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Hematopoietic stem cell transplantation is the most powerful
treatment modality for a large number of hematopoietic
malignancies, including leukemia. Successful hematopoietic
recovery after transplantation depends on homing of hemato-
poietic stem cells to the bone marrow and subsequent lodging
of those cells in specific niches in the bone marrow. Migration
of hematopoietic stem cells to the bone marrow is a highly
regulated process that requires correct regulation of the
expression and activity of various molecules including chemo-
attractants, selectins and integrins. This review will discuss
recent studies that have extended our understanding of the
molecular mechanisms underlying adhesion, migration and
bone marrow homing of hematopoietic stem cells.

Introduction

Bone marrow homing is a rapid, coordinated process in which
circulating hematopoietic stem and progenitor cells actively enter
the bone marrow after transplantation. Rolling and firm adhesion
of those cells on endothelial cells in small marrow sinusoids is
followed by trans-endothelial migration across the endothelium/
extracellular matrix barrier (Fig. 1). Selectins are implicated in
playing an important role in bone marrow homing of hemato-
poietic stem cells (HSCs) by regulating initial tethering and
rolling of those cells along the endothelial wall of blood vessels. In
addition, inhibition of VE-cadherin is thought to be important for
transendothelial migration by disturbing the integrity of bone
marrow derived endothelial cell monolayers. SDF-1 mediated
integrin activation subsequently induces firm adhesion of the
HSCs to the endothelial wall upon which firmly attached HSCs
can transmigrate through the endothelial layer and basal lamina
consisting of the integrin substrates fibronectin, collagen and
laminin. Finally, HSCs anchor to their specialized niches within
the bone marrow compartment near osteoblasts and initiate
long-term repopulation. The importance of selectins, integrins,
cadherins and chemoattractants in regulation of the different
stages of bone marrow homing will be described below in more
detail.

Adhesion Molecules and Bone Marrow Homing

P- and E-selectin play an important role in rolling of hemato-
poietic stem cells. Selectins are implicated in playing an impor-
tant role in bone marrow homing of hematopoietic stem and
progenitor cells by regulating initial tethering and rolling of cells
along the endothelial wall of blood vessels. It has, for example,
been demonstrated that coating of a surface with immobilized P-
or E-selectin is sufficient to induce rolling of human CD34+

hematopoietic progenitor cells (HPCs) under flow conditions.1

In addition, intravital microscopy in bone marrow sinoids and
venules of mice deficient for individual selectins revealed that
rolling of HPCs involves both P and E-selectin, but not
L-selectin.2 To allow trans-endothelial migration to occur, firm
adhesion of hematopoietic stem and progenitor cells to
endothelial cells is required. In contrast to fluid-phase P- and
E-selectin,1 adhesion of CD34+ HPCs to bone marrow derived
endothelial cells under static conditions has been shown not to
depend on E-selectin.3 Experiments performed to study the
importance of E-selectin in trans-endothelial migration of
human HPCs yielded contradictory results. Transwell experi-
ments performed by Voermans et al., for example, suggested that
E-selectin is not important for trans-endothelial migration.4 In
contrast, Naiyer et al. have demonstrated in similar experiments
that blocking of E-selectin with antibodies is sufficient to reduce
trans-endothelial migration.3 Similarly, transplantation studies
with mice deficient for both P-and E-selectin revealed that the
recruitment of HPCs to the bone marrow does depend on
selectins.5 Selectin ligands must be a1–3 fucosylated to form
glycan determinants such as sialyl Lewis x [sLe(x)]. It has, for
example, been demonstrated that inadequate a1–3 fucosylation of
umbilical cord blood derived CD34+CD38-/low cells results in
reduced binding to P- and E-selectin. In addition, treatment
of human CD34+ cells with guanosine diphosphate GDP fucose
and exogenous a1–3 fucosyltransferase VI improves rolling
of those cells on P- and E-selectin and appears to be sufficient
to enhance engraftment levels after transplantation in irradiated
NOD/SCID mice.1

