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Effective connectivity refers to the influence one neural system exerts on another and corresponds to the parameter of a model that
tries to explain the observed dependencies. In this sense, effective connectivity corresponds to the intuitive notion of coupling
or directed causal influence. Traditional measures to quantify the effective connectivity include model-based methods, such
as dynamic causal modeling (DCM), Granger causality (GC), and information-theoretic methods. Directed information (DI)
has been a recently proposed information-theoretic measure that captures the causality between two time series. Compared to
traditional causality detection methods based on linear models, directed information is a model-free measure and can detect both
linear and nonlinear causality relationships. However, the effectiveness of using DI for capturing the causality in different models
and neurophysiological data has not been thoroughly illustrated to date. In addition, the advantage of DI compared to model-
based measures, especially those used to implement Granger causality, has not been fully investigated. In this paper, we address
these issues by evaluating the performance of directed information on both simulated data sets and electroencephalogram (EEG)
data to illustrate its effectiveness for quantifying the effective connectivity in the brain.

1. Introduction

Neuroimaging technologies such as the electroencephalo-
gram (EEG) make it possible to record brain activity with
high temporal resolution and accuracy. However, current
neuroimaging modalities display only local neural activity
rather than large-scale interactions between different parts
of the brain. Assessment of the large-scale interdependence
between these recordings can provide a better understanding
of the functioning of neural systems [1, 2]. Three kinds
of brain connectivity are defined to describe such inter-
actions between recordings: anatomical connectivity, func-
tional connectivity, and effective connectivity [2]. Anatom-
ical connectivity is the set of physical or structural con-
nections linking neuronal units at a given time and can be
obtained from measurements of the diffusion tensor [3, 4].
Functional connectivity captures the statistical dependence
between scattered and often spatially remote neuronal units
by measuring their correlations in either time or frequency
domain. Effective connectivity describes how one neural

system affects another [2, 4, 5], which can provide infor-
mation about both the magnitude and the direction of the
interaction.

The main approaches used to quantify the effective con-
nectivity between two time series are model-based measures
and information-theoretic measures [6]. Granger-causality-
based methods and dynamic causal modeling [7] are two
widely used model-based measures. Granger causality is a
widely used measure to describe the causality between two
time series. It defines a stochastic process X causing another
process Y if the prediction of Y at the current time point,
Yn, is improved when taking into account the past samples
of X. This approach is appealing but gives rise to many
questions on how to apply this definition to real data [8].
Granger causality has been mostly applied within a linear
prediction framework using a multivariate autoregressive
(MVAR) model yielding methods such as directed transfer
function (DTF), partial directed coherence (PDC), and
directed partial correlation [9–12]. For example, Hesse et al.
applied time-varying Granger causality to EEG data and
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found that conflict situation generates directional interac-
tions from posterior to anterior cortical sites [10]. Kamiński
et al. applied DTF to EEG recordings of human brain during
stage 2 sleep and located the main source of causal influence
[11]. Schelter et al. employed PDC to EEG recordings from a
patient suffering from essential tremor [13]. The extensions
of Granger-causality-based methods, such as kernel Granger
causality, generalized PDC (gPDC), and extended PDC
(ePDC), have also found numerous applications in neuro-
science [14–16]. However, Granger causality-based methods,
especially those developed from MVAR models, are limited
to capturing linear relations or require a priori knowledge
about the underlying signal models [17]. These approaches
may be misleading when applied to signals that are known
to have nonlinear dependencies, such as EEG data [18].
DCM, on the other hand, can quantify nonlinear interactions
by assuming a bilinear state space model. However, DCM
requires a priori knowledge about the input to the system
[7, 19] and is limited to a network with small size [4]. Thus,
a model-free measure detecting both linear and nonlinear
relationships is desired.

Information theoretic tools [20–22], such as transfer
entropy [20], address the issue of model dependency and
have found numerous applications in neuroscience [17,
23, 24]. “Transfer entropy” (TE) proposed by Schreiber
computes causality as the deviation of the observed data from
the generalized Markov condition and is defined as [20]

TE(X −→ Y)

=
∑

yn+1,yn−l+1:n,xn−m+1:n

p
(
yn+1yn−l+1:nxn−m+1:n

)

× log
p
(
yn+1 | yn−l+1:nxn−m+1:n

)

p
(
yn+1 | yn−l+1:n

) ,

(1)

where m and l are the orders (memory) of the Markov
processes X and Y, respectively. p(yn+1yn−l+1:nxn−m+1:n) is
the joint probability of random variables (Yn+1,Yn−l+1:n,
Xn−m+1:n), where Yn−l+1:n = (Yn−l+1, . . . ,Yn) and Xn−m+1:n =
(Xn−m+1, . . . ,Xn). Sabesan et al. employed TE to identify the
direction of information flow for the intracranial EEG data
and suggested that transfer entropy plays an important role
in epilepsy research [25]. Wibral et al. applied TE to magne-
toencephalographic data to quantify the information flow in
cortical and cerebellar networks [26]. Vicente et al. extended
the definition of TE and measured the information flow from
X to Y with a general time delay of u, that is, replaced yn+1

in the above equation with yn+u, and showed that TE has
a better performance in detecting the effective connectivity
for nonlinear interactions and signals affected by volume
conduction such as real EEG/MEG recordings compared to
linear methods [19]. The performance of transfer entropy
depends on the estimation of transition probabilities, which
requires the selection of order or memory of the Markov
processes X and Y [25]. “Directed transinformation” (T)
introduced by Saito and Harashima [21] measures the
information flow from the current sample of one signal to
the future samples of another signal given the past samples
of both signals. Hinrichs et al. used this measure to analyze

causal interactions in event-related EEG-MEG experiments
[17]. However, this measure does not discriminate between
totally dependent and independent processes [27]. Recently,
directed information proposed by Marko [28] and later
reformalized by Massey, Kramer, Tatikonda, and others have
attracted attention for quantifying directional dependencies
[22, 28–31]. Directed information theory has been mostly
aimed towards the study of communication channels with
feedback. In recent years, new theoretical developments
motivated the use of this measure in quantifying causality
between two time series. In particular, Amblard and Michel
[31] recently showed how directed information and Granger
causality are equivalent for linear Gaussian processes and
proved key relationships between existing causality measures
and the directed information. Therefore, there has been a
growing interest in applying this measure to applications
in signal processing, neuroscience, and bioinformatics. For
example, it has been successfully used to infer genomic net-
works [32] and to quantify effective connectivity between
neural spike data in neuroscience [31, 33, 34]. In order to
detect both linear and nonlinear relationships, in this paper,
we propose directed information as a powerful measure to
quantify the effective connectivity in the brain.

The theoretical advantages of DI over existing measures
have been noted in literature [31, 33, 34]. However, until
now the benefits of using DI for capturing the effective con-
nectivity in the brain through neurophysiological data have
not been illustrated thoroughly and formally. In addition,
because of the relationship between Granger causality and
directed information, in this paper, we mainly focus on the
comparison between these two measures and investigate the
advantage of DI over Granger-causality-based model mea-
sures. Theoretical developments only proved the equivalence
between these two measures for the case that the time series
are distributed as Gaussian in a linear model. However, to
date, there has not been much work that compares the
actual performance of DI and Granger-causality-based mea-
sures for realistic signal models, including both linear and
nonlinear interactions. Moreover, most applications of DI
to real data have been limited to using either parametric
density models for the data or making assumptions about
the time dependencies such as assuming a first-order Markov
chain and have not considered the difficulties associated with
estimating DI from a finite sample size [35]. For complex
systems, the computational complexity and the bias of the
DI estimator increase with the length of the signal. The main
contribution of this paper is to address these issues by eval-
uating the performance of DI and Granger-causality-based
methods under a common framework without making any
assumptions about the data distribution. In this paper, we
first give a brief introduction to directed information and its
computation based on nonparametric estimation methods.
We propose a modified time-lagged directed information
measure that simplifies the DI computation by reducing the
order of the joint entropy terms while still quantifying the
causal dependencies. We then evaluate the performance of
DI for quantifying the effective connectivity for linear and
nonlinear autoregressive models, linear mixing models,
single source models, and dynamic chaotic oscillators in
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comparison to existing causality measures, in particular with
Granger causality. Finally, we apply our method to EEG data
to detect the effective connectivity in the brain.

