated as

(1)

This signal provides enough information to obtain accurate detection of Heel-strike and Toe-
off location in time as discussed in the next sections.

The graph on top in Fig. 2 shows signals from all five FSR sensor locations (heel, left,
middle, and right metatarsal, and great toe); it also shows, in the bottom graph, the
waveform of the sum of all of them as in (1). For these signals, no significant noise was
present in the obtained sumFSR signal and no signal preprocessing or denoising was
performed. It can be argued that only the sensors located at the heel and the great toe could
provide the same information [24], but it has been observed in the laboratory that compared
to accelerometer the sumFSR signal is less sensitive to irregularities of lower extremity
motion of paraplegic gait.

C. Heel-Strike and Toe-Off Detection
Heel-strike and Toe-off events are critical in computation of gait parameters. The proposed
algorithm for detection of these events is based purely on FSR signals as methods based on
inertial sensors may present significant differences between unaffected and affected limb in
subjects with gait abnormalities due to stroke [26].

We use the terms Heel-strike and Toe-off as these are commonly used to describe different
cycles of gait. The shoe sensor will detect initial contact no matter what portion of the foot
first strikes the ground (corresponds to Heel-strike of normal gait) and end of stance phase
no matter what portion of the foot leaves the ground (corresponds to Toe-off of normal gait).
These detected variables are used to calculate the different temporal gait parameters.

Heel-strike and Toe-off events may not be applicable to patients with severe gait
abnormalities (dragging of the foot, for example); however, patients with stroke who are not
able to clear their foot in swing to some degree are not going to be able to walk
independently so would not have their gait parameters assessed. In order to walk
independently, the foot needs to clear the ground in swing if only to a small degree. The
shoe sensor would be able to detect this period of no contact compared to the foot being on
the ground and calculate the gait parameters.

For the data extracted from each one of the shoe-based wearable sensor, a threshold to detect
Heel-strike and Toe-off events is calculated by defining the average maxima and minima of
the sumFSR signal. For the sumFSR signal, all the local maxima and local minima are
obtained. The averages of these data points define maxima and minima thresholds as

(2)
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(3)

where Maxa , a = 1,2,…,k, are the local maxima data points found and Minb , b = 1,2,…,l,
are the local minima data points found.

The difference between the average values defines the threshold to obtain the Heel-strike
(H) and Toe-off (T) as

(4)

Equation (4) defines the threshold τ that detects Heel-strike and Toe-off events in the
sumFSR signal. This threshold is set within the range of variation of the sumFSR signal by
the means of the proportional factor α that adjusts the threshold as a fraction of the
difference between the average maximum and the average minimum of the signal to
compensate for interindividual variability in pressure levels.

The value of α is obtained through leave-one-out training and validation to produce the
lowest relative error of temporal gait parameters for the dataset. Once this value is
calculated, it can be used to adjust the threshold τ of any new subject. It was observed
experimentally that a value of α = 0.1725 gives the best temporal gait parameters detection
across all subjects and all experiments.

The intersection points of the threshold τ with the sumFSR signal correspond to H (Heel-
strike) and T (Toe-off) points (see Fig. 3). To discriminate detection of H from T, a simple
criterion is introduced: immediate points located previously to a local minima are considered
T and those immediately located after a local minima are considered H. For each foot, left
(L) and right (R), the numbers of H and T are the same in order to consider only complete
steps and be able to calculate more precisely the temporal gait parameters:

Left: HLi , TLi for i = 1,2,…n number of left steps,

Right: HRj , TRj for j = 1,2,…m number of right steps.

After all HL, TL, HR, and TR points are identified (see Fig. 4), these are used to obtain the
corresponding temporal gait parameters (see Table I).

D. Calculation of Temporal Gait Parameters
From each H and T events detected, different temporal gait parameters were computed.
First, cadence temporal gait parameter was obtained as the average of both feet detection as

(5)

where Nmax and Nmin are the number of maxima and minima on the sumFSR signal,
respectively; Tmax and Tmin are the time between the first and the last maxima and minima,
respectively. The rest of the gait parameters were obtained separately for each lower
extremity as described in Table I.

E. Validation
Data collection was performed on a group of 16 healthy human subjects (8 males and 8
females) and 7 poststroke subjects (2 males and 5 females). These subjects were selected to
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reflect a diverse adult population and compare proposed algorithm performance in healthy
and poststroke individuals. The university Institutional Review Board approved the study
and each subject provided informed consent. Subject characteristics for both groups are
shown in Table II.

With the poststroke subjects, four had a left cortical cerebrovascular accident (CVA) with
right hemiparesis, one a right cortical CVA with left hemiparesis, one a brainstem CVA that
resulted in right hemiparesis, and one a cerebellar CVA. Five subjects ambulated without an
assistive device, one subject used a cane, and one used a hemiwalker. Two subjects used an
ankle foot orthotic (AFO) and five did not. None of the healthy subjects used an assistive
device or AFO.