Since human CD34+ HPCs exhibit a stronger E-selectin
binding capacity compared with mouse Lin-Sca-1+c-Kit+ (LSK)
cells,6 it could be suggested that homing of human and mouse
hematopoietic stem and progenitor cells are differentially
regulated. Indeed, it has been shown that although the PSGL-1
glycoform CLA, CD43 and the CD44 glycoform HCELL, which
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are ligands for E-selectin, are all expressed on both mouse and
human hematopoietic stem and progenitor cells,6,7 the interaction
between E-selectin and CD44 only occurs in humans but not
mice.6 A role for CD44 itself in regulation of bone marrow
homing has also been determined. While shRNA mediated
silencing of CD44 in human cells was shown to be sufficient to
decrease E-selectin binding under physiologic shear conditions,
enforced CD44 expression in mouse LSK cells conversely
increased E-selectin adherence, resulting in improved bone
marrow homing in vivo.6 In addition to a role in bone marrow
homing, a role for CD44 in retention of HSCs in the bone
marrow has also been suggested. Treatment of mice with blocking
antibodies against CD44 has been shown to increase the number
of committed progenitors in the peripheral blood.8

Integrins play an important role in HSC adhesion and
transendothelial migration. Integrins are also implicated in
playing an important role in regulation of bone marrow homing.
In vitro studies with blocking antibodies have, for example,
shown that both CD49d/CD29 (a4β1 or VLA-4) and CD11a/
CD18 (aLβ2 or LFA-1), but not CD49e/CD29 (a5β1 or

VLA-5), play an important role in adhesion of hematopoietic
stem and progenitor cells to endothelial cells and subsequent
trans-endothelial migration.4,9,10 Although inhibition of CD49e/
CD29 alone was not sufficient to inhibit trans-endothelial
migration, an additive effect was observed by a combination of
antibodies directed against CD11a/CD18, CD49d/CD29 and
CD49e/CD29.10 The importance of both CD49d/CD29 and
CD49e/CD29 in directional migration through the basal lamina,
which is composed of the extracellular matrix proteins laminin,
collagen and fibronectin, has been examined utilizing a three
dimensional extracellular matrix-like gel. These experiments
showed that SDF-1-induced directional migration of CD34+ cells
is dependent on both CD49d/CD29 and CD49e/CD29.10 In
contrast, both adhesion of CD34+ HPCs to fibronectin10 and
chemotaxis of peripheral blood CD34+ HPCs on recombinant
fibronectin11 were found to be primarily dependent on CD49e/
CD29. In vivo transplantation experiments were performed to
study the role of CD49e/CD29 and CD49d/CD29 in bone
marrow homing. Pre-treatment of HPCs with an antibody
directed against CD49e/CD29, prior to transplantation, was

Figure 1. Homing of HSCs to the bone marrow. Initial tethering and rolling are the first steps in bone marrow homing. These processes are mediated by
both E- and P-selectin. SDF-1 mediated integrin activation induces firm adhesion of the HSCs to the enodethelial wall. Firmly attached HSCs can
subsequently transmigrate through the endothelial layer and basal lamina, consisting of fibronectin, collagen and laminin. Integrins involved in these
steps are CD49d/CD29, CD49e/CD29 and CD49f/CD29. Finally, HSCs migrate toward the SDF-1 gradient to the osteoblasts. Chemoattractants involved in
migration of HSCs.
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sufficient to partially reduce homing of those cells to the
bone marrow.11,12 Similarly, the migratory capacity of cells
either deficient for CD49d13 or pretreated with CD49d anti-
bodies8,11,14,15 has been shown to be impaired, resulting in delayed
short-term engraftment.13 To investigate whether, in addition to
CD49d/CD29, CD49d/ITGB7 (a4β7) could also be involved
in bone marrow homing, either CD49d/ITGB7 (a4β7) or its
substrate MadCam-1 were inhibited with blocking antibodies.
These experiments resulted in a significant, but not complete,
inhibition of bone marrow homing.16 Another integrin implicated
in regulation of bone marrow homing is CD49f (a6). In contrast
to CD49d that appears to be predominantly involved in bone
marrow homing of bone marrow derived short-term repopulating
HSCs, CD49f is thought to be important for homing of both
short-term and long-term HSCs.15 However, similar experiments
with fetal liver cells revealed that, in contrast to CD49d which
appears to be important for homing of both hematopoietic stem
and progenitor cells, CD49f is only important for homing of
HPCs.17 In contrast, bone marrow homing was not affected in
a more recent study in which mice were transplanted with mouse
bone marrow derived hematopoietic stem and progenitor cells
pretreated with blocking antibodies directed against CD49f.18 In
addition, blocking the activity of CD49f on hematopoietic stem
and progenitor cells obtained from human and primate bone
marrow, but not from mobilized peripheral blood or cord blood,
resulted in enhanced bone marrow homing.18 Although addi-
tional research is required to fully understand the role of CD49f,
these studies suggest that CD49f regulates bone marrow homing
of specific subsets of HPCs depending on the source of those cells.