2. Materials and Methods

2.1. Definitions and Notations. In this section, we will first
review some common notations and information-theoretic
definitions that will be used throughout this paper. Let
X = Xn = X1:n = (X1, . . . ,Xn) be a random process with
length n and p(x1, . . . , xn) = p(xn) = p(x1:n) be the joint
probability of random variables (X1, . . . ,Xn). DXn = Xn−1 =
(0,X1, . . . ,Xn−1) will be used to define the time-delayed
version of sequence Xn, which is also equivalent to X1:n−1.

Given two continuous random variables X and Y , the
mutual information (MI) is defined as follows (All integrals
in the paper are from−∞ to +∞ unless otherwise specified.):

I(X ;Y) =
∫ ∫

p
(
x, y

)
log

p
(
x, y

)

px(x)py
(
y
)dx dy, (2)

where p(x, y) is the joint probability density function (pdf)
of X and Y , and px(x), py(y) are the marginal pdfs of X
and Y , respectively. I(X ;Y) ≥ 0 with equality if and only
if X and Y are independent [36]. In information theory,
mutual information can be interpreted as the amount of
uncertainty about X that can be reduced by observation of Y ,
or the amount of information Y can provide about X , that is,
I(X ;Y) = H(X)−H(X | Y). Since I(X ;Y) ≥ 0,H(X | Y) ≤
H(X) with equality if and only if X and Y are independent;
that is, conditioning reduces entropy [36].

For any three random variables X , Y , and Z, if the condi-
tional distribution of Z depends only on Y and is condition-
ally independent of X , that is, p(z | y) = p(z | yx), then X ,
Y , and Z are said to form a Markov chain, denoted by X →
Y → Z. In this case, the conditional mutual information
between X and Y given Z defined as I(X ;Z | Y) = H(Z |
Y)−H(Z | X ,Y) is equal to 0 [36].

2.2. Directed Information. Mutual information can be ex-
tended to random vectors or sequences XN and YN as I(XN ;
YN ), where I(XN ;YN ) = H(XN )−H(XN | YN ) = H(YN )−
H(YN | XN ). However, mutual information is a symmetric
measure and does not reveal any directionality or causality
between two random sequences. Massey addressed this issue
by defining the directed information from a length N
sequence XN = (X1, . . . ,XN ) to YN = (Y1, . . . ,YN ) [22] as
follows:

DI
(
XN −→ YN

)
= H

(
YN
)
−H

(
YN
∣∣∣
∣∣∣XN

)

=
N∑

n=1

I
(
Xn;Yn | Yn−1),

(3)

where H(YN ||XN ) is the entropy of the sequence YN causally
conditioned on the sequence XN , and H(YN ||XN ) is defined
as

H
(
YN
∣∣∣
∣∣∣XN

)
=

N∑

n=1

H
(
Yn | Yn−1Xn

)
, (4)

which differs from H(YN | XN ) = ∑N
n=1 H(Yn | Yn−1XN ) in

that Xn replaces XN in each term on the right-hand side of
(4), that is, only the causal influence of the time series X up
to the current time sample n on the process Y is considered.

An alternative definition of the directed information is
proposed by Tatikonda in terms of Kullback-Leibler (KL)
divergence [30]. It shows that the difference between mutual
information and directed information is the introduction of
feedback in the definition of directed information [22, 30,
31]. Mutual information and directed information expressed
by KL divergence are written as

I
(
XN ;YN

)
= DKL

(
p
(
xN , yN

)∣∣∣
∣∣∣p
(
xN
)
p
(
yN
))

,

DI
(
XN −→ YN

)
= DKL

(
p
(
xN , yN

)∣∣∣
∣∣∣←−p
(
xN | yN

)
p
(
yN
))

,

(5)

where ←−p (xN | yN ) = ∏N
n=1p(xn | xn−1yn−1) is the feedback

factor influenced by the feedback in the system, that is, the
probability that the input X at current time is influenced by
the past values of both itself and Y. If there is no feedback,
then p(xn | xn−1yn−1) = p(xn | xn−1) and ←−p (xN | yN ) =
p(xN ). In fact, p(xN , yN ) = ←−p (xN | yN )�p(yN | xN ), where
�p(yN | xN ) = ∏N

n=1p(yn | xnyn−1) and is defined as the
feedforward factor affected by the memory of the system. If
the system is memoryless, then p(yn | xnyn−1) = p(yn | xn).

2.3. Directed Information versus Granger Causality. Granger
quantifies causality so that the time series XN causes YN if
the variance of the prediction error for Y at the present time
is reduced by including past measurements from X. Based
on Granger’s definition of causality, Geweke introduced the
Geweke’s indices to quantify the causal linear dependencies
under Gaussian assumptions [37]. Amblard and Michel
proved that the directed information rate and Geweke’s
indices are equal for Gaussian processes [31] as indicated by

DI∞
(
DXN−→YN

)
=1

2
log

ε2∞
(
YN | YN−1

)

ε2∞(YN | YN−1XN−1)
=FXN →YN ,

(6)

where DXN stands for the time-delayed sequence (0,X1,
. . . ,XN−1) with N being the length of the signal, DI∞(XN →
YN ) is the directed information rate; that is, DI∞(XN →
YN ) = limN→∞I(XN ;YN | YN−1), ε2∞(YN | YN−1) =
limN→∞ε2(YN | YN−1) is the asymptotic variance of the
prediction residue when predicting YN from the observa-
tion of YN−1, and FXN →YN refers to the linear feedback
measure from random processes XN to YN defined by
Geweke [37]. This equality shows that asymptotically the DI
rate is equivalent to the gain in information by predicting
Y using the past values of both Y and X compared to
only using the past samples of Y, which is similar to the
definition of Granger causality. Moreover, Amblard and
Michel proved the equality of directed information and
Granger’s approach for multivariate time series in the case
of Gaussian distributions [31].
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2.4. Computation of Directed Information. The definition of
DI for two length N sequences XN = (X1, . . . ,XN ) and YN =
(Y1, . . . ,YN ) can also be rewritten in terms of the total change
of joint entropy or mutual information along time as follows:

DI
(
XN −→ YN

)
=

N∑

n=1

I
(
Xn;Yn | Yn−1)

=
N∑

n=1

[
H
(
XnYn−1)−H(XnYn)

]
+ H

(
YN
)

=
N∑

n=1

[
I(Xn;Yn)− I

(
Xn;Yn−1)].

(7)

From the above equations, we can observe that the com-
putation of DI requires the estimation of joint probabilities
of high-dimensional random variables over time. If Xn and
Yn are normally distributed, the joint entropy can be esti-
mated based on the covariance matrices. However, for EEG
data, the distribution is usually not Gaussian. The nonpara-
metric entropy and mutual information estimators, such as
plug-in estimator, m-spacing estimator, and Kozachenko and
Leonenko (KL) estimator, have been extensively addressed
in literature [38, 39]. In this paper, directed information
estimation based on mutual information is used to estimate
DI directly from EEG data by using adaptive partitioning
method discussed in [39]. However, when the length of the
signal increases, the computational complexity, the bias, and
the variance of these estimators increase immensely with
limited sample sizes. Methods that can reduce the dimension
and simplify the computation of DI are needed.

