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Abstract

Background: Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic
development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated
from Boesenbergia rotunda by using both in vitro and in vivo assays.

Methodology/Principal Findings: PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with
IC50 value of 6.9160.85 mM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the
growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic
effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival
and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation
demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-
2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber
formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also
evidenced in two in vivomodels. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish
embryos.

Conclusions/Significance: Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in
vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and
anti-cancer activities, suggestive of PA’s potential for development as an anti-angiogenic agent for cancer therapy.

Citation: Lai S-L, Cheah S-C, Wong P-F, Noor SM, Mustafa MR (2012) In Vitro and In Vivo Anti-Angiogenic Activities of Panduratin A. PLoS ONE 7(5): e38103.
doi:10.1371/journal.pone.0038103
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Introduction

Angiogenesis, the formation of blood vessels from pre-existing

vasculature, is a complex process that involves a cascade of events

that are finely regulated under physiological conditions. Sustained,

uncontrolled angiogenesis is associated with various pathological

conditions including cancer, diabetic retinopathy, and rheumatoid

arthritis [1]. Acquisition of the angiogenic phenotype is a rate-

limiting step in tumor progression, wherein the tumor remains in

a dormant state until it is able to stimulate blood vessel growth

from nearby pre-existing capillaries [1,2] in order to facilitate

cancer cell progression and metastasis. Faced with problems

associated with conventional anti-cancer drugs such as serious side

effects, chemo- and radio-resistance, disease relapse, and metas-

tases, the scientific community has looked to the development of

alternative chemotherapeutic regimens, such as anti-angiogenic

drugs. This anti-angiogenic strategy has been an important

consideration for the development of cancer chemotherapeutics

for the past three decades.

To date, validation of more than 40 anti-angiogenic agents in

clinical settings is underway and several classes of anti-angiogenic

agents have been approved by the Food and Drug Administration

as anti-cancer drugs [3]. Nevertheless, current anti-angiogenesis

therapy is still inadequate in improving overall survival of cancer

patients [4]. In addition, limitations such as low efficacy, and

development of resistance were evidenced with long term

administration of these therapeutic agents, possibly through

compensatory mechanisms such as upregulation of other pro-

angiogenic factors or dysregulation in multiple signaling pathways

[3,4]. These limitations warrant more intensive effort in discov-

ering and developing anti-angiogenic agents, especially of small

molecules that target different angiogenesis pathways [5].

At present, much attention has been focused on natural

product-based therapeutics, especially phytochemicals, owing to

numerous reports that revealed the interference of phytochemicals

on cancer-related pathways [6,7]. Panduratin A (PA), a natural

chalcone from Boesenbergia rotunda has been reported to exhibit anti-

oxidant, anti-inflammatory and anti-cancer properties

[8,9,10,11,12], but its anti-angiogenic effect has not been reported

to date. To unravel the potential of PA as an anti-angiogenic

agent, the present study investigated the in vitro effects of PA on

various functions of human umbilical vein endothelial cells
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(HUVECs) which are pivotal to angiogenesis progression, before

applying PA to in vivo models.

Materials and Methods

Ethics Statement
All experimental procedures were approved by the University of

Malaya Animal Care & Ethics Committee. (Ethics Number: FAR/

27/01/2010/0112/LYS(R)).

Extraction and Isolation
PA was isolated from B. rotunda (a voucher specimen with

accession number KU0098 is deposited in the Phytochemistry

Herbarium, University of Malaya, Kuala Lumpur) as previously

described [8]. Briefly, methanolic crude extract was subjected to

fractionation by preparative reversed-phase HPLC (Waters Nova-

Pak C18 column, particle size 6 mm, 256100 mm), using

acetonitrile (0.1% formic acid) and water (0.1% formic acid) as

mobile phases. The elution was performed with solvent gradient

from 60% to 100% acetonitrile over 50 min at a flow rate of

12 mL/min. The purity of PA (Figure 1A) used in the present

study was at .98% purity as determined by HRMS and nuclear

magnetic resonance (1H-NMR) spectroscopy.