Transplantation experiments were also performed to determine
the role of CD11a and CD18 in migration of HSCs to the bone
marrow. These experiments revealed that, in contrast to CD49d
and CD49e, both CD11a8 and CD1814 are not involved in bone
marrow homing. However, inhibition of CD49d/CD29 in CD18
deficient HSCs resulted in more dramatic reduction in bone
marrow homing in comparison to inhibition of CD49d/CD29
in wild-type mice. This suggests that CD18 can contribute to
bone marrow homing when the function of CD49d/CD29 is
compromised.14 As described above, deletion of both P- and
E-selectin in recipient mice significantly reduced bone marrow
homing after transplantation of wild-type progenitors. Treat-
ment of these mice with a blocking antibody against VCAM-1,
thereby prohibiting interaction with CD49d/CD29, further
reduced bone marrow homing after transplantation,5 suggesting
that both selectins and integrins are required for optimal bone
marrow homing. With blocking antibodies, a role for integrins
in retention of HSCs in the bone marrow has also been
investigated. Treatment of mice with blocking antibodies
against either CD49d8 or CD49f15 revealed that only inhibition
of CD49d is sufficient to induce mobilization of hematopoietic
stem and progenitor cells to the peripheral blood, indicating that
CD49d, but not CD49f, plays an important role in lodging of
hematopoietic progenitors in the bone marrow.

VE-cadherin plays a role in regulation of the integrity of
endothelial cell monolayers. A third group of proteins implicated
in regulation of bone marrow homing are cadherins. Inhibition of

VE-cadherin has, for example, been shown to enhance transen-
dothelial migration of UCB derived CD34+ HPCs by reducing
the integrity and enhancing the permeability of bone marrow
derived endothelial cell monolayers. In addition, at the site of
transmigration, CD34+ cells appear to induce a loss of VE-
cadherin localization.19 The final step in bone marrow homing
is anchoring of HSCs to their specialized niches within the
bone marrow compartment. Based on studies in which high
N-cadherin expression was observed at the junction between
osteoblasts and HSCs,20 it has been suggested that N-cadherin
could play a role in the interaction of both cell types in the
bone marrow. However, the mRNA and protein expression of
N-cadherin appears to be very low22-24 or absent in HSCs.21,25 To
date, the role of N-cadherin in regulation of HSCs is therefore
still controversial21 and requires further investigation.