The healthy subjects performed two experiments where they were asked to walk over a
GAITRite commercial test system (CIR Systems, Inc.). This commercial system provides
reliable automated means of measuring spatial and temporal parameters of gait consisting on
an electronic walkway with a useful area of 61 × 366 cm (24 × 144 in) connected to a
Windows-based PC.

GAITRite measures were used as the gold standard to evaluate the methodology described
in this paper since it has been proven to have a strong reliability in temporal gait parameter
definition for young and elder [29], and for healthy and stroke individuals [30]. At the same
time, subjects were wearing the sensor-based shoes described in Section III-A.

Subjects with poststroke condition performed similar experiments, where they were asked to
walk in two different manners: walking comfortably and walking as fast as they could. Both
of these experiments were repeated for four times. For all the experiments of the data
collection, all subjects walked a distance of 17 feet (approximately two steps before and
after the length of the GAITRite sensor mat). Unlike GAITRite, the shoe-sensor system has
no limitation on the distance.

IV. Results
Gait data from two types of subjects, healthy and poststroke, were collected and processed
by the proposed algorithm to detect temporal gait parameters and compare to the GAITRite
system. The results are shown in Tables III and IV.

For healthy subjects, the statistical t-test using a confidence value of 95% was performed to
compare data recorded with the GAITRite system and the shoe-based wearable sensor; no
significant difference in the mean across all subjects for cadence (p > 0.35) and for
parameters calculated for each lower extremity (p > 0.18) was observed.

Results from the statistical t-test with a 95% confidence for poststroke subjects also did not
show significant difference between GAITRite and the shoe-based wearable sensor for
cadence (p > 0.29) and for parameters calculated for each lower extremity (p > 0.51).

Relative error from the shoe-based wearable sensor related to the GAITRite results was
calculated for both types of subjects as

(6)

where “Gaitrite” represents the GAITRite reported gait parameters used as the gold standard
and “Shoe” represents the gait parameters obtained from the shoe-based wearable sensor.
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Table V shows the relative error obtained for the healthy subjects. Table VI shows relative
error obtained for subjects poststroke, separated by types of experiments, e.g., walking
comfortably and walking fast.

Across poststroke subjects, a statistical t-test with 95% confidence was performed to
compare the relative error obtained between experiments from comfortable and fast walking.
There was no significant difference between both types of experiments across all parameters
calculated (p > 0.21), except for stance percentage (p = 0.01).

V. Discussion
Results obtained from the shoe-based wearable sensor show that the methodology proposed
here is able to accurately identify temporal aspects of the gait cycle in both healthy people
and individuals with stroke using only the FSR signals.

Because of the limited number of subjects enrolled for the study, besides the average relative
error of calculated temporal gait parameters, 95% confidence intervals are reported as part
of the results. A statistical t-test using a confidence interval of 95% was performed to
compare data recorded with the GAITRite system and the shoe-based wearable sensor.
There was no significant difference in cadence (p > 0.35) and temporal gait parameters
calculated for each lower extremity (p > 0.18) in healthy subjects. There was also no
significant difference in cadence (p > 0.29) and for temporal gait parameters calculated for
each lower extremity (p > 0.51) in subjects with stroke.

The relative error for these temporal aspects of the gait cycle, except for the step time, are
acceptable for practical purposes, and comparable to other methods, i.e., 3.1% versus 2.2%
error for gait cycle time and 3.6% versus 5.9% error for stance compared to the results
reported in [27]. Values of relative error up to 10% for cadence and double support can be
explained by the way they are calculated, where Heel-strike and Toe-off from both lower
extremities are used and their respective error is carried to the final calculation. The
temporal gait parameters’ mean values obtained from the healthy subjects are similar to the
ones previously reported in the literature [24], [26], [27], and [29].

Computation of temporal gait parameters using only FSR signals is proposed since pressure
measurements from the insole of a shoe involve a more direct representation of the walking
behavior. When using accelerometers the angular rate signal tends to be noisy since
acceleration is the derivative of velocity and involves higher frequency components [21]. As
discussed in the literature, with the use of gyroscopes it is possible to estimate spatial gait
parameters in addition to temporal parameters as long as its axis is parallel to the
mediolateral axis. However, it is important to notice that the use of gyroscopes requires
more sophisticated techniques for Heel-strike and Toe-off detection, i.e., wavelet transform,
finite-impulse response, etc., since gait events are transitory signals that cannot be properly
enhanced by simple traditional signal processing. Also, gyroscopes are more sensitive to
temperature and mechanical shock that may be significant in nonlaboratory conditions [24].
The constraint when using FSR sensors is that they are limited only to the estimation of
temporal parameters. Our current research is focused also on the accurate estimation of
spatial parameters like walked distance and walking speed of a subject by using data
extracted from the accelerometer located at the heel of the shoe-based wearable sensor.

