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ABSTRACT

Stroke is a major neurological disorder characterized by an
increase in the Glu (glutamate) concentration resulting in
excitotoxicity and eventually cellular damage and death
in the brain. HIF-1 (hypoxia-inducible factor-1), a tran-
scription factor, plays an important protective role in
promoting cellular adaptation to hypoxic conditions. It is
known that HIF-1a, the regulatable subunit of HIF-1,
is expressed by astrocytes under severe ischaemia.
However, the effect of HIF-1 on astrocytes following Glu
toxicity during ischaemia has not been well studied. We
investigated the role of HIF-1 in protecting ischaemic
astrocytes against Glu toxicity. Immunostaining with GFAP
(glial fibrillary acidic protein) confirmed the morphological
modification of astrocytes in the presence of 1 mM Glu
under normoxia. Interestingly, when the astrocytes were
exposed to severe hypoxia (0.1% O2), the altered cell
morphology was ameliorated with up-regulation of HIF-1a.
To ascertain HIF-1’s protective role, effects of two
HIF-1a inhibitors, YC-1 [3-(50-hydroxymethyl-20-furyl)-1-
benzylindazole] and 2Me2 (2-methoxyoestradiol), were
tested. Both the inhibitors decreased the recovery in
astrocyte morphology and increased cell death. Given that
ischaemia increases ROS (reactive oxygen species), we examined
the role of GSH (reduced glutathione) in the mechanism for
this protection. GSH was increased under hypoxia, and this
correlated with an increase in HIF-1a stabilization in the
astrocytes. Furthermore, inhibition of GSH with BSO
(L-butathione sulfoximine) decreased HIF-1a expression,

suggesting its role in the stabilization of HIF-1a. Overall, our
results indicate that the expression of HIF-1a under hypoxia has
a protective effect on astrocytes in maintaining cell morpho-
logy and viability in response to Glu toxicity.
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INTRODUCTION

Brain ischaemia induces a cascade of events that involve a loss of

glucose and oxygen, membrane depolarization, and Glu (glutam-

ate) release, leading to excitotoxicity. This release of the

neurotransmitter Glu and subsequent calcium influx

is considered to be the most significant event in the pathogenesis

of ischaemic brain damage. Astrocytes play an important role in

maintaining extracellular Glu that is released from neurons below

toxic levels. They do so by clearing up Glu from the synaptic

region through excitatory amino acid transporters and converting

the Glu into glutamine by glutamine synthetase. Glutamine is

then shuttled back to neurons and is re-used for Glu synthesis

(Lehmann et al., 2009). Astrocytes are also involved in the

metabolic support to neurons and provide them with nutrients

such as lactate to supplement energy requirements. In addition,

astrocytes appear to be the main source of EPO (erythropoietin)

and GSH (reduced glutathione) in the CNS (central nervous

system), having a GSH concentration twice as high that in

neurons (Bolanos et al., 1995). There is significant evidence of

astrocytes providing GSH and EPO to neighbouring neurons
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against various stresses (Gabryel and Malecki, 2006). Previous

studies have shown that, in ischaemic infarcts, neurons do not

survive if neighbouring astrocytes are not viable (Takano et al.,

2009). Therefore it is important to examine how ischaemia

affects the function and viability of astrocytes.

Under ischaemic conditions, HIF-1 (hypoxia-inducible

factor-1) is expressed to promote cell survival. HIF-1 is a

heterodimeric protein formed by a continuously expressed

subunit HIF-1b and an oxygen-regulated subunit HIF-1a that is

stabilized under low oxygen levels. Activation of HIF-1 leads to

the transcription of various genes that contribute to the

cellular adaptation to these conditions. Some of the genes that

play an important role in the protective effect of HIF-1 are

those that are involved in angiogenesis such as VEGF (vascular

endothelial growth factor), erythropoiesis such as EPO and

genes involved in glucose metabolism such as glucose

transporters (Siddiq et al., 2007). It has been shown that HIF-

1 induces high levels of EPO expression in astrocytes (Masuda

et al., 1994), making them the main source of EPO in the CNS.

This demonstrates that HIF-1 plays an important role not only

in neurons but also in astrocytes. In addition, Glu release during

cerebral ischaemia causes the formation of ROS (reactive

oxygen species) by the disruption of the mitochondrial electron

transport chain and the activation of NAPDH oxidases (Brennan

et al., 2009). Activation of HIF-1 has been shown to protect

astrocytes against oxidative damage (Chu et al., 2010).