Cell Culture
HUVECs were purchased from ScienCell (CA, USA), and the

human hepatic epithelial cell line (WRL-68) and human fibroblast-

like fetal lung cells (WI-38) were purchased from American Type

Culture Collection (ATCC; VA, USA). HUVECs were cultured

in Endothelial Cell Medium (ECM; ScienCell) supplemented with

5% heat-inactivated fetal bovine serum (FBS; ScienCell), 1%

penicillin/streptomycin (ScienCell) and 1% Endothelial Cell

Growth Supplement (ECGS; ScienCell). WI-38 and WRL-68

were maintained in Dulbecco’s Modified Eagle Medium (DMEM;

Gibco, CA, USA) and Roswell Park Memorial Institute medium

1640 (RPMI; Gibco), respectively, supplemented with 10% heat

inactivated FBS (Sigma-Aldrich, MO, USA) and 1% penicillin/

streptomycin (Gibco). All cells were incubated at 37uC in

humidified 5% CO2, 95% air.

Cell Viability Assay
The effects of PA on the viability of HUVECs, WRL-68 and

WI-38 were examined by MTT assay. Briefly, cells were seeded in

a 96-well microtiter plate overnight, and allowed to reach ,80%

confluency after which indicated concentrations of PA were

added. After 24 h, 50 ml of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT; Sigma-Aldrich) solution

(2 mg/ml) was added to each well and incubated for 2 h at 37uC.
Then 100 ml of dimethyl sulfoxide (DMSO) was added to dissolve

the MTT-formazan crystals formed by metabolically viable cells.

The OD absorbance at 570 nm was detected and recorded using

Plate Chameleon V microplate reader (Hidex, Turku, Finland).

Real-Time Cell Growth Profiling
The growth kinetics of HUVECs, WRL-68 and WI-38 towards

PA treatment were examined using the Real-Time Cellular

Analyzer (RTCA) (xCELLigence system; Roche, Basel, Switzer-

land). This system utilizes non-invasive impedance readout to

quantitate dynamic changes in cellular status such as growth in

response to treatment. Cells were seeded at an empirically

determined density in a 96-well gold–microelectrode array in-

tegrated E-plate (Roche) and incubated at 37uC in a humidified

atmosphere of 5% CO2. The attachment and proliferation of cells

were monitored every 5 min and the sensor impedance following

cell attachment was expressed as an arbitrary unit called Cell

Index (CI). Then, the cells were treated at the exponential phase

and the kinetic responses of cells towards treatment were observed

for 72 h in real-time mode. For Vascular Endothelial Growth

Factor (VEGF)-induced cell proliferation, HUVECs were seeded

and allowed to grow overnight prior to being serum-starved in

starvation medium (1.5% FBS, ECGS free) for 6 h. Thereafter,

indicated concentrations of PA and 50 ng/ml of VEGF (BD

Biosciences, CA, USA) were co-administrated into the wells. The

cell index was further monitored for 48 h. SU5416 (Sigma) was

included as positive control.

In vitro Capillary Tube Formation Assay
The effect of PA on morphogenesis of endothelial cells was

investigated using capillary tube formation assay on Matrigel (BD

Biosciences). Briefly, a cell density of 1.56105 cells/well was

seeded on a Matrigel-pre-coated 96-well plate and treated with PA

at concentrations of 3.5, 7, and 14 mM, respectively. VEGF at

1 ng/ml and Suramin (Sigma-Aldrich) at 40 mM were included as

negative and positive controls, respectively. After 16 h, the

medium was removed and the cells were fixed, permeabilized,

and stained using DY554 phalloidin (Thermo Fisher Scientific,

PA, USA) for F-actin and 49-6-diamidino-2-phenylindole (DAPI;

Thermo Fisher Scientific) for nuclei. Images of fluorescent labeled

cells were acquired with the Cellomics Array Scan High Content

Screening (HCS) Reader (Thermo Fisher Scientific) and analyzed

using Tube Formation BioApplication algorithm (Thermo Fisher

Scientific). This automated algorithm provides quantitative

Figure 1. Selective cytotoxicity of PA on endothelial cells. (A) Chemical structure of Panduratin A (B) Dose-dependent cytotoxic effects of PA
on HUVECs, WI-38, and WRL-68 cells as examined by MTT assay.
doi:10.1371/journal.pone.0038103.g001
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measurements of tube properties such as the number of connected

tubes, tube area, and the Angiogenic Index.