In order to simplify the estimation of DI, we first clarify
the connection between the definition of DI used in informa-
tion theory and the definition as it applies to physical time
series. In a physical recording system, if X starts to influence
Y after p1 time points or with a delay of p1 samples, we need
to record at least N + p1 time points to obtain N points of the
time sequence Y that have been affected by X. The directed
information rate from time series XN+p1 to YN+p1 can be
defined as [29]. We have

DI∞
(
XN+p1 −→ YN+p1

)

= lim
N+p1→∞

1
N + p1

N+p1∑

n=1

I
(
Xn;Yn | Yn−1)

(8)

= lim
N+p1→∞

I
(
XN+p1 ;YN+p1 | YN+p1−1

)
(9)

= lim
N+p1→∞

[
H
(
YN+p1 | YN+p1−1

)

−H
(
YN+p1 | XN+p1YN+p1−1

)] (10)

= lim
N+p1→∞

[
H
(
YN+p1 | Yp1+1:N+p1−1

)

−H
(
YN+p1 | XN+p1Yp1+1:N+p1−1

)] (11)

= lim
N+p1→∞

[
H
(
YN+p1 | Yp1+1:N+p1−1

)

−H
(
YN+p1 | X1:NYp1+1:N+p1−1

)] (12)

= lim
N+p1→∞

I
(
X1:N ;YN+p1 | Yp1+1:N+p1−1

)
(13)

= lim
N→∞

1
N

N∑

n=1

I
(
Xn;Yn+p1 | Yp1+1:n+p1−1

)
(14)

= DI∞
(
X1:N −→ Yp1+1:p1+N

)
, (15)

where (11) comes from the fact that Y1:p1 is independent of
YN+p1 , and (12) is derived using the fact that XN+1:N+p1 has no
effect on YN+p1 because of the time delay p1 between these
two time series. For two physical recordings X and Y with
length N + p1 and a lag of p1, the last equation shows that DI
rate for these two time series is equivalent to DI rate for two
random processes with length N that are not synchronized in
time. In fact, Yp1+1:p1+N may be indexed as Y1:N when using
the information theoretic indexing, which indexes the signal
not according to the physical time point but based on when
the receiver receives its first piece of information. Therefore,
directed information rate computed by using physical time
indices is equivalent to the directed information rate using
information theoretic indices for two systems that interact
through a time delay. Moreover, when the length of the signal
is long enough, the directed information value using both
indices will be equivalent.

Once the definition of directed information is extended
from random vectors to two physical time series, we propose
a modified time-lagged DI to simplify the computation of
DI, which is an extension of time-lagged DI proposed for
every two samples of XN and YN in [40] to general signal
models. As we mentioned before, as the lengthN of the signal
increases, the computational complexity, the bias, and the
variance of estimating DI increase immensely with limited
sample sizes. In addition, the directed information defined
for the physical system is actually a DI with a lag of p1

samples over a time window with length N . Therefore, an
intuitive way to simplify the computation is to apply DI with
lag p1 over a small window. We first give the definition of
time-lagged DI for two time series XN and YN with length N
at the nth time sample for a block of two time samples with
a time delay of p1 (n > p1):

DIn
(
Xn−p1Xn−p1+1 −→ YnYn+1

)

= I
(
Xn−p1 ;Yn

)
+ I
(
Xn−p1Xn−p1+1;Yn+1 | Yn

)

= H
(
Xn−p1

)
+ H

(
Xn−p1Xn−p1+1Yn

)
+ H(YnYn+1)

−H
(
Xn−p1Yn

)
−H

(
Xn−p1Xn−p1+1YnYn+1

)
,

(16)

where n = p1 + 1, . . . ,N − 1, p1 is the time lag between the
two time series, and N is the length of the whole time series.
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Therefore, the total directed information over the whole time
series in terms of the time-lagged DI can be simplified as [40]
(the details of the derivation are given in [40]),

DI
(
XN −→ YN

)

=
p1∑

n=1

I
(
Xn;Yn | Yn−1) +

N − p1

2
(
N − p1 − 1

)

×
N−1∑

n=p1+1

DIn
(
Xn−p1Xn−p1+1 −→ YnYn+1

)
.

(17)

The time-lagged DI is equivalent to the original defini-
tion of DI when p1 is equal to the actual time delay of the
system, the signals X and Y follow a single-order model, and
Yn only depends on one past sample of itself, Yn−1. However,
these assumptions are not always true. Therefore, we propose
the modified time-lagged DI to address these issues.

Consider a general Markov model, where XN and YN are
time series with a lag of p1 and p(Yn | X1:n−p1 ,Yp1+1:n−1) =
p(Yn | Xn−p2:n−p1 ,Yn−p3:n−1), where p2 ≥ p1, p3 ≥ 1, p2 is the
order of the process X, and p3 is the order of the process Y.
In this model, it is assumed that X starts to influence Y with a
delay of p1 samples, and the order of the model is p2− p1 +1.
When the length of the signal N is large enough, then (15)
can be further simplified as

DI
(
XN −→ YN

)
= DI

(
X1:N−p1 −→ Yp1+1:N

)

=
N∑

n=p1+1

I
(
X1:n−p1 ,Yn | Yp1+1:n−1

)

=
N∑

n=p1+1

[
H
(
Yn | Yp1+1:n−1

)

−H
(
Yn | X1:n−p1Yp1+1:n−1

)]
.

(18)

Since p(Yn | X1:n−p1 ,Yp1+1:n−1) = p(Yn | Xn−p2:n−p1 ,
Yn−p3:n−1), X1:n−p2−1Yp1+1:n−p3−1 → Xn−p2:n−p1 ,Yn−p3:n−1 →
Yn follows a Markov chain. According to Markov chain
property,

I
(
X1:n−p2−1Y1:n−p3−1;Yn | Xn−p2:n−p1Yn−p3:n−1

)

= H
(
Yn | Xn−p2:n−p1Yn−p3:n−1

)

−H
(
Yn | X1:n−p1Yp1+1:n−1

)

= 0,

(19)

which means H(Yn|Xn−p2:n−p1Yn−p3:n−1)=H(Yn|X1:n−p1Yp1+1:n−1) . There-
fore,

DI
(
XN −→ YN

)
=

N∑

n=p1+1

[
H
(
Yn | Yp1+1:n−1

)

−H
(
Yn | X1:n−p1Yp1+1:n−1

)]

=
N∑

n=p1+1

[
H
(
Yn | Yp1+1:n−1

)

−H
(
Yn | Xn−p2:n−p1Yn−p3:n−1

)]

≤
N∑

n=p1+1

[
H
(
Yn | Yn−p3:n−1

)

−H
(
Yn | Xn−p2:n−p1Yn−p3:n−1

)]

=
N∑

n=p1+1

I
(
Xn−p2:n−p1 ;Yn | Yn−p3:n−1

)
,

(20)

where the second equality is using the Markov property,
and the inequality comes from the fact that conditioning
reduces entropy. For a general Markov model, where XN and
YN are stationary statistical processes without instantaneous
interaction, such as p(Yn | X1:n−p1 ,Yp1+1:n−1) = p(Yn |
Xn−p2:n−p1 ,Yn−p3:n−1), the modified time-lagged directed
information (MDI) is defined as the upper bound of DI:

MDI
(
XN −→ YN

)

=
N∑

n=p+1

I
(
Xn−p · · ·Xn−1;Yn | Yn−p · · ·Yn−1

)
,

(21)

where we let p1 = 1, p = max(p2, p3) to reduce the number
of parameters. Note that letting p1 = 1 does not lose any
of the information flow compared to using the actual time
delay, p1 > 1. The only drawback of letting p1 = 1 is that the
computational complexity of estimating the joint entropies
increases since the length of the window to compute MDI
increases and the dimensionality increases. The main reason
why we let p1 = 1 is because estimating the actual value for
the delay accurately is not practical when the amount of data
is limited. In a lot of similar work such as in [19], different
values of p1 are tested to choose the best one which is not
computationally efficient either.

According to (20), modified time-lagged directed infor-
mation is the upper bound of directed information, that is,
MDI ≥ DI. Moreover, MDI is a more general extension of
time-lagged DI introduced in our previous work and has
two major advantages. First, MDI considers the influence
of multiple past samples of Y on the DI value. Second,
it takes into account models with multiple orders; that is,
Y is influenced by different time lags of X. The modified
time-lagged directed information extends the length of
the window from 2 to p, which is closer to the actual
information flow. When X and Y are normally distributed,
the computational complexity of the MDI is O(p3N) and
the computational complexity of the original definition of
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DI is O(N4) (using LU decomposition [41]). Therefore,
the computation of MDI is more efficient than that of the
original definition of DI.