Since astrocytes play an important role in maintaining

brain homoeostasis and providing neuroprotection, their

response to Glu toxicity and ischaemic insult requires further

understanding. The main objective of this study was to

investigate the effects of Glu on the viability and morphology

of astrocytes exposed to hypoxia and the role that HIF-1 plays

under these conditions. Our results demonstrate that HIF-1

has a protective effect on primary rat cortical astrocytes in

terms of increasing cell viability and maintaining cell

morphology in response to Glu toxicity and severe oxygen

deprivation. Furthermore, we show that GSH may contribute

to this protection by providing optimal conditions for HIF-1

stabilization.

MATERIALS AND METHODS

Primary culture of astrocytes
All experiments were conducted with the approval of the

University of Kansas Institutional Animal Care and Use

Committee. Cortical tissue were dissected from the

Sprague–Dawley rat (Charles River Laboratories) brains at

postnatal day 0 (P0) to P4. The tissues were washed with

HBSS (Hanks balanced salt solution) and trypsinized for

50 min at 37 C̊. The tissues were then dissociated using a fire

polished glass pipette in a dissociation medium (HBSS, 0.1%

BSA and 8 mM MgCl2), and centrifuged at 4000 g for 4 min

at room temperature (22 C̊). The cells were transferred into

and grown in 25 cm2 flasks with DMEM (Dulbecco’s modified

Eagle’s medium) and 10% FBS (fetal bovine serum). After 3–4

weeks the flasks were shaken to purify the astrocytes by

dislodging other cell layers. Following purification, astrocytes

were plated on coverslips with DMEM and 10% FBS and used

for experiments after 10–12 days.

In vitro hypoxia model
Hypoxia was induced by incubating the astrocytes in 0.1%

O2/5% CO2 (balanced with N2) in a hypoxia chamber (COY

Laboratories) for 3 h. To mimic the high levels of Glu release

during ischaemia, astrocytes were treated with 0, 0.001, 0.01,

0.1 and 1 mM of Glu in serum-free medium (DMEM) at 37 C̊ for

3 h. Control experiments were conducted at 21% O2/5% CO2.

Drug treatments
YC-1 [3-(50-hydroxymethyl-20-furyl)-1-benzylindazole] and

2Me2 (2-methoxyoestradiol; Cayman Chemical Company)

were used for HIF-1a inhibition studies. Prior to hypoxia

exposure, the astrocytes were incubated with 0.1 mM of the

inhibitors for 1 h. Preliminary experiments showed that these

conditions were sufficient for HIF-1a inhibition during severe

hypoxia, as shown in Figure 3. For GSH depletion, astrocytes

were pre-incubated with 5 mM BSO (L-butathione sulfox-

imine; Sigma–Aldrich) for 12 h as described by Noda et al.

(2001). The BSO was present for an additional 3 h during the

hypoxia treatment to inhibit the re-synthesis of GSH.

Immunocytochemistry
Following treatments, astrocytes were washed with PBS and

fixed with 4% PFA (paraformaldehyde) for 20 min at room

temperature. The cells were then permeabilized using 0.3%

Triton X-100 for 15 min at room temperature and incubated in

a blocking solution (0.05% Triton X-100 and 0.25% BSA

dissolved in PBS) for 30 min at room temperature. Astrocytes

were incubated with primary antibodies of GFAP (glial fibrillary

acidic protein) (1–500, MAB3402, Millipore) and HIF-1a (1–

100, sc-8711, Santa Cruz Biotechnology) overnight at 4 C̊. Cells

were washed and incubated with the appropriate secondary

antibodies [GFAP: donkey anti-mouse TRITC (tetramethylrho-

damine b-isothiocyanate) (1–50; Jackson ImmunoResearch)

and HIF-1a: goat anti-rabbit conjugated to Alexa FluorH 488

(1–100; Molecular Probes)]. Coverslips were washed and

mounted by using Vectashield mounting medium with DAPI

(49,6-diamidino-2-phenylindole; Vector Laboratories). Images

were acquired on a Leica DMI4000 microscope with a 640

objective and a Leica DFC340 FX digital camera.

GSH measurement
The GSH level was measured by using the MCB (monochloro-

bimane) method (Chatterjee et al., 1999). Following the
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treatments, astrocytes were incubated with 0.1 mM of MCB

for 30 min at 37 C̊. Fluorescence images were then taken

immediately, directly from the culture dish. For co-local-

ization studies, the astrocytes were fixed after the MCB

treatment and double-stained for GFAP and HIF-1a using the

immunocytochemistry procedure described above. The

intensity of the fluorescent GSH conjugate (GSH–MCB) of

single cells was measured from the images using ImageJ

software. Readings of whole-cell intensity were taken from

15 cells from three different culture preparations.