Chemoattractants and Migration of HSCs

Chemoattractants play an important role in directing migration
of hematopoietic stem and progenitor cells to the bone marrow.
Several studies have demonstrated that Stromal Cell Derived
Factor 1 (SDF-1), also known as CXC chemokine ligand 12
(CXCL12)26 acts as a chemoattractant for hematopoietic stem
and progenitor cells and is important for their trans-endothelial
migration.3,27,28 Analysis of a large panel of CC and CXC chemo-
kines indicated that, within that group, the only chemokine
capable of inducing migration of murine hematopoietic stem and
progenitor cells is SDF-1.29,30 Similarly, examination of a panel of
chemokines and cytokines in trans-endothelial migration assays
revealed that SDF-1 is also important for migration of human
HPCs through a confluent layer of endothelial cells.30 However,
to a lesser extent, also other chemokines and cytokines, including
CXCL10 (IP-10), CCL2 (MCP-1), CCL5 (RANTES), SCF and
IL-8 could also induce trans-endothelial migration.30 In addition,
LTD4, a ligand for the G protein-coupled receptor CysLT(1),
a mediator of the cysteinyl leukotriene family that is highly
expressed in HPCs, has been demonstrated to upregulate integrin-
dependent adhesion of HPCs31 and to induce chemotaxis and
trans-endothelial migration in vitro.32 It has recently been
demonstrated that, in addition to G protein coupled receptor
recognizing chemokines, the proteolysis-resistant bioactive lipids
sphingosine-1-phosphate and ceramide-1-phosphate act as che-
moattractants for hematopoietic stem and progenitor cells during
bone marrow homing.33 The role of SDF-1 in migration of
hematopoietic stem and progenitor cells will be discussed below
in more detail.

SDF-1 plays a critical role in bone marrow homing. SDF-1 is
considered to be essential for migration of HSCs to the bone
marrow.9,29,34 In the adult human bone marrow, SDF-1 was
found to be expressed by endothelial cells and along the endo-
steum region in the bone marrow.10,35,36 To date, six different
SDF-1 splicing variants have been described: a, β, c, d, ε and
Q.37 From these six isoforms, SDF-1a appears to be the most
abundantly expressed isoform. Whereas the expression of SDF-1β
seems to be related to the vascular system, in humans and mice,
SDF-1c is primarily expressed in the heart.38,39 While SDF-1a
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consists of three exons, the other isoforms consist of a different
fourth C-terminal exon. The N-terminal domain (aa 1–8) of
SDF-1, which is present in all SDF-1 isoforms, is responsible for
receptor binding and receptor activation.40 The C-terminal
domain, which is different in all SDF-1 isoforms, is important
for stabilization of the interaction with the receptor. To date,
two seven-transmembrane domain, G-protein coupled, receptors
for SDF-1 have been identified, CXCR4 (LESTR/fusin) and
CXCR7, of which CXCR4 appears to be the most prominent.41,42

Mouse transplantation studies have been performed to investigate
the importance of SDF-1 in migration of HSCs to the bone
marrow. Upregulation of CXCR4 expression by incubation with
hematopoietic cytokines (SCF and IL-6)43 or overexpression of
CXCR4 by viral transduction44,45 was shown to be sufficient
to enhance bone marrow homing of human CD34+ and
CD34+CD38- cells in immune deficient mice.43,46,47 In addition,
pre-treatment of human CD34+CD38-/low cells with a blocking
antibody directed against CXCR4 impaired their capacity to
home to the bone marrow of immune deficient recipient
mice.43,46-48 Similarly, fetal liver hematopoietic stem and pro-
genitor cells deficient for CXCR4 displayed a reduced bone
marrow homing capacity compared with wild-type cells.49 In
addition to migration to the bone marrow, SDF-1 also appears
to play a critical role in retention of HSCs in the bone marrow.
Enhancing the level of SDF-1 in plasma, but not bone marrow,
utilizing adenoviral vectors50 or sulfated glycans51,52 was shown to
induce mobilization of CXCR4 expressing hematopoietic stem
and progenitor cells to the peripheral blood.50,52 In addition,
treatment of mice or healthy human volunteers with AMD3100,
a selective CXCR4 antagonist, also resulted in enhanced numbers
of HSCs in peripheral blood, again suggesting a role for CXCR4
and SDF-1 in HSC retention in the bone marrow.53