2.5. Order Selection. For the implementation of MDI, we
need to determine the maximum order of the model p. Cri-
terions such as Akaike’s final prediction error (FPE) can be
used to determine the order of the signal model p. However,
this criterion is based on the assumption that the original
signal follows a linear AR model and may lead to false
estimation of the order when the underlying signal model
is nonlinear. Therefore, model-free order selection methods,
such as the embedding theorem [42], are needed. For the
simplification of computation or parameter estimation, we
are only interested in a limited number of variables that can
be used to describe the whole system. Suppose we have a
time series (X1, . . . ,Xn), and the time-delay vectors can be
reconstructed as (Xn,Xn−τ ,Xn−2τ , . . . ,Xn−(d−1)τ). Projecting
the original system to this lower-dimensional state space-
depends on the choice of d and τ, and the optimal embed-
ding dimension d is related to the order of the model p = d
[19]. A variety of measures such as mutual information can
be used to determine τ. For discrete time signals, usually
the best choice of τ is 1 [43]. To determine d, Cao criterion
based on the false nearest neighbor procedure [19] is used
to determine the local dimension. The underlying concept
of nearest neighbor is that if d is the embedding dimension
of a system, then any two points that stay close in the d-
dimensional reconstructed space are still close in the (d + 1)-
dimensional reconstructed space; otherwise, these two points
are false nearest neighbors [19, 43]. The choice of d, that is,
the model order p, is important for DI estimation. If d is too
small, we will lose some of the information flow from X to Y.
If it is too large, the computational complexity of MDI will be
very high, causing the bias and the variance of the estimators
to increase.

2.6. Normalization and Significance Test. Since DI(XN →
YN ) + DI(YN → XN ) = I(XN ;YN ) + DI(XN → YN ||DXN )
and DI(XN → YN ) = DI(DXN → YN ) + DI(XN →
YN ||DXN ) [29], then

DI
(
XN −→ YN

)
+ DI

(
YN −→ XN

)

= DI
(
DXN −→ YN

)
+ DI

(
XN −→ YN

∣∣∣
∣∣∣DXN

)

+ DI
(
DYN −→ XN

)
+ DI

(
YN −→ XN

∣∣∣
∣∣∣DYN

)
.

(22)

Therefore,

DI
(
DXN −→ YN

)
+ DI

(
DYN −→ XN

)

+ DI
(
YN −→ XN

∣∣∣
∣∣∣DYN

)
= I
(
XN ;YN

)
,

(23)

where DI(YN → XN ||DYN ) = DI(XN → YN ||DXN )
indicating the instantaneous information exchange between
processes X and Y. For a physical system without instan-
taneous causality, that is, I(XN → YN ||DXN ) = 0, then

DI(XN → YN ) + DI(YN → XN ) = I(XN ;YN ) and 0 ≤
DI(XN → YN ) ≤ I(XN ;YN ) < ∞. A normalized version of
DI, which maps DI to the [0, 1] range, is used for comparing
different interactions,

ρDI

(
XN −→ YN

)
= DI

(
XN −→ YN

)

I(XN ;YN )

= DI
(
XN −→ YN

)

DI(XN −→ YN ) + DI(YN −→ XN )
,

(24)

where for a unidirectional system X → Y with no
instantaneous interaction between X and Y, ρDI(XN →
YN ) = 1 and ρDI(YN → XN ) = 0; otherwise, if there is
no causal relationship between the two signals, the values of
ρDI(XN → YN ) and ρDI(YN → XN ) are very close to each
other.

In order to test the null hypothesis of noncausality, the
causal structure between X and Y is destroyed. For each
process with multiple trials, we shuffle the order of the trials
of the time series X 100 times to generate new observations
X∗m, m = 1, . . . , 100. In this way, the causality between X
and Y for each trial is destroyed, and the estimated joint
probability changes [44]. We compute the DI for each pair
of data (X∗m and Y). A threshold is obtained at a α = 0.05
significance level such that 95% of the directed information
for randomized pairs of data (DI(X∗m → Y)) is less than
this threshold. If the DI value of the original pairs of data is
larger than this threshold, then it indicates there is significant
information flow from X to Y.

2.7. Simulated Data. To test the validity and to evaluate the
performance of DI for quantifying the effective connectivity,
we generate five different simulations. We use these simula-
tion models to compare DI with classical Granger causality
(GC) for quantifying causality of both linear and nonlinear
autoregressive models, linear mixing models, single source
models, and Lorenz systems. The Matlab toolbox developed
by Seth is used to compute the GC value in the time domain.
GC is also normalized to the [0, 1] range for comparison
purposes [45]. The performance of GC depends on the
length of the signal, whereas the performance of DI relies
on the number of realizations of time series. Therefore,
for each simulation, the length of the generated signal for
implementing GC is equal to the number of realizations for
DI. The significance of DI values are evaluated by shuffling
along the trials, while the significance of GC values are
evaluated by shuffling along the time series.

Example 1 (Multiple Order Bivariate Linear Autoregressive
Model). In this example, we evaluate the performance of DI
on a general bivariate linear model,

X(n) =
p4∑

i=1

αiX(n− i) + σxηx(n− 1), (25)

Y(n) =
p3∑

i=1

βiY(n− i) + γ
p2∑

i=p1

X(n− i) + σyηy(n− 1). (26)
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In this bivariate AR model with a delay p1 and order p2−
p1 + 1, γ controls the coupling strength between the signals
X and Y. The initial values of X and Y and the noise ηx and
ηy are all generated from a Gaussian distribution with mean
0 and standard deviation 1. All coefficients (αi, βi, σx, and σy)
are generated from Gaussian distributions with zero mean
and unit variance with unstable systems being discarded.
To evaluate the performance of directed information, we
generate the bivariate model 4096 times with the same
parameters but different initial values. γ is varied from 0.1 to
1 with a step size of 0.1, p1 = 1 and p2 = p3 = p4 = 5; that is,
Y is influenced by X through multiple time lags. Without loss
of generality, we repeat the simulation 10 times, and average
DI(XN → YN ) and DI(YN → XN ) over 10 simulations
for different γ values. For each simulation, the threshold
is evaluated by trial shuffling, and the average threshold is
obtained. For GC, the length of the generated signal is chosen
as 4096, which is the same as the number of realizations for
DI. The GC values in two directions and the corresponding
thresholds at the 5% significance level are obtained.

Example 2 (Multiple-Order Bivariate Nonlinear Autoregres-
sive Model). In this example, we evaluate the performance
of DI on a general bivariate nonlinear model

X(n) =
p4∑

i=1

αiX(n− i) + σxηx(n− 1), (27)

Y(n) =
p3∑

i=1

βiY(n− i)

+ γ
p2∑

i=p1

1
1 + exp(b1 + b2X(n− i))

+ σyηy(n− 1).

(28)

For this bivariate nonlinear AR model, the setting for
the coupling strength γ and the generation of X, Y, ηx,
ηy , αi, βi, σx, σy , p1, p2, p3, and p4 are the same as in
Example 1. Y and X interact nonlinearly through the sigmoid
function. Parameters of this function b1 and b2 control the
threshold level and slope of the sigmoidal curve, respectively.
We set b1 = 0 and b2 = 50. DI value and its threshold are
averaged over 10 simulations for different γ. The GC values
in two directions and the corresponding thresholds at 5%
significance level are obtained.

Example 3 (Linear Mixing Model). In this example, we test
the effectiveness of DI in inferring effective connectivity
when there is linear mixing between these two signals.
Linear instantaneous mixing is known to exist in human
noninvasive electrophysiological measurements such as EEG
or MEG. Instantaneous mixing from coupled signals onto
sensor signals by the measurement process degrades signal
asymmetry [19]. Therefore, it is hard to detect the causality
between the two signals. For unidirectional coupled signal

pairs X → Y described in (25) to (28), we create two linear
mixtures Xε and Yε as follows:

Xε(n) = (1− ε)X(n) + εY(n),

Yε(n) = εX(n) + (1− ε)Y(n),
(29)

where ε controls the amount of linear mixing and is varied
from 0.05 to 0.45 with a step size of 0.05, and γ is fixed to 0.8
for both models. When ε = 0.5, the two signals are identical.
Both DI and GC are used to quantify the information flow
between Xε and Yε in the two directions.