Cytotoxicity assessment
Cell death was assessed by measuring the activity of LDH

(lactate dehydrogenase) in the culture medium using an

LDH cytotoxicity assay kit (Cayman) as described by Bonfoco

et al. (1995). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium bromide] assay kit (Invitrogen) was

also used to assess cell survival and to quantify the Glu-

mediated cytotoxicity as described by Mosmann (1983).

Immunoblot analysis
Astrocytes were lysed in 200 ml of RIPA buffer (Thermo Sci-

entific) and the protease inhibitor cocktail kit (Thermo

Scientific) and scraped with the aid of a cell lifter (Biologix

Research Company). The lysates were centrifuged at 15300 g
for 10 min at 4 C̊, and the protein concentration of the

supernatants was determined using a protein assay kit (Bio-

Rad). Proteins were separated by SDS/PAGE and the separated

proteins were transferred to a nitrocellulose membrane (Bio-

Rad). After being blocked with 5% (w/v) non-fat dried

skimmed milk powder in TBST (Tris-buffered saline with

Tween), the membrane was incubated with the primary

antibody (HIF-1a: 1–1000; BD Transduction Laboratories)

overnight at 4 C̊ and the secondary antibody (1–3000; goat

anti-mouse; Santa Cruz Biotechnology) for 1 h at room

temperature. Immunoblots were quantified using ImageJ

software and HIF-1a levels were normalized to b-actin.

Texture analysis
Changes in astrocyte texture were determined using

CellProfiler cell image analysis software as described previously

by Haralick et al. (1973) and Carpenter et al. (2006).

Quantification of texture was done from fluorescence images

from three different culture preparations. Five microscopic

fields were obtained from each culture dish and readings from

six to eight cells were taken for further analysis.

Statistical analysis
Data are presented as means¡S.D. from a minimum of three

independent experiments. One-way ANOVA and the Student’s

t test were used for overall significance. Differences of

P,0.05 were considered statistically significant. Image-Pro

Plus 5.1 (Media Cybernetics), ImageJ and Excel were used for

data analyses.

RESULTS

Severe hypoxia-protected astrocytes from Glu
toxicity
Excessive Glu accumulation is a major cause of neuronal

death in the brain during ischaemia. Astrocytes are very

important for the clearance of excessive Glu from the

extracellular space; however, high concentrations of Glu also

affect astrocytes and can lead to their death under normal

conditions. Here, we studied the morphological changes in

primary rat cortical astrocytes exposed to Glu at various

concentrations (0, 0.001, 0.01, 0.1 and 1 mM) for 3 h. The

morphology was assessed based on GFAP expression. Lower

concentrations (0.001 and 0.01 mM) of Glu had no effect

on the morphology. Increased concentrations (0.1 and

1 mM) caused changes in the structure of the astrocytes

(Figure 1A). Under control conditions, astrocytes appeared

fibrous. However, high Glu resulted in a disrupted or diffuse-

like structure. To quantify the GFAP-based structural/

morphological changes, we conducted texture analysis by

using CellProfiler which measures the amount of local

variation present (Carpenter et al., 2006). A higher value

with more contrast suggests a more complex structure. The

results demonstrate that Glu altered the astrocyte morpho-

logy under normoxia, compared with the control (no Glu).

Interestingly, when astrocytes were exposed to severe

hypoxia (0.1% O2) in the presence of 1 mM Glu, the

astrocyte morphology was improved when compared with

1 mM Glu under normoxia. These data are evidence that

hypoxia protects astrocytes against Glu toxicity. As the low

concentrations of Glu had no effects on astrocyte

morphology, the following studies were carried out with

0.1 and 1 mM Glu.

To further examine the protective effect of hypoxia on

astrocyte against Glu, we measured cell death with the LDH

assay as shown in Figure 1(C). Under normoxia, there was a

Glu-concentration-dependent decrease trend in astrocyte

viability. Under severe hypoxia there was a sign of recovery.

When cell viability was determined with the MTT assay, we

observed a significant decrease in cell viability when

astrocytes were exposed to 1 mM Glu under normoxia and

a significant recovery in astrocyte survival under hypoxia. The

difference in the cell viability may be due to the sensitivity of

the two cytotoxicity assays. The LDH assay requires a more

severe insult that causes damage to the cell membrane.