In contrast to CXCR4 that is expressed by hematopoietic stem
and progenitor cells,54 CXCR7 is only expressed at low levels in
normal human hematopoietic stem and progenitor cells and
does not appear to be important for migration of those cells.55

However, CXCR7 was found to be highly expressed in several
human myeloid leukemic cell lines and is thought to play a role
in adhesion and, to a lesser extent, also in migration of those
cells.55

Negative regulation of SDF-1 activity. Proteolytic enzymes
have been implicated in negatively regulating migration of
HSCs by cleaving and inactivating SDF-1.52,56,57 Matrix metallo-
proteinases (MMP) 2/9 mediated cleavage of SDF-1 at the Ser4-
Leu5 bond, has for example, been demonstrated to result in a
reduced binding capacity of SDF-1 for CXCR-4 and a diminished
chemoattractant activity for hematopoietic stem and progenitor
cells.58,59 A second class of SDF-1 proteases include the carboxy-
peptidases M and N.60,61 Carboxypeptidase M, which is expressed
by both stromal cells and CD34+ HPCs,60,62 is a membrane
bound zinc-dependent peptidase that cleaves C-terminal basic
residues. Carboxypeptidase M mediated cleavage of SDF-1 results
in reduced chemotactic activity of hematopoietic stem and
progenitor cells, which can be rescued by addition of the
carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-
ethylthiopropanoic acid.60 Carboxypeptidase N, which is present

in human serum and plasma,61 specifically cleaves SDF-1 at
Lysine 68 resulting in reduced SDF-1 activity and inhibition of
SDF-1 mediated induction of migration of HPCs.61 Another
membrane-bound protein involved in negatively regulating the
activity of SDF-1 is CD26 (DPPIV).63 CD26 is expressed by a
small number of umbilical cord blood derived CD34+CXCR4+

cells. SDF-1a and SDF-1β appear to be differentially processed
by CD26.64 Whereas SDF-1a (1–68) undergoes processing at
both the C- and N-terminal regions to produce SDF-1a (3–67),
SDF-1β (1–72) is processed only at the N-terminus resulting
in SDF-1β (3–72).64 This differential processing suggests that
these SDF-1 isoforms may not only have overlapping, but also
unique roles. Migration experiments revealed that inhibition of
endogenous CD26 activity is sufficient to enhance the migration
of CD34+ cells toward SDF-1, suggesting that CD26 abrogates
SDF-1 induced migration of HPCs.63,65,66 In addition, inhibition
of CD26 with peptides such as diprotin A (Ile-Pro-Ile) or Val-Pyr
enhanced homing and engraftment of both limited numbers
of mouse bone marrow HSCs in lethally irradiated congenic
mice67 and human CD34+ cells in immune deficient mice.68-70

Furthermore, pretreatment of lethally irradiated congenic recipi-
ent mice with diprotin A enhanced the engraftment of non-
treated mouse bone marrow cells.71

Other proteolytic enzymes implicated in negatively regulating
SDF-1 activity include neutrophil elastase,72,73 cathepsin G72,73

and cathepsin K.57 The importance of proteolytic enzymes for
retention of HSCs in the bone marrow has also been investigated.
An accumulation of various proteolytic enzymes including MMP-
9, neutrophil elastase and cathepsin G or K72,73 has, for example,
been observed in mouse bone marrow upon G-CSF administra-
tion, which correlated with a gradually decrease in SDF-1 in the
bone marrow.72 Similarly, an enhanced SDF-1 plasma level was
shown to result in upregulation of MMP-9 in the bone marrow
and mobilization of hematopoietic stem and progenitor cells.56 In
contrast, a high level of SDF-1 in plasma was not sufficient to
induce mobilization of HPCs in MMP-9 deficient mice.56

Molecular mechanisms underlying SDF-1 mediated regula-
tion of migration. To understand the molecular mechanisms
underlying migration of hematopoietic stem and progenitor cells,
research has focused on identifying the downstream effectors of
CXCR4 (Fig. 2). SDF-1 has, for example, been demonstrated
to induce the activity of the integrins CD11a/CD1810 and
CD49/CD2910,74 on CD34+ cells which allow interactions with
their substrates ICAM-1 and VCAM-1, respectively.