Example 4 (Single-Source Model). A single source is usually
observed on different signals (channels) with individual
channel noises [19], which is common in EEG signals due to
the effects of volume conduction. In this case, false positive
detection of effective connectivity occurs for methods such
as Granger causality [46], which means that GC has low
specificity. We generate two signals Xε and Yε as follows
to test the specificity of DI when there is no significant
information flow from one signal to the other signal. We have

S(n) =
p4∑

i=1

αiS(n− i) + ηS(n),

Xε(n) = S(n),

Yε(n) = (1− ε)S(n) + εηY (n),

(30)

where S(n) is the common source generated by an autore-
gressive model, order p4 = 5, αi and ηS(n) are generated from
a Gaussian distribution with mean 0 and standard deviation
1. S(n) is measured on both sensors Xε and Yε. Yε is further
corrupted by independent Gaussian noise ηY (n) with 0 mean
and unit variance. ε controls the signal to noise ratio (SNR)
in Yε and is varied from 0.1 to 0.9 with a step size of 0.1,
corresponding to SNR in the range of −19 ∼ 19 dB.

Example 5 (Nonlinear Dynamic System). In this example, we
illustrate the applicability of DI to coupled Lorenz oscillators
with a certain delay. The Lorenz oscillator is a three-
dimensional dynamic system that exhibits chaotic behavior.
Synchronization of two Lorenz systems has been widely
investigated for the analysis of EEG data because the dynamic
interactions related to the behavior of the cortex can be
exemplified by these coupled systems [47]. In the following,
we examined two asymmetric coupled Lorenz oscillators
(X1,Y1,Z1) and (X2,Y2,Z2) as follows [48]:

Ẋ1(t) = −A(X1(t)− Y1(t)),

Ẏ1(t) = RX1(t)− Y1(t)− X1(t)Z1(t),

Ż1(t) = X1(t)Y1(t)− BZ1(t),

Ẋ2(t) = −A(X2(t)− Y2(t)) + βX1

(
t − tp

)
,

Ẏ2(t) = RX2(t)− Y2(t)− X2(t)Z2(t),

Ż2(t) = X2(t)Y2(t)− BZ2(t),

(31)
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where each equation is a first-order differential equation.
A = 10, R = 28, B = 8/3, and tp = 0.02 represents the
time delay between two coupled components of these two
oscillators, that is, X1 and X2. β corresponds to the coupling
strength and is varied from 0.1 to 1 with a step size of 0.2.
The differential equations are numerically integrated with a
time step of 0.01 using Euler’s method [49], corresponding
to a delay of 2 time samples between X1 and X2. The initial
conditions of these six components are randomly generated
from a Gaussian distribution with zero mean and unit
variance. We generate 100 samples, and the first 90 samples
are discarded to eliminate the initial transients. We compute
the information flow in two directions over 10 time points,
and the significance of the obtained DI value is verified by
trial shuffling.

2.8. Biological Data. In this paper, we examine EEG data
from ten undergraduates at Michigan State University drawn
from an ongoing study of relationships between the error-
related negativity (ERN) and individual differences (Partic-
ipants for the present analysis were drawn from samples
reported on in [50, 51]) such as worry and anxiety. ERN
is a brain potential response that occurs following per-
formance errors in a speeded reaction time task [52]. All
participants retained for analysis make at least six errors
for computation of stable ERNs, as in [53]. Participants
complete a letter version of the Eriksen Flanker task [52].
Stimuli are presented on a Pentium R Dual Core computer,
using Presentation software (Neurobehavioral systems, Inc.)
to control the presentation and timing of stimuli, the
determination of response accuracy, and the measurement of
reaction times. Continuous electroencephalographic activity
is recorded by 64 Ag-AgCl electrodes placed in accordance
with the 10/20 system. Electrodes are fitted in a BioSemi
(BioSemi, Amsterdam, The Netherlands) stretch-lycra cap.
All bioelectric signals are digitized at 512 Hz using ActiView
software (BioSemi). For each subject, EEG data are pre-
processed by the spherical spline current source density
(CSD) waveforms to sharpen event-related potential (ERP)
scalp topographies and eliminate volume conduction [54].
In addition, a bandpass filter is used to obtain signals in
the theta band. In this study we focus on 33 electrodes
corresponding to the frontal, central, and parietal regions of
the brain. For each pair of 33 electrodes X and Y for each
subject, the effective connectivity is quantified by computing
the modified time-lagged DI over 70 trials and a model order
of p in the theta band. The model order or the length of the
time window p is determined by the Cao Criterion. We also
apply Granger causality to the same data and compare its
performance with directed information.

Previous work indicates that there is increased synchro-
nization associated with ERN for the theta frequency band
(4–8 Hz) and ERN time window 25–75 ms after the response
for error responses (ERN) in the anterior cingulate cortex
(ACC), in particular between the lateral prefrontal cortex
(lPFC) and medial prefrontal cortex (mPFC) [55]. In this
paper, we wish to verify these existing findings using the
proposed DI measure and to further infer the directional
causality underlying these dependencies.

3. Results and Discussion

In this section, we first evaluate the effectiveness of directed
information on quantifying both linear and nonlinear causal
relationships through simulated data and compare the per-
formance of directed information with GC. We then apply
the directed information to real EEG data to reveal the pair-
wise information flow in the brain.

3.1. Simulated Data

Example 1 (Multiple-Order Bivariate Linear Autoregressive
Model). In this example, the DI value in two directions aver-
aged across 10 simulations with different γ is shown in Figure
1(a). The performance of GC is shown in Figure 1(b). The
estimated order of the model is p = 5, which is in accordance
with the simulation model. γ controls the coupling strength
between X and Y. We observe that DI(XN → YN ) is
significant for all values of γ. On the contrary, DI(YN →
XN ) is less than the threshold, which indicates the acceptance
of the null hypothesis that there is no significant causal
information flow from Y to X. Since GC uses a linear
autoregressive framework for quantifying causality; in this
example, GC detects the causality relationship between X
and Y successfully; that is, the information flow from X to Y
is significant for all γ while it is insignificant for the opposite
direction. It is also interesting to note that GC and DI exhibit
similar behavior across different values of γ, indicating the
equivalency of the two measures for linear Gaussian signal
models.

Example 2 (Multiple-Order Bivariate Nonlinear Autoregres-
sive Model). In this example, the performance of DI and
GC for the nonlinear autoregressive model in (27) and (28)
averaged across 10 simulations with different γ are evaluated
as shown in Figure 2. The estimated order of the model is 5.
We observe that when γ is less than 0.3, the coupling strength
between X and Y is weak and the DI value in both directions
is not significant. As γ increases, DI(XN → YN ) increases
and becomes significant. DI(YN → XN ) decreases with
increasing γ and is still less than the threshold as expected.
The results indicate increased unidirectional information
flow from X to Y with increasing γ and show that detecting
the information flow in nonlinear processes is more difficult
especially when the coupling strength is low. GC fails to
detect the information flow from X to Y for all γ. Since GC is
implemented in a linear framework, the estimated order and
the model itself do not match with the nonlinearity of the
signal. Therefore, it cannot detect nonlinear causality.

Example 3 (Linear Mixing Model). For this example, the
DI value and GC value averaged across 10 simulations with
changing linear mixing coefficient ε for both linear and
nonlinear AR models are shown in Figure 3. The estimated
order of the model is 5 as before. When ε = 0.5, the two
observed mixing signals are identical, and we expect to see
no significant information flow in the two directions. We
observe that, for the linear AR model, directed information
detects the causality between Xε and Yε when ε is smaller
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Figure 1: Application of directed information and Granger causality to bivariate linear autoregressive model. (a) Directed information with
different γ. (b) Granger causality with different γ.
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Figure 2: Application of directed information and Granger causality to bivariate nonlinear autoregressive model. (a) Directed information
with different γ. (b) Granger causality with different γ.

than 0.4. When ε is larger than 0.4, the causality between Xε
and Yε is hard to detect because of the strong mixing; that
is, Xε and Yε are almost identical, and the information flow
in both directions becomes insignificant. Compared to DI,
GC only detects the causality from Xε to Yε when the mixing
is weak (ε < 0.2), indicating that GC is more vulnerable

to linear mixing. It is probably due to the fact that GC is
sensitive to the mixture of signals, and the assumed signal
model does not match with the original signal [46]. For
the nonlinear AR model, DI fails to detect causality when
ε is larger than 0.1, which indicates that linear mixing of
nonlinear source models makes it harder to detect effective
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Figure 3: Application of directed information and Granger causality to linear mixing for both linear and nonlinear autoregressive models.
(a) Directed information with different ε for the linear mixing of linear AR model. (b) Granger causality with different ε for the linear
mixing of linear AR model. (c) Directed information with different ε for the linear mixing of nonlinear AR model. (d) Granger causality
with different ε for the linear mixing of nonlinear AR model.

connectivity compared to mixing of linear source models. On
the other hand, GC fails to detect any causality even when
ε = 0 since it cannot detect nonlinear interactions.