The MTT assay on the other hand works by measuring the

metabolic activity of the mitochondria. Nevertheless, results

from both assays indicate that hypoxia reduces astrocyte

damage caused by Glu.

HIF-1 protection in astrocytes
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HIF-1a is highly expressed in astrocytes under
severe hypoxia

Next, we aimed to address the mechanism by which the

astrocytes recovered from the Glu toxicity during severe

hypoxia. It is known that HIF-1a is stabilized under low

oxygen levels and can contribute to cellular protection under

these conditions. HIF-1a expression was first analysed by

immunostaining. As expected, there was no HIF-1a expression

under normoxia, while treatments with severe hypoxia

Figure 1 Hypoxia ameliorated astrocyte damage induced by Glu
(A) Immunostaining characterization of cultured rat cortical astrocytes. Representative images depicting GFAP (red) in astrocytes
treated with 0, 0.001, 0.1, 0.1 and 1 mM Glu under normoxia (21% O2) and 1 mM exposed to severe hypoxia (0.1% O2) for 3 h. (B)
Morphological profiling of astrocytes stained for GFAP and DAPI (for nucleus staining). Individual cells were identified using
CellProfiler software and divided with clear boundaries (1). Representation (3) of quantification of morphology using one of the 13
features computed from each cell to measure and compare texture (2). *P,0.05 versus 0 mM Glu under normoxia. (C) Astrocyte
viability assessed using the LDH and MTT assay. *P,0.05 versus 0 mM Glu under normoxia, #P,0.05 versus 1 mM Glu under
normoxia (n53).
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increased HIF-1 expression in the nuclei of the astrocytes

(Figure 2A). HIF-1a was also expressed in the nucleus of

the astrocytes following severe hypoxia treatment in the

presence of Glu. For further confirmation, Western-blot

analysis demonstrated a significant increase in HIF-1a protein

levels under severe hypoxia, both with and without Glu

treatments (Figure 2B). However, with 1 mM Glu under

severe hypoxia there was a slight decrease in the HIF-1a

protein levels. This could be due to increased proteasomal

degradation induced by an increase in ROS (see the

Discussion for further explanation).

HIF-1a inhibition attenuates the recovery of
astrocytes from Glu toxicity under severe
hypoxia
To confirm whether the recovery of the cell morphology and

cell viability under severe hypoxia was in fact due to the

expression of HIF-1a, the effect of two HIF-1a inhibitors,

YC-1 and 2Me2, were examined on astrocyte damage. Although

the mechanism of HIF-1a inhibition by YC-1 and 2Me2 is not fully

understood, it appears as though YC-1 acts at a post-translational

level and inhibits HIF-1a activation (Li et al., 2008), while 2Me2

inhibits HIF-1a at the level of translation (Mabjeesh et al., 2003).

Astrocytes were pre-treated with a 0.1 mM concentration of the

inhibitors for 1 h and then subjected to severe hypoxia with

the addition of 1 mM Glu for an additional 3 h. Astrocytes

treated with YC-1 or 2Me2 showed much less HIF-1a expression

in the nuclei of astrocytes under severe hypoxia in the presence of

0 and 1 mM Glu (Figure 3A). The immunostaining also reveals

that the addition of either YC-1 or 2Me2 resulted in an

attenuation of the recovery of the cell morphology when

compared with the controls. Western blotting confirmed that the

inhibitors did decrease the HIF-1a protein level (Figure 3B).

Table 1 shows the effects of the two HIF-1 inhibitors on

cell morphology quantified by the texture analysis and cell

viability assays. Both YC-1 and 2Me2 treatments resulted in a

significant change in cell morphology and significant increase

Figure 2 HIF-1a expression was increased in astrocytes exposed to severe hypoxia and Glu
(A) Representative immunofluorescent images showing GFAP (red) and HIF-1a (green) labelling in astrocytes treated with 0, 0.1 and 1 mM
Glu under N (normoxia) or SH (severe hypoxia) for 3 h. (B) Protein stabilization of HIF-1a determined by Western-blot analysis. Equalization
of protein loading was determined using b-actin as the housekeeping protein. *P,0.05 versus 0 mM Glu under normoxia (n53).

HIF-1 protection in astrocytes
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in cell death. Astrocytes treated with the HIF-1a inhibitors

under normoxia showed no significant effect (Table 1). The

increase in cell death was consistent with no recovery in

texture with either YC-1 or 2Me2 treatment under severe

hypoxia. This suggests that the recovery in astrocyte

morphology is caused by the stabilization of HIF-1a under

low oxygen levels.