Small guanosine triphosphatases (GTPases) that belong to the
Ras superfamily of GTPases, including Rho, Rac and Cdc42 can
be activated by SDF-1.75-78 An important mediator of SDF-1
induced HPC migration is Rho.79-81 It has, for example, been
demonstrated that SDF-1 mediated release of intracellular Ca2+

stores requires activation of Rho, but not Rac or Cdc42.82

In addition, overexpresssion of dominant negative RhoA by
retroviral transduction in mouse cells resulted in decreased
migration of HPCs toward SDF-1 and reduced integrin-mediated
adhesion.82 Furthermore, overexpression of RhoH, a GTPase
deficient type of Rho,83 in hematopoietic stem and progenitor
cells resulted in impaired activation of Rac GTPases, defective
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Figure 2. SDF-1/CXCR4 signaling cascade. SDF-1 is produced by bone lining osteoblasts in the bone marrow. Upon binding of SDF-1 to the G protein
coupled receptor CXCR4, CD164 is recruited to the receptor and a downstream signaling cascade is activated. SDF-1 stimulation results in the activation
of multiple signal transduction molecules. Proteins activated by SDF-1 that have been demonstrated to play an important role in HSC migration include
PI3K and the GTPases Rac, Rho and Cdc42. In addition, activation of CXCR4 also results in upregulation of USP17 and CD9 at the transcriptional level.
USP17 is involved in the translocation of Rac, Rho and Cdc42 to G-Proteins resulting in activation of these GTPases. Activation of CXCR4 eventually leads
to cytoskeletal rearrangements, activation of integrins and migration of HSCs. SDF-1 can be cleaved by both extracellular and membrane-bound
proteases thereby prohibiting activation of CXCR4.
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actin polymerization and impaired chemotaxis. In contrast,
inhibition of RhoH expression in these cells conversely stimulated
SDF-1-induced migration in vitro.84

It has been demonstrated that SDF-1 induced chemo-attraction
in vitro is, at least in part, also mediated by Rac.76,77,85 Deletion
of Rac2 was shown to be sufficient to enhance SDF-1 induced
migration of hematopoietic stem and progenitor cells.86 However,
in Rac2 deficient cells, the activity of Cdc42 and Rac1 was
enhanced, suggesting a compensatory role of Cdc42 and Rac1 in
migration.86 In addition, analysis of Rac2 deficient mice revealed
that Rac2 is essential for lodging of HPCs in the bone marrow.86

The hematopoietic-specific guanine nucleotide exchange factor
Vav1 is an upstream regulator of Rac activity. Deletion of Vav1 in
HSCs has been demonstrated to result in impaired responses to
SDF1, deregulated Rac/Cdc42 activation, a reduction in in vitro
migration and impaired localization in the bone marrow after
transplantation.87 Recently, R-Ras, a negative upstream regulator
of Rac activity has been identified that is inhibited by SDF-1.87

Deletion of R-Ras in hematopoietic stem and progenitor cells
resulted in increased directional migration which could be
reversed by inhibition of Rac.87 Furthermore, R-Ras deficient
mice showed enhanced responsiveness to G-CSF for progenitor
cell mobilization and exhibited decreased bone marrow homing.87

Finally, a role for Rap1, another GTPase, in regulation of SDF-1
induced migration has also been suggested. It has, for example,
been demonstrated that Epac1, a nucleotide exchange protein for
the GTPase Rap1, which is directly activated by cAMP, improves
the adhesive and migratory capacity CD34+ HPCs.88

CD164 (Endolyn), a type I integral transmembrane silomu-
cin,89,90 which is recruited to CXCR4 upon SDF-1 stimulation91

was shown to play an important role in SDF-1 mediated
migration of human CD133+ hematopoietic stem and progenitor
cells.91 Both siRNA mediated knockdown of CD164 or inhibition
of CD164 with the 103B2 mAb resulted in a specific reduction
in migration of CD133+ cells toward SDF-1.91 Knock-down of
CD164 resulted in a significant reduction in SDF-1 mediated
activation of PI3K and PKCf.91 Both PI3K and PKCf92 have
been implicated in playing an important role in SDF-1 mediated
migration of CD34+ cells. The role of PI3K in regulation of bone
marrow homing will be discussed below.