Example 4 (Single-Source Model). We use the single source
model to test the specificity of DI. The DI value and GC value
averaged across 100 simulations for changing ε for a single
source model are shown in Figure 4. The estimated order
of the model is 5 as before. In addition, the false positive

rate using both DI and Granger causality with increasing ε is
also calculated. We observe that the information flow in two
directions using DI is less than the threshold for all values
of ε, which indicates the acceptance of the null hypothesis
that there is no significant causal information flow from X
to Y or Y to X . Note that DI is normalized by the mutual
information. For a common source model, the instantaneous
information exchange between X and Y contributes mostly
to the mutual information between X and Y. Thus, according
to (23), DI(DXN → YN ) and DI(DYN → X) normalized by
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Figure 4: Application of directed information and Granger causality to single source model. (a) Directed information with different ε for
the single source model. (b) Granger causality with different ε for the single source model. (c) False positive rate for directed information
with different ε for the single source model. (d) False positive rate for Granger causality with different ε for the single source model.

mutual information are close to 0 and less than the threshold
from the randomized data pairs. The false positive rate of DI
is 0 for all ε. Therefore, DI is able to discriminate between
instantaneous mixing from actual causality and is very robust
to noise. For GC, when ε is small (<0.2) or large (>0.9), the
value of GC is less than or very close to the threshold in both
directions thus indicating that there is no causal information
flow between the two processes. However, GC fails to accept
the null hypothesis when ε is between 0.3 to 0.9 and detects a
nonexisting effective connectivity. GC reaches its maximum
value when ε = 0.5. This is due to the fact that GC is close to

0 when two processes X and Y are independent or identical,
that is, when ε = 1 and ε = 0. Based on the definition of
GC, the prediction of Y at the current time point will not
be improved by taking into account the past samples of X for
these processes [26]. Therefore, as ε increases from 0 to 0.5, X
becomes the most different from Y; therefore, it can provide
more new information about Y and the GC increases. As ε
increases from 0.5 to 1, X becomes independent of Y, and
the GC decreases. The false positive rate of GC is not equal
to 0 for all values of ε, which indicates that it has lower
specificity compared to DI. Therefore, GC is not robust to
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Figure 5: Application of directed information and Granger causality to two asymmetric coupled Lorenz oscillators. (a) Directed information
with different β. (b) Granger causality with different β.

the effect of a common source and may infer false positive
effective connectivity. This simulation indicates that DI is
more sensitive and discriminative about the information
flow patterns in the presence of volume conduction, which
means it is a more promising method to capture the effective
connectivity for real EEG data.

Example 5 (Nonlinear Dynamic System). In this example,
the DI values and GC values between X1 and X2 of two asym-
metric coupled Lorenz systems are computed with coupling
strength β being set from 0.1 to 1. The estimated order of the
model is 3. Though this is larger than the actual model order,
our method will not lose any information except for the
increased computational complexity. The results are shown
in Figure 5. The results show that DI values from X1 to X2

increase with the coupling strength β and are significant for
all values of β. In addition, there is no significant causal
information flow from X2 to X1. Therefore, DI can effectively
detect the causality in a nonlinear dynamic system. On the
contrary, GC cannot detect any significant information flow
for all β values. It is due to the fact that the model selected
for implementing GC is not consistent with the dynamic
characteristics of the system.

3.2. EEG Data. Previous work indicates that there is in-
creased information flow associated with ERN for the theta
frequency band (4–8 Hz) and ERN time window 25–75 ms
for error responses compared to correct responses in par-
ticular between mPFC and lPFC regions [55]. In addition,
Cavanagh et al. have shown that there is increased synchro-
nization for error trials between electrode pairs, such as FCz-
F5 and FCz-F6, compared to the synchrony between FCz-
CP3 and FCz-CP4 [56]. The DI and GC values for each pair

of electrodes averaged over 10 subjects are computed over
a time window of 53 time points (100 ms). The estimated
order of the model for each electrode pairs is 3. In order to
control the error rates for multiple hypothesis testing for all
pairs of electrodes, the method proposed by Genovese et al. is
used in this paper [57]. To implement this procedure, for two
electrodes with time series X and Y, we first shuffle the order
of the trials of X 100 times to generate new observations X∗m,
m = 1, . . . , 100. The P value of DI(X → Y) is obtained
by comparing it with DI values from randomized pairs of
data DI(X∗m → Y), m = 1, . . . , 100. We then obtain the
threshold Pr for all P values (33× 33× 10) by controlling
the FDR bound q as 0.05. For DI(X → Y), if the P value
is less than Pr , then the directed information flow from X
to Y is significant; otherwise, it is not significant. Electrode
pairs between which the information flow is significant in at
least one of the ten subjects are shown in Figure 6(b). We
also test the significance of Granger causality in the same
way. When the FDR is controlled at 0.05, the information
flow between electrode pairs is significant if the P-value
of DI or GC is less than 0.01. Electrode pairs that have
significant causality relationship using both measures are
shown in Figure 6. In Figures 6(a) and 6(c), each small
circle shows the directed information and Granger causality
from a particular electrode to other electrodes. In Figures
6(b) and 6(d), each small circle shows electrode pairs that
have significant causality relationship. The results indicate
that DI detects strong information flow from the frontal
region (e.g., F5 and F6) to the frontal-central region (e.g.,
FC2 and FCz) corresponding to the lateral prefrontal cortex
(lPFC) and medial prefrontal cortex (mPFC). In addition,
the central-parietal region (e.g., CPz, CP1, and CP2) around
the midline, corresponding to the motor cortex, has strong
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Figure 6: Application of directed information and Granger causality to EEG data. (a) Pairwise directed information. (b) Electrode pairs
with significant DI values. (c) Pairwise Granger causality. (d) Electrode pairs with significant GC values. For (b) and (d), green dots indicate
the location of the particular node, and white regions correspond to significant information flow from that particular electrode to other
electrodes.

influence on the central and frontal regions (e.g., FCz and
F6) since this is a speeded response task involving the motor
cortex. The details of the significant electrode interactions
are shown in Table 1. These results are aligned with the
previous work in [56], which shows that error processing
is controlled by the communication between the lateral
prefrontal cortex and medial prefrontal cortex. When GC
is applied to the same data, the information flow pattern
around the midline is similar to the DI. However, the
information flow from the lateral prefrontal cortex to the rest
of the brain is significant. On one hand, the similar patterns
of connectivity using both measures verify the validity of
proposed DI computation algorithm. On the other hand, GC
shows significance over a wide region of the brain especially
in the lateral areas compared to DI, which may be due

to GC’s low specificity to volume conduction in the form
of a common source. Previous work and our simulation
in Example 4 have indicated that Granger-causality-based
measures may infer erroneous effective connectivity in the
case of the common source as seen in EEG data [19, 46].
However, without ground truth, we cannot confirm that
some links reported as significant by GC are spurious and
due to volume conduction in a conclusive manner, but the
results from DI agree more with the suggestions in [56],
that most of the increase in connectivity during cognitive
control, that is, ERN, should be between medial prefrontal
cortex and lateral prefrontal cortex, compared to the results
of GC. Therefore, DI is more sensitive and discriminative
about the information flow patterns compared to GC for real
neurophysiological data.
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Table 1: Electrode pairs in the region of interest with significant DI
values.