GSH stabilizes HIF-1a expression
GSH is the most abundant small molecule anti-oxidant that

suppresses free radical levels and protects cells against

various stress conditions. Previous data from our laboratory

has shown that GSH increases HIF-1a expression during

oxygen deprivation (Guo et al., 2008). To determine whether

GSH plays a role in the HIF-1a stability and protective effect

in astrocytes, we compared GSH levels between the different

treatments. The cellular GSH level was measured using the

MCB method. Fluorescence intensities of GSH-MCB were

quantified to differentiate between the levels of GSH present

in astrocytes treated with 0.1 and 1 mM Glu under normoxia

versus severe hypoxia. The results showed no change in GSH

levels in the presence of Glu lower than 0.1 mM under

normoxia; however, 1 mM Glu caused a significant in-

crease in GSH (Figures 4A and 4B). Hypoxia increased the GSH

levels in astrocytes. The presence of Glu further increased the

GSH level in astrocytes exposed to hypoxia.

To determine whether an increase in GSH levels con-

tributed to the up-regulated HIF-1a expression, we fixed the

cells after MCB treatment with or without severe hypoxia

in the presence of Glu and then co-stained for GFAP and HIF-

1a. The results showed a co-localization of increased GSH

with HIF-1a expression in astrocytes treated with both 0.1

and 1 mM Glu (Figure 4C). This suggests that GSH might help

stabilize HIF-1a expression in the astrocytes. To confirm the

role of GSH in the HIF-1a up-regulation, astrocytes were pre-

treated with 5 mM BSO, which decreases cellular GSH levels,

for 12 h and then exposed to Glu and hypoxia. This resulted

in a significant attenuation of HIF-1a stabilization (Figure 5).

Furthermore, inhibition of GSH and consequently HIF-1a,

decreased astrocyte survival and abolished the morphological

recovery under hypoxia (Table 2). These results are consistent

with the results of HIF-1a inhibition using YC-1 and 2Me2;

indicating that HIF-1 provides protection against Glu in

hypoxic astrocytes.

DISCUSSION

To date, there are no effective neuroprotectants for human

stroke, and the development of neuroprotective strategies is

considered extremely challenging. Although many agents

have been tested for the treatment of ischaemic stroke, such

as anti-oxidative, anti-apoptotic, anti-excitotoxic and anti-

inflammatory drugs, they have all proved unsuccessful. One of

the reasons for this may be our incomplete understanding

of the mechanisms that are responsible for cellular death.

Furthermore, the study of cell death following cerebral

ischaemia has been primarily focused on neurons. In addition

to neurons, ischaemia also causes damage to astrocytes

(Martin et al., 1997; Yu et al., 2001; Lukaszevicz et al., 2002;

Giffard and Swanson, 2005), which are critical in maintaining

neuronal viability and functions under ischaemic conditions.

Therefore targeting astrocytes can be an important strategy

to enhance neuronal survival.

Figure 3 YC-1 and 2Me2 attenuated the protection provided by hypoxia
in astrocytes
(A) Representative immunofluorescent images demonstrating the effect of YC-1
and 2Me2 on HIF-1a (green) expression and astrocyte morphology (GFAP, red).
Astrocytes were pre-treated with 0.1 mM YC-1 and 2Me2 followed by 1 mM Glu
with exposure to N (normoxia) or SH (severe hypoxia) 3 h. (B) Protein stabilization
of HIF-1a determined by Western-blot analysis. Equalization of protein loading
was determined using b-actin as the housekeeping protein. *P,0.05 versus 0 mM
Glu under normoxia, #P,0.05 versus 0 mM Glu under severe hypoxia (n53).
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Table 1 Effect of HIF-1a inhibitors on astrocytes exposed to Glu and hypoxia
Results are presented as means¡S.D. (n53). N, normoxia; SH, severe hypoxia. *P,0.05 versus normoxia. **P,0.05 versus normoxia
1 mM. #P,0.05 versus severe hypoxia 0 mM.