SDF-1 not only regulates the activity of downstream effectors,
but can also regulate the expression of specific target genes. A
rapid increase in expression of the ubiquitin-specific protease 17
(USP17) has, for example, been observed in peripheral blood
mononuclear, Jurkat and HeLa cells stimulated with SDF-1.93

While inhibition of USP17 in HPCs was shown to be sufficient
to decrease migration of these cells toward SDF-1, overexpression
of USP17 conversely resulted in enhanced migration.93 shRNA
mediated inhibition of USP17 expression prohibited the transport
of RAC1, Cdc42 and RhoA to the plasma membrane upon SDF-
1 stimulation and resulted in decreased polymerization of actin
and tubulin and reduced membrane ruffling.93 Since CXCR4
levels were not affected by inhibition or overexpression of USP17,
it is likely that USP17 modulates CXCR4 signaling. Another
SDF-1 responsive gene is CD9, a member of the tetraspanin
superfamily.94,95 Inhibition of CD9, utilizing a neutralizing

antibody, resulted in enhanced adhesion of progenitors to
fibronectin and human umbilical vein endothelial cells and
reduced transendothelial migration toward a SDF-1 gradient.95

Transplantation experiments revealed that pre-treatment of
human CD34+ cells with a neutralizing CD9 antibody prior to
transplantation results in reduced bone marrow homing.95

The PI3K/PKB Signaling Module
and Bone Marrow Homing

It has been demonstrated that SDF-1 induces the activity of
Phosphatidylinositol-3-Kinase (PI3K) and its downstream effector
Protein Kinase B (PKB/c-Akt)96 in leukemic cell lines.97 A role for
this signaling module in mediating SDF-1 induced migration of
HSCs was therefore suggested. However, Protein Phosphatase
2A was shown to positively regulate SDF-1 induced migration
of human HPCs by inhibition of PKB activity.98 Similarly,
inhibition of PKB activity in human CD34+ cells for over 24 h
resulted in a reduced capacity to adhere to bone marrow derived
stromal cells and an induction of their basal migratory capacity.99

Transwell migration experiments through a confluent layer of
human umbilical vein endothelial cells revealed that the observed
reduction in firm adhesion does not ameliorate the induced
migratory capacity of CD34+ cells pre-treated with a PKB
inhibitor.99 Furthermore, ectopic expression of constitutively
active PKB in CD34+ cells conversely induced firm adhesion and
reduced the basal level of migration.99 Although it cannot be
excluded that transient activation of PI3K/PKB by SDF-1 is
important for induction of migration, these studies indicate that
prolonged activation of PKB activity is detrimental for migration
of hematopoietic stem and progenitor cells. In agreement with
this, it has been demonstrated that deletion of SHIP (SH2-
containing inositol-5'-phosphatase), a negative regulator of
PI3K,100 in HSCs is sufficient to impair their ability to home
to the bone marrow and spleen.101 In addition, deletion of
Phosphate and tensin homolog (PTEN), another critical negative
regulator of PI3K signaling102 in HSCs diminished their bone
marrow homing capacity when these cells were transplanted into
non-irradiated recipients where vacant niches are limited.103