Scratch-Wound Directional Migration Assay
HUVECs were seeded at a cell density of 6105 cells/well in

a 96-well microtiter plate and allowed to grow into a confluent

monolayer overnight. Then, the monolayer was scraped using

a sterile 20–200 ml micropipette pipette tip to create a wound of

61 mm width. The cells were washed twice with Hanks’ Balanced

Salt Solution (HBSS; Sigma-Aldrich) and replaced with fresh

medium containing indicated concentrations of PA. After 8 h, the

cells were stained with Hoechst 33342 and CellomicsH whole cell

stain green (Thermo Fisher Scientific). Cell migration was

estimated by measuring the number of endothelial cells that had

migrated from the edge of the wounded monolayer, as described

elsewhere [13]. An area of 5126512 pixels of the wounded area

was acquired using Cellomics Array Scan HCS Reader and the

number of migrated cells was calculated by the HCS automated

algorithm. Inhibition of migration was represented by a decrease

in the number of cells in the image acquired relative to the

untreated control. For each monolayer sample, three measure-

ments were taken for three independent wounds.

Chemoinvasion Assay
CIM-plate 16 (Roche) with Boyden-like chambers coupled with

the RTCA xCELLigence system was used to examine the effects of

PA on the chemotactic migration potential of HUVECs towards

a chemoattractant. The assay was performed according to the

manufacturer’s protocol, with minor modifications. HUVECs

were serum starved for 4 h in basal ECM before being harvested

and seeded onto the upper chamber of a CIM-plate. The PET

membranes of CIM-plate 16 were pre-coated with 0.2 mg/ml of

Matrigel. An uncoated control was included to measure the basal

migration of HUVECs. Complete ECM, supplemented with FBS

and ECGS, was placed in the lower chamber to act as

a chemoattractant. In addition, another control with basal ECM

in the lower chamber was included to monitor the random motility

of the cells [14]. PA was added in both upper and lower chambers

of the CIM-plate in order to provide ample time for the compound

to diffuse into the cells and inhibit its target. The effects of PA on

the chemoinvasion of HUVECs through Matrigel were monitored

in real-time mode for 18 h.

Cytoskeletal Rearrangement Study
The effects of PA on the actin and tubulin cytoskeletal systems

of HUVECs were investigated by immunofluorescence. Briefly,

HUVECs at ,80% confluency were treated with PA for 16 h and

stained with DY554-phalloidin for F-actin and anti-tubulin

antibody for microtubules, respectively. Images were acquired

on the Cellomics Array Scan HCS Reader and the effects on F-

actin and microtubules were analyzed by Morphology BioAppli-

cation Algorithm (Thermo Fisher Scientific). Cytochalasin B (RBI;

MA, USA), an F-actin depolymerizing agent and paclitaxel

(Ascent Scientific; Bistrol, UK), a microtubule-stabilizing agent,

were used as positive controls.

Qualitative and Quantitative Measurement of Secretion
of MMP-2
The effects of PA on MMP-2 secretion were examined

quantitatively and qualitatively. HUVECs were seeded in com-

plete medium and allowed to grow to ,80% confluency. The cells

were then washed thoroughly with HBSS to eliminate all medium

residues, which was replaced with fresh serum free medium

containing PA at 3.5 mM for the indicated periods before the

collection of conditioned medium. The concentration of MMP-2

secreted by HUVECs in the conditioned media was measured

using ELISA (Calbiochem, NJ, USA) according to manufacturer’s

instructions. The conditioned media were also subjected to gelatin

zymography (0.1% gelatin; 10% SDS-PAGE) under non-reducing

conditions, as previously described [15], with slight modifications.

After electrophoresis, the gels were washed twice for 30 min with

renaturing buffer (2.5% Triton X-100) on a rotary shaker at room

temperature. Then, the gels were incubated for 20 h at 37uC in

developing buffer (50 mM Tris-HCl, 200 mM NaCl, 10 mM

CaCl2, pH 7.8, 0.2% Brij 35). The gels were subsequently stained

with staining solution (destaining solution with 0.1% Coomassie

brilliant blue R-250) for 1 h and then destained in the destaining

solution (45% methanol/10% acetic acid) until clear bands against

a blue background were observed. The clear bands represented

areas of gelatinolytic activities. Commercially available MMP

standards (Calbiochem) and molecular marker (Invitrogen, CA,

USA) were separated concurrently for MMP identification. Gel

images were acquired on the Bio Rad Chemi XR Gel doc System

(Bio-Rad, CA, USA).