Cell viability (%)

Glu concentration Treatment Texture analysis LDH assay MTT assay

0 mM N 1.49¡0.12 100 100
N+YC-1 1.19¡0.04 99.12¡3.09 98.22¡1.74
N+2Me2 1.13¡0.03 99.47¡2.52 97.95¡2.57
SH 1.07¡0.24 97.35¡1.79 90.82¡2.93
SH+YC-1 0.97¡0.31 66.15¡6.42# 62.74¡2.20#

SH+2Me2 0.89¡0.28 66.34¡1.96# 64.41¡3.09#

1 mM N 0.52¡0.06* 94.09¡1.49 82.84¡1.77*
N+YC-1 0.44¡1.08* 98.29¡1.51 80.42¡5.03*
N+2Me2 0.48¡1.11* 97.30¡3.24 81.03¡4.12*
SH 0.89¡0.05** 95.17¡3.42 89.86¡4.02
SH+YC-1 0.55¡0.11* 59.44¡3.59# 55.91¡5.24#

SH+2Me2 0.51¡0.05* 65.56¡5.14# 58.62¡3.37#

Figure 4 Astrocyte GSH levels were increased with Glu and severe hypoxia treatments
Astrocytes were treated with 0.1 mM or 1 mM Glu with exposure to N (normoxia) or SH (severe hypoxia) for 3 h. Astrocytes were
loaded with 0.1 mM MCB following treatments. (A) Representatives of GSH-MCB labelling in astrocytes exposed to various
conditions. (B) Quantification of the cytosolic GSH intensity in astrocytes exposed to various conditions. *P,0.05 versus 0 mM Glu
under normoxia, #P,0.05, normoxia versus severe hypoxia for each Glu concentration. (C) Co-localization of GFAP (red), HIF-1a
(green) and GSH (blue) in astrocytes treated with 0, 0.1 and 1 mM Glu under normoxia or severe hypoxia (n53).

HIF-1 protection in astrocytes
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Recently, HIF-1 is being focused on as a potential target

for stroke therapy as it appears to have many beneficial roles

in the ischaemic brain (Baranova et al., 2007). Although HIF-1

has been shown to have a protective effect specifically in

astrocytes in neurological diseases such as Alzheimer’s disease

(Schubert et al., 2009), few studies have been done to

investigate the effect of HIF-1a expression on astrocytes

during stroke.

Given the increase in Glu in the ischaemic brain and the

scavenging function of astrocytes on Glu, we examined

the effects of Glu on the viability and morphology of

astrocytes exposed to hypoxia. Compared with neurons,

astrocytes are very resistant to hypoxia due to several factors.

First, astrocytes have large glycogen stores (Phelps, 1972)

that can be metabolized to glucose and lactate and supply

energy during ischaemia and glucose deprivation (Swanson

Figure 5 GSH inhibition reduces HIF-1a expression
(A) Representative immunofluorescence images demonstrating the effect of BSO on HIF-1a (green) expression and astrocyte
morphology. Astrocytes were pre-treated with 5 mM BSO followed by 1 mM Glu with exposure to SH (severe hypoxia) and compared
with astrocytes treated with 0 and 1 mM Glu under severe hypoxia only. HIF-1a intensity was measured and normalized to the
control. *P,0.05 versus 0 mM Glu under normoxia, #P,0.05 versus 1 mM Glu under severe hypoxia. (B) Immunoblotting showing
HIF-1a protein levels. Equalization of protein loading was determined using b-actin as the housekeeping protein. Quantitative results
for Western blot data. *P,0.05 versus 0 mM Glu under normoxia. (n53).

Table 2 Effect of BSO on HIF-1a-induced protection of astrocytes
Results were presented as means¡S.D. (n53). N, normoxia; SH, severe hypoxia. *P,0.05 versus severe hypoxia. #P,0.05 versus
severe hypoxia 1 mM.

Cell viability (%)

Glu concentration Treatment Texture analysis LDH assay MTT assay

0 mM SH 1.10¡0.13 100 100
SH+BSO 0.59¡0.18* 63.70¡3.29* 57.36¡4.69*

1 mM SH 0.96¡0.13* 96.14¡1.17 97.06¡2.37
SH+BSO 0.54¡0.17*# 60.68¡2.79*# 54.35¡5.26*#
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and Choi, 1993). Secondly, astrocytes have a low energy

demand, unlike neurons, which have a high density of ion

channels and require more ATP to maintain ionic gradients.