From To From To From To

F5
F1 FC2 CPz
CP4 P3

C5
F6 FC5 Cz
CP4

P3 P4

F3 FC3 CP4 C3 FC2 C6 P1 P1 F2 C6 CP2

F1 C1 Cz Pz C1 FC1 C6 Pz F5 F4 FCz

FZ F5 CZ F5 C2 CP4 P2 FC4 C5

F2
FC3 FC6 C5
CP1

C2 FC6 P4
F3 F4 FC3
FC2 FC4
Pz P2

F4 F6 C4 C4 P2

F6
F2 FC3 FCz
Cz

C6 Pz

FC5 Fz C3 C2 CP6 CP5 Cz C4 CP3

FC3 CP1 CP3 C5 CPz P4

FC1
F4 FC3 C2
CP1 CP4

CP1 F6 FCz P3

FCZ C3 CP1 CPz
FC6 C6 CP5
CP4 P1

FC2
F3 C1 C6
CP2 CP4 P3

CP2
F6 FCz FC4
CP1

FC4 C5 CP4 FC5 FCz C4

FC6 C5 C4 CP1 CP6 F5

4. Conclusions

In this paper, we illustrated the advantages of a new directed
information measure over Granger-causality-based measures
for quantifying the effective connectivity in the brain. In
order to illustrate the advantages of this measure, first,
we applied directed information measure to identify the
causality relationships for both linear and nonlinear AR
models, linear mixing models, single source models, and
Lorenz systems and compare its performance with Granger
causality. Directed information is shown to be more effective
in detecting the causality of different systems compared to
Granger causality. We then applied the directed infor-
mation measure on EEG data from a study containing
the error-related negativity to infer the information flow
patterns between different regions. The results showed that
the directed information measure can capture the effective
connectivity in the brain between the mPFC and lPFC areas
as predicted by previous work.

Directed information, as a model-free measure, is able
to detect both linear and nonlinear causality relationships
between two signals. However, other model-free entropy-
based measures would also detect effective connectivity such
as transfer entropy and directed transinformation. Directed
transinformation introduced by Saito measures the infor-
mation flow from the current sample of one signal to the
future samples of another signal given the past samples of
both signals but does not discriminate between totally
dependent and independent processes. Transfer entropy
and directed information are very closely related to each
other. Transfer entropy quantifies the information gained at

each time step by measuring the deviation of the observed
data from the generalized Markov condition. Therefore, the
definition of transfer entropy implicitly assumes a stationary
Markov process [31]. Compared to transfer entropy, directed
information quantifies the sum of information obtained over
the whole time series [58] and does not make any assump-
tions about the underlying signal model. Thus, theoretically,
the original definition of directed information can apply to
any signal models. In real applications, in order to simplify
the computation of directed information, we usually make
certain assumptions about the underlying signal model such
as the modified time-lagged DI proposed in this paper, which
basically assumes a stationary Markov process similar to
transfer entropy. In addition, Amblard and Michel proved
that, for a stationary process, directed information rate can
be decomposed into two parts, one of which is equivalent
to the transfer entropy when l = m = n in (1) and the
other to the instantaneous information exchange rate [31]. In
another words, for a physical system without instantaneous
interactions between its subsystems, the rate of these two
measures, directed information and transfer entropy, is
equivalent asymptotically as the length of the signal goes to
infinity.

There are still remaining issues with the implementation
of directed information. First, the performance of directed
information relies on accurate estimation from limited sam-
ple sizes that introduces bias to the estimated values. This
problem can be addressed by either using parametric
density models or improving existing mutual information
and entropy estimators. Recently, Zhao et al. proposed an
universal algorithm to estimate directed information for
stationary ergodic processes by using sequential probability
assignment, which may be used to improve the effective
connectivity results discussed in this paper [59]. Second, the
performance of directed information relies on the selection
of the model order. If the order of the model is too
small, it will lose the information from X to Y. If it is
too large, the computational complexity is very high. In
addition to classical embedding dimension determination
methods such as the Cao criterion used in this paper,
Faes et al. proposed a sequential procedure to determine
the embedding dimension of multivariate series [60]. This
method is based on an information-theoretic technique and
shows promising performances for various signal models,
which may be extended to DI computation in the future.
Third, directed information does not discriminate between
direct and indirect interactions among multivariate time
series. However, this is not a shortcoming of DI since DI does
not assume any particular signal interaction model: bivariate
or multivariate. Similar to other information theoretic mea-
sures, such as mutual information, whether the particular
measure can identify interactions between multiple processes
depends on how the measure is applied. For example, in the
case of mutual information, though the original definition is
for two random processes X and Y, it is possible to extend it
to multiple processes [61]. Similarly, we can apply DI over
multiple processes using conditional directed information
such as the definition given by Kramer. We address this
issue in a previous paper [34] by using conditional directed
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information and develop an algorithm to infer the actual
network. Similarly, GC originally is defined for two time
series that a stochastic process X causing another process
Y if the prediction of Y at the current time point, Yn, is
improved when taking into account the past samples of X.
However, in application it has been extended to multiple
processes through the use of multivariate AR models. Future
work will focus on the comparison of these two measures in
a multivariate setting.
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[11] M. Kamiński, M. Ding, W. A. Truccolo, and S. L. Bressler,
“Evaluating causal relations in neural systems: Granger causal-
ity, directed transfer function and statistical assessment of
significance,” Biological Cybernetics, vol. 85, no. 2, pp. 145–157,
2001.

[12] W. Mader, D. Feess, D. Saur et al., “Investigating multivariate
systems using directed partial correlation,” International Jour-
nal of Bioelectromagnetism, vol. 12, no. 1, pp. 21–25, 2001.

[13] B. Schelter, M. Winterhalder, M. Eichler et al., “Testing for
directed influences among neural signals using partial directed
coherence,” Journal of Neuroscience Methods, vol. 152, no. 1-2,
pp. 210–219, 2006.

[14] D. Marinazzo, W. Liao, H. Chen, and S. Stramaglia, “Nonlin-
ear connectivity by Granger causality,” NeuroImage, vol. 58,
no. 2, pp. 330–338, 2010.

[15] L. Leistritz, T. Weiss, J. Ionov, K. J. Bär, W. H. R. Miltner,
and H. Witte, “Connectivity analysis of somatosensory evoked
potentials to noxious intracutaneous stimuli in patients with
major depression,” Methods of Information in Medicine, vol. 49,
no. 5, pp. 484–491, 2010.

[16] L. Faes and G. Nollo, “Extended causal modeling to assess par-
tial directed coherence in multiple time series with significant
instantaneous interactions,” Biological Cybernetics, vol. 103,
no. 5, pp. 387–400, 2010.

[17] H. Hinrichs, T. Noesselt, and H. J. Heinze, “Directed infor-
mation flow—a model free measure to analyze causal interac-
tions in event related EEG-MEG-experiments,” Human Brain
Mapping, vol. 29, no. 2, pp. 193–206, 2008.

[18] F. Lopes da Silva, J. P. Pijn, and P. Boeijinga, “Interdependence
of EEG signals: linear versus nonlinear associations and the
significance of time delays and phase shifts,” Brain Topography,
vol. 2, no. 1-2, pp. 9–18, 1989.

[19] R. Vicente, M. Wibral, M. Lindner, and G. Pipa, “Transfer
entropy-a model-free measure of effective connectivity for the
neurosciences,” Journal of Computational Neuroscience, vol. 30,
no. 1, pp. 45–67, 2011.

[20] T. Schreiber, “Measuring information transfer,” Physical Re-
view Letters, vol. 85, no. 2, pp. 461–464, 2000.

[21] Y. Saito and H. Harashima, Recent Advances in EEG and EMG
Data Processing, Elsevier, Amsterdam, The Netherlands, 1981.

[22] J. Massey, “Causality, feedback and directed information,”
in Proceedings of the International Sympoium on Information
Theory and Its Applications, pp. 27–30, 1990.

[23] M. Rubinov and O. Sporns, “Complex network measures of
brain connectivity: uses and interpretations,” NeuroImage, vol.
52, no. 3, pp. 1059–1069, 2010.

[24] M. Lungarella and O. Sporns, “Mapping information flow in
sensorimotor networks,” PLoS Computational Biology, vol. 2,
no. 10, pp. 1301–1312, 2006.