Constitutive activation of PKB in human HPCs cells was, similar
to deletion of SHIP, shown to be sufficient to significantly
inhibit migration of these cells to the bone marrow and spleen
of recipient mice.99 In addition, transient inhibition of PKB
activity in human HPCs prior to transplantation was shown to
conversely improve bone marrow homing.99 However, ectopic
expression of constitutively active PKB in mouse HPCs only
modestly impaired bone marrow homing, 18 h after transplanta-
tion.104 Together, these studies demonstrated that correct regula-
tion of PI3K/PKB is essential for migration of hematopoietic
stem and progenitor cells to the bone marrow after transplanta-
tion, which is a prerequisite for optimal engraftment and
hematopoietic recovery.99,101,104

The molecular mechanisms underlying PKB mediated regu-
lation of migration and bone marrow homing are, thus far,
incompletely understood. As described above, the capacity of
HSCs to migrate to the bone marrow after transplantation
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depends on chemokines, integrins and selectins. A reduced
CXCR4 expression was observed in SHIP deficient HSCs,
suggesting that activation of PI3K impairs their response to
SDF-1.103 In addition, in NIH 3T3 fibroblasts, an important
role for PKB and its downstream effector GSK-3 in recycling
of the CD49e/CD29 and CD51/CD61 (avβ3) integrins to
the membrane has been demonstrated.105 Furthermore, ectopic
expression of PKB in human hematopoietic stem and progenitor
cells has been demonstrated to enhance the level of CD49d, while
inhibition of PKB activity conversely reduces the expression of
both CD49d and CD18.99 Although it is evident that integrins
play an important role in adhesion and migration of cells, the
importance of these molecules in PKB mediated inhibition of
migration remains to be investigated.

Conclusion and Future Perspectives

Bone marrow homing is a coordinated multistep process. While
initial tethering and rolling of hematopoietic stem and progenitor
cells along the endothelial wall of blood vessels are primarily
regulated by specific selectins, various integrins have been shown
to be involved in regulation of the next stages in this process; firm
adhesion to the endothelial wall and trans-endothelial migration.
Directional migration toward the hematopoietic stem cell niche in
the bone marrow requires a chemokine gradient. Although SDF-1
appears to be the most prominent chemokine involved in this
process, it has recently been demonstrated that proteolysis-
resistant bioactive lipids can also act as chemoattractants for
HSCs. The balance between migration of HSCs to and from
the bone marrow is not only regulated by the level of SDF-1 in
the bone marrow, but also by a variety of proteolytic enzymes
that negatively regulate the activity of SDF-1. The molecular
mechanism underlying SDF-1 mediated regulation of HSC

migration has been investigated extensively and revealed that
multiple signaling molecules, including several GTPases and
PI3K, are activated upon SDF-1 stimulation. Although PI3K and
its downstream effector PKB are activated upon SDF-1
stimulation, recent studies, however, have demonstrated that this
signaling module plays a critical role in negatively regulating
migration of HSCs and bone marrow homing.

Correct regulation of bone marrow homing process is a pre-
requisite for optimal hematopoietic recovery after HSC trans-
plantation. Research has therefore focused on improving current
stem cell transplantation regimes both either circumventing
or enhancing bone marrow homing. Phase I/II clinical trials
have, for example, been initiated to circumvent bone marrow
homing by intra bone injection of UCB cells (NCT00696046;
NCT01332006; NCT00295880) in patients. Thus far, only the
latter trial has been terminated. However, the results of this
trial did not reveal any improvement in the rate of engraftment
as compared with historical results.106 Alternatively, optimization
of bone marrow homing may be achieved by improving initial
tethering and rolling of HSCs to endothelial cells or enhancing
chemoattractant induced migration. Preclinical studies in mouse
models have revealed that both enhanced fucosylation of CD34+

cells1 and inhibition of CD26,67-71 resulting in enhanced SDF-1
activity, is sufficient to enhance bone marrow homing and to
induce engraftment levels. Phase I/II clinical trials have therefore
recently been initiated to investigate whether enhanced fucosyla-
tion (NCT01471067) or CD26 peptidase inhibition using
Sitagliptin (NCT00862719) would be sufficient to improve
stem cell transplantation regimes in patients with hematological
malignancies.
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