Thus ionic deregulation occurs slowly in astrocytes (Silver

et al., 1997). Thirdly, astrocytes have a higher level of GSH, an

important antioxidant, than neurons and provide GSH or

substrates for GSH synthesis to neurons (Makar et al., 1994,

Chen and Swanson 2003). In our experiments, astrocytes were

exposed to severe hypoxia (0.1% O2) because a milder hypoxic

exposure (1% O2) was not sufficient to cause any significant

changes in HIF-1a expression (data not shown). As the results

demonstrated, Glu caused a concentration-dependent change

in astrocyte morphology, which resembled a more diffuse-like

structure from a fibrous one, under normoxia. This was

correlated with a decrease in cell viability determined by LDH

and MTT assays. Interestingly, when the astrocytes were

treated with the same Glu concentrations under severe

hypoxia there was a recovery in cell morphology and cell

viability. Our observation is consistent with a previous study

that demonstrated that pre-treatment with hypoxia reduced

astrocyte damage by 45–55% (Chen et al., 2000).

One of the remarkable observations in our study is that

increased GSH is not sufficient to protect astrocytes from

damage induced by Glu under normoxia. As shown in

Figures 4(A) and 4(B), Glu at 1 mM significantly elevated

the GSH level in astrocyte under normoxia and induced

significant cell damage detected by cellular texture and

viability (Figure 1). In contrast, under hypoxic conditions

the increase of GSH was accompanied by improved cellular

texture and astrocyte viability (Figures 1 and 4). This

protective effect provided in the hypoxic conditions is largely

ascribed to the expression of HIF-1, since inhibiting HIF-1

abolished the protection (Figure 3 and Table 1). Furthermore,

stabilizing HIF-1a expression under normoxia with cobalt

chloride appeared to have an even more significant effect in

the recovery of cell morphology (Supplementary Figure S1B

available at http://www.asnneuro.org/an/004/an004e090add.

htm). Taken together, these findings strongly support that the

activation of HIF-1 is responsible for promoting the astrocytic

survival and protection against Glu toxicity under hypoxia.

Many factors may contribute to HIF-1-mediated protection

in hypoxic astrocytes. First, HIF-1 up-regulates EPO (Semenza

et al., 1997), which provides cellular protection under

different stresses. Many studies have examined the effect

of EPO on astrocytes, since they are the main source of EPO in

the brain. For example, EPO has been shown to protect

astrocytes from damage in response to oxidative stress (Liu

et al., 2006) and other agents that induce apoptosis

(Diaz et al., 2005). Secondly, HIF-1 leads to the induction of

VEGF in astrocytes (Sinor et al., 1998). VEGF has been shown

to play an important role in cellular protection in hypoxic

preconditioning (Wick et al., 2002) by promoting angiogen-

esis (Jin et al., 2000). A study by Mani et al. (2005) has

revealed that exogenous VEGF induces astrocyte proliferation.

In addition, HIF-1 may promote the production of adenosine

that offers neuroprotective properties (Heurteaux et al.,

1995; Wardas 2002; Lin et al., 2008). Adenosine binds to the

presynaptic A1 receptor and may lead to a decrease in Ca2+

influx. This further decreases the release of Glu and excitation

of the NMDA (N-methyl-D-aspartate) receptors, thus pre-

venting cellular damage caused by the subsequent increases

in Ca2+ influx (Monopoli et al., 1998; Wardas 2002). A study

by Batti et al. (2010) has shown that the stabilization of HIF-

1a through prolyl hydroxylase inhibition protected against

Glu-induced damage in the hippocampus of the rat ischaemic

brain mainly through adenosine accumulation in response to

hypoxia. A review article by Vangeison and Rempe (2009)

clearly describes how hypoxia and HIF-1 can regulate various

proteins, including connexin 43, CD73 and the ENT-1

(equilibrative nucleoside transporter 1), which ultimately

leads to enhanced adenosine levels. Of these, both CD73 and

ENT-1 have been shown to be regulated by HIF-1 in intestinal

epithelia (Synnestvedt el al. 2002) and endothelial cells

(Eltzschig et al., 2005) respectively. CD73 and ENT-1 are

expressed in astrocytes (Vangeison and Rempe 2009);

therefore it is possible that HIF-1 can regulate their activity

and increase adenosine in astrocytes. In fact, it has been

shown that adenosine has a direct protective effect on rat

primary astrocytes by reducing death induced by glucose

deprivation (Shin et al., 2002) and in reducing damage in

human astroglioma D384 cells following oxygen deprivation

through the preservation of ATP levels (Bjorklund et al.,

2008).