In vivo Matrigel Plug Assay
Matrigel plug assay in BALB/c mice was performed as

described previously, with minor modifications [16,17]. Female

BALB/c mice (5–6 weeks old) were randomly divided into 4

different treatment groups and maintained under pathogen-free

conditions. Mice were injected with 500 ml of Matrigel (BD

Biosciences) containing heparin (64 U) and VEGF (150 ng/ml)

with or without PA (5 mM). SU5416 (5 mM) was used as positive

control. Another group with Matrigel plus heparin only was

included as vehicle control. The mice were sacrificed after seven

days and the Matrigel plugs were removed and photographed. To

quantitate the formation of functional blood vessels, the amount of

hemoglobin (Hb) was measured using the Drabkin hemoglobin

assay as described previously [18].

In vivo Zebrafish Assay
Zebrafish were maintained at 28uC on a 14/10 h day/night

light cycle. Zebrafish embryos were generated by natural pair-wise

mating. Fertilized embryos were maintained in embryo water

(0.2 g/L ocean salt in distilled water) at 28.5uC. Healthy embryos

at 24 hpf (21 somite stage) were manually dechorionated prior to

being subjected to treatment by incubation in embryo water

containing PA (15 mM). SU5416 (1 mM) was used as positive

control. After treatment for 24 h, embryos were returned to

normal embryo water for another 24 h. Then, embryonic blood

circulation was videotaped using a camera mounted to a Zeiss

inverted microscope after which the 72 hpf embryos were

collected and fixed overnight at 4uC with 4% paraformaldehyde.

Endothelial cells were visualized in situ by endogenous alkaline

phosphatase staining [19].

Statistical Analysis
Assays were performed in duplicate and three independent

experiments were performed unless otherwise stated. Statistical

significance were analyzed by using unpaired Student’s t-test or

one-way analysis of variance (ANOVA) tests using Graphpad

Prism v4.0 software (Graphpad Software, San Diego, CA, USA).

Statistical significance is expressed as ***, P,0.001; **, P,0.01;

*, P,0.05.
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Results

Selective Cytotoxic and Cytostatic Effects of PA on
HUVECs
Dose-dependent anti-endothelial effects of PA were investigated

by both MTT assay (Figure 1B) and RTCA (Figure 2). In order to

rule out the possibility of non-selective cytotoxic effects, PA was

also tested in parallel on WI-38 human fibroblast cells and WRL-

68 human hepatic epithelial cells. A summary of the IC50 values of

HUVECs, WRL-68 and WI-38 cells at 24 h post-treatment with

PA using MTT assay and RTCA is shown in Table 1. The IC50

values obtained were comparable between both methods. WI-38

and WRL-68 were found to be more resistant to the cytotoxic

effect of PA, whereby their IC50 values increased by 4 and 3 folds,

respectively, compared to HUVECs when determined by MTT

assay.

In contrast to the MTT assay that examines end point

cytotoxicity, RTCA measures the dynamic growth and kinetic

responses of cells following treatment with PA. PA at high dose

(30 mM) exerted profound cytotoxicity effect on HUVECs, as

indicated by a drastic decrease in CI values within 2 h post-

treatment, wherein the growth of HUVECs failed to recover from

the toxic insult (Figure 2A). On the contrary, a lower dose

(7.5 mM) of PA exerted a cytostatic effect on HUVECs, as

suggested by the unchanged CI values, which persisted over 72 h

of treatment. PA at 1.88 and 3.75 mM, however showed no

observable inhibitory effects on the growth of HUVECs and the

cell proliferation was found to be parallel to that of the untreated

control.

In addition, comparisons between the RTCA profiles of PA on

HUVECs, WRL-68 and WI-38 clearly demonstrated the selective

cytotoxicity of PA against endothelial cells. The profound

cytotoxicity effect at 30 mM on HUVECs was not observed on

WRL-68 and WI-38. Alternatively, PA at this concentration