[25] S. Sabesan, L. B. Good, K. S. Tsakalis, A. Spanias, D. M.
Treiman, and L. D. Iasemidis, “Information flow and appli-
cation to epileptogenic focus localization from intracranial
EEG,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 17, no. 3, pp. 244–253, 2009.

[26] M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente,
and J. Kaiser, “Transfer entropy in magnetoencephalographic
data: quantifying information flow in cortical and cerebellar
networks,” Progress in Biophysics and Molecular Biology, vol.
105, no. 1-2, pp. 80–97, 2011.

[27] M. Al-Khassaweneh and S. Aviyente, “The relationship be-
tween two directed information measures,” IEEE Signal Pro-
cessing Letters, vol. 15, pp. 801–804, 2008.

[28] H. Marko, “The bidirectional communication theory—a gen-
eralization of information theory,” IEEE Transactions on Com-
munications, vol. 21, no. 12, pp. 1345–1351, 1973.

[29] G. Kramer, “Capacity results for the discrete memoryless
network,” IEEE Transactions on Information Theory, vol. 49,
no. 1, pp. 4–21, 2003.

[30] S. Tatikonda and S. Mitter, “The capacity of channels with
feedback,” IEEE Transactions on Information Theory, vol. 55,
no. 1, pp. 323–349, 2009.

[31] P. O. Amblard and O. J. J. Michel, “On directed information
theory and Granger causality graphs,” Journal of Computa-
tional Neuroscience, vol. 30, no. 1, pp. 7–16, 2011.

[32] A. Rao, A. O. Hero III, D. J. States, and J. D. Engel, “Using
directed information to build biologically relevant influence,”



16 Computational and Mathematical Methods in Medicine

in Proceedings of the Computational Systems Bioinformatics, pp.
145–156, 2007.

[33] C. J. Quinn, T. P. Coleman, N. Kiyavash, and N. G. Hatsopou-
los, “Estimating the directed information to infer causal rela-
tionships in ensemble neural spike train recordings,” Journal
of Computational Neuroscience, vol. 30, no. 1, pp. 17–44, 2011.

[34] Y. Liu and S. Aviyente, “Information theoretic approach to
quantify causal neural interactions from EEG,” in Proceedings
of the 44th IEEE Asilomar Conference on Signals, Systems and
Computers (ASILOMAR ’10), pp. 1380–1384, November 2010.

[35] P. Mathai, N. C. Martins, and B. Shapiro, “On the detection of
gene network interconnections using directed mutual infor-
mation,” in Proceedings of the Information Theory and Applica-
tions Workshop (ITA ’07), pp. 274–283, February 2007.

[36] T. M. Cover, J. A. Thomas, and J. Wiley, Elements of Informa-
tion Theory, Wiley Online Library, 1991.

[37] J. Geweke, “Measurement of linear dependence and feedback
between multiple time series,” Journal of the American Statisti-
cal Association, vol. 77, no. 378, pp. 304–313, 1982.

[38] E. G. Miller, “A new class of entropy estimators for multidi-
mensional densities,” in Proceedings of the IEEE International
Conference on Accoustics, Speech, and Signal Processing, vol. 3,
pp. 297–300, April 2003.

[39] G. A. Darbellay and I. Vajda, “Estimation of the information
by an adaptive partitioning of the observation space,” IEEE
Transactions on Information Theory, vol. 45, no. 4, pp. 1315–
1321, 1999.

[40] Y. Liu and S. Aviyente, “Time-lagged directed information,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’11), pp. 3864–3867,
2011.

[41] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
tering, Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, 3rd edition, 2007.

[42] B. Schelter, M. Winterhalder, and J. Timmer, Handbook of
Time Series Analysis: Recent Theoretical Developments and
Applications, VCH Verlagsgesellschaft mbH, 2006.

[43] L. Cao, “Practical method for determining the minimum
embedding dimension of a scalar time series,” Physica D, vol.
110, no. 1-2, pp. 43–50, 1997.

[44] G. Pipa and S. Grün, “Non-parametric significance estimation
of joint-spike events by shuffling and resampling,” Neurocom-
puting, vol. 52, pp. 31–37, 2003.

[45] A. K. Seth, “A MATLAB toolbox for Granger causal connectiv-
ity analysis,” Journal of Neuroscience Methods, vol. 186, no. 2,
pp. 262–273, 2010.

[46] G. Nolte, A. Ziehe, V. V. Nikulin et al., “Robustly estimating
the flow direction of information in complex physical sys-
tems,” Physical Review Letters, vol. 100, no. 23, Article ID
234101, 2008.

[47] M. Breakspear, “Nonlinear phase desynchronization in human
electroencephalographic data,” Human Brain Mapping, vol.
15, no. 3, pp. 175–198, 2002.

[48] W. Michiels and H. Nijmeijer, “Synchronization of delay-
coupled nonlinear oscillators: an approach based on the sta-
bility analysis of synchronized equilibria,” Chaos, vol. 19, no.
3, Article ID 033110, 2009.

[49] J. C. Butcher and J. Wiley, Numerical Methods for Ordinary
Differential Equations, vol. 2, Wiley Online Library, 2003.

[50] J. S. Moser, H. S. Schroder, C. Heeter, T. P. Moran, and Y.-
H. Lee, “Mind your errors: evidence for a neural mechanism
linking growth mindset to adaptive post-error adjustments,”
Psychological Science, vol. 22, no. 12, pp. 1484–1489, 2011.

[51] J. S. Moser, T. Moran, and A. Jendrusina, “Parsing relation-
ships between dimensions of anxiety and action monitoring
brain potentials in female undergraduates,” Psychophysiology,
vol. 49, no. 1, pp. 3–10, 2012.

[52] B. A. Eriksen and C. W. Eriksen, “Effects of noise letters upon
the identification of a target letter in a nonsearch task,” Percep-
tion and Psychophysics, vol. 16, no. 1, pp. 143–149, 1974.

[53] D. M. Olvet and G. Hajcak, “The stability of error-related
brain activity with increasing trials,” Psychophysiology, vol. 46,
no. 5, pp. 957–961, 2009.

[54] J. Kayser and C. E. Tenke, “Principal components analysis of
Laplacian waveforms as a generic method for identifying ERP
generator patterns: I. Evaluation with auditory oddball tasks,”
Clinical Neurophysiology, vol. 117, no. 2, pp. 348–368, 2006.

[55] S. Aviyente, E. M. Bernat, W. S. Evans, and S. R. Sponheim, “A
phase synchrony measure for quantifying dynamic functional
integration in the brain,” Human Brain Mapping, vol. 32, no.
1, pp. 80–93, 2011.

[56] J. F. Cavanagh, M. X. Cohen, and J. J. B. Allen, “Prelude to and
resolution of an error: EEG phase synchrony reveals cognitive
control dynamics during action monitoring,” Journal of
Neuroscience, vol. 29, no. 1, pp. 98–105, 2009.

[57] C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of
statistical maps in functional neuroimaging using the false
discovery rate,” NeuroImage, vol. 15, no. 4, pp. 870–878, 2002.

[58] J. Lizier, The local information dynamics of distributed com-
putation in complex systems, Ph.D. dissertation, University of
Sydney, 2010.

[59] L. Zhao, H. Permuter, Y. H. Kim, and T. Weissman, “Universal
estimation of directed information,” in Proceedings of the IEEE
International Symposium on Information Theory (ISIT ’10), pp.
1433–1437, June 2010.

[60] L. Faes, G. Nollo, and A. Porta, “Information-based detection
of nonlinear Granger causality in multivariate processes via a
nonuniform embedding technique,” Physical Review E, vol. 83,
no. 5, Article ID 051112, 2011.

[61] W. Zhao, E. Serpedin, and E. R. Dougherty, “Inferring con-
nectivity of genetic regulatory networks using information-
theoretic criteria,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 5, no. 2, pp. 262–274, 2008.


	Introduction
	Materials and Methods
	Definitions and Notations
	Directed Information
	Directed Information versus Granger Causality
	Computation of Directed Information
	Order Selection
	Normalization and Significance Test
	Simulated Data
	Biological Data

	Results and Discussion
	Simulated Data
	EEG Data

	Conclusions
	Acknowledgments
	References