Figure 6 Schematic diagram of GSH–HIF-1 cross-talk in promoting cell
survival during hypoxia
Hypoxia leads to HIF-1 stabilization which subsequently activates the
expression of various pro-survival genes. These include EPO, VEGF, HSPs, HO-
1 and proteins that increase glucose metabolism such as glucose transporters
and glycolytic enzymes. Genes such as those of glucose metabolism,
HSPs and HO-1 may increase the level of GSH causing it to exert its anti-
oxidant effect and promote survival. In addition, the reducing environment
created by GSH can in turn contribute to HIF-1 stabilization.

HIF-1 protection in astrocytes

E 2012 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

239

http://www-asnneuro.org/an/004/an004e090add.htm
http://www-asnneuro.org/an/004/an004e090add.htm


The results presented in this paper clearly demonstrate that

GSH increases the HIF-1a level in astrocytes exposed to

hypoxia. As shown in Figure 4, there was an increase in GSH

following the 3 h Glu and severe hypoxia treatment. In

addition, BSO, which inhibits GSH synthesis, decreased HIF-1a

expression. Our results are consistent with previous studies

that have shown that altering redox status can effect HIF-1a

expression in other types of cells. Inhibition of GSH synthesis

by BSO reduced HIF-1a expression in lung epithelial cells

(Haddad and Land, 2000) and in hepatic cells (Jin et al., 2011).

Treatment with N-acetylcysteine, the GSH precursor,

increased HIF-1a expression in lung epithelial cells (Haddad

et al., 2000) and in hepatic cells (Sommani et al 2007;

Jin et al., 2011). Our previous results have also demonstrated

that HIF-1a stability favours a reducing environment in

neurons (Guo et al., 2008). Recently, Tajima et al. (2009)

showed that the induction of HIF under hypoxia is regulated

by the redox state of GSH in HSC-2 (human oral squamous

cells). They suggest that GSH can regulate the activation of

HIF by directly binding to the thiol groups of regulatory

cellular proteins. Since HIF-1a is sensitive to redox status and

can be degraded by increased ROS (Liu et al., 2004; Wellman

et al., 2004), it is reasonable to consider that the mechanism

by which GSH increases HIF-1a is through the clearance of

excessive ROS and by promoting a suitable reducing

environment that prolongs its stabilization. Our immunoblot

results showed that, under normoxia, there was an increase in

HIF-1a levels when astrocytes were treated with 1 mM Glu.

Even though this increase was not significant, it did correlate

with increased GSH levels. It seems as though GSH is able

to stabilize HIF-1a and reduce its degradation when it is

normally expressed during hypoxia. However, during nor-

moxia, the oxygen levels are sufficient to maintain prolyl

hydroxylase activity and target HIF-1a for ubiquitination.

Meanwhile, HIF-1 may increase the level of GSH in hypoxic

astrocytes, as shown in our results. Others have also reported

that HIF-1 is able to maintain GSH levels in brains of rats

exposed to hypoxia (Shrivastava et al, 2008). In addition,

previous studies have shown that HIF-1 can protect

astrocytes from ROS-induced injury (Chu et al., 2010) and

that GSH depletion induces astrocytic death in response to

ROS (Im et al., 2006). All these results indicate that

maintaining GSH levels and reducing ROS toxicity is part of

HIF-1-mediated neuroprotection. Based on our results and

others, we postulate the GSH–HIF-1 crosstalk in hypoxic

astrocytes (Figure 6). Hypoxia induces accumulation of HIF-1,

which subsequently switches on the expression of genes that

promote cell survival such as glucose transporters and

glycolytic enzymes, EPO, VEGF, HSPs (heat-shock proteins)

(Baird et al., 2006), HO-1 (haem oxygenase 1) (Shrivastava

et al., 2008), etc. Some of the genes such as EPO and VEGF

provide direct cell protection against hypoxic stress. Others,

such as those of glucose metabolism, HSPs and HO-1, may

increase the level of GSH, contributing to HIF-1 stabilization.

In conclusion, there are still large gaps that exist in our

understanding of how astrocytes are affected during stroke.

Given that the release of the Glu is considered to be the

leading cause of brain damage following stroke, we

determined the effect of HIF-1a expression and stabilization

on how astrocytes respond to Glu toxicity during stroke. Our

study has shown that HIF-1a expression protects astrocytes

from Glu-induced damage. We also provide evidence that

GSH plays a role in HIF-1a stabilization and promotes its

protective effect. Taking this fact into consideration will lead

to a better understanding of the protective mechanisms of

astrocytes and provide a more effective approach not only to

stroke therapy but also other pathological conditions that

cause, or are exacerbated by, excitotoxicity.
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