For detection of Heel-strike and Toe-off, the proposed methodology adjusts a threshold τ
based on the pressure behavior of the sum of all five FSR sensors located in the shoe-based
wearable sensor. In [24] and [25], a fixed threshold over a signal obtained from FSR sensors
was used to detect Heel-strike and Toe-off. The adjustable threshold in the proposed
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algorithm is less sensitive to variability of subject’s weight, gait asymmetry, and intersubject
variability due to different levels of hemiparesis from poststroke condition.

However, one of the concerns is the impact of mechanical and temperature drifts of the
sensors over long periods of data collection in free-living conditions. If significant variations
during long recordings are to be observed, the threshold τ has to be readjusted over shorter
windows of fixed time length over the complete data collected.

Differences in gait are expected between healthy subjects and poststroke subjects. This can
be observed in the results of Tables III and IV. Lower values in cadence are typical of stroke
patients due to the asymmetric gait result of the affected extremity, and reflected in other
temporal parameters, like lower swing and higher stance. The wearable shoe-based sensor
described in this study was capable of successfully computing these gait parameters for both
type of patients, and obtaining comparable results to GAITRite system used as a reference.

The use of our shoe-based wearable sensor may be able to provide accurate information for
researchers on gait characteristics as people with stroke walk in their home and community
in order to analyze the effectiveness of rehabilitation interventions designed to improve
locomotion. In addition to providing outcomes, the data from the shoe-based wearable
sensor could also be used as part of a telerehabilitation-based, behavioral enhancing
feedback intervention to improve walking ability in people with stroke.

We are in the process of further developing the sensor system so that the data are wirelessly
transmitted to a mobile phone that is worn by the user for preliminary processing and
storage. The user could then view and receive feedback by looking at the mobile phone on
steps taken and other gait characteristics. At the end of the day, these data could be
wirelessly downloaded to a computer for further analysis and used for feedback, e.g., how
many steps were taken, how symmetrical was the gait pattern. The data could be viewed
simultaneously by the user and rehabilitation professional via the Internet. These data could
be used to set goals to increase the amount of time in standing and walking and to decrease
the amount of time in sitting. Based on the shoe-sensor data, user feedback, and progress
toward these goals, the rehabilitation professional could remotely solve problem with the
user on ways to remove barriers to increase physical activity and enhance social
participation.

VI. Conclusion
An inexpensive wearable system consisting of five FSRs integrated in the insole of regular
shoes was used to estimate temporal gait parameters in healthy and poststroke individuals.
This system and the proposed methodology accurately estimated temporal gait parameters in
both healthy individuals and people with poststroke condition by defining an adjustable
threshold over the resulting signal collected of the FSR sensors for each subject’s foot. This
shoe-based wearable sensor system may provide a way of monitoring walking activity and
measuring motor recovery in the home and community in people with stroke who are
undergoing rehabilitation therapy, and could be used to provide feedback on rehabilitation
progress.
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Fig. 1.
FSR sensors located on a flexible PCB and wireless circuit and an accelerometer located at
the back of the shoe.
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Fig. 2.
FSR sensor signals of one of the wearable shoe-based sensors of a poststroke subject; the
graph on top shows the signals obtained from each of the FSR sensor locations. The graph at
the bottom shows the sumFSR signal, that is, the sum of the five signals obtained from the
FSR sensors.
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Fig. 3.
Heel-strike and Toe-off detection for unaffected (top) and affected (bottom) lower extremity
of a poststroke subject.
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Fig. 4.
Heel-strike and Toe-off detected from the shoe-based wearable sensor of a poststroke
subject.
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TABLE I

Temporal Gait Parameters Definition

Left Right

Calculation of the temporal gait parameters from detected Heel-strike and Toe-off for each foot. Notations HLi and HRi (TLi and TRi) represent

the time of the ith Heel-strike (Toe-off) event for the left and right foot, respectively. From top to bottom, the parameters are: gait cycle time, step
time, stance, swing, single support, and double support.
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TABLE II

Subjects Demography

Healthy Post-stroke

Age 25±6.5 years (range 18–44) 60.4±10.6 years (range 40–76)

BMI 26.7±6.5 kg/m2 (range 18.1–39.4) 31.7±7.8 kg/m2 (range 26.1–48.3)

Shoe size (US) 7–11 8–10.5
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TABLE V

Relative Error for Healthy Subjects

Healthy subjects

Parameter Relative Error % 95% CI

Cadence 10.40 8.40 12.50

Step time 18.40 14.80 22.10

Cycle time 3.10 2.40 3.90

Swing % 6.40 5.30 7.40

Stance % 3.60 2.90 4.40

S supp % 5.50 4.30 6.70

D supp % 10.90 8.30 13.60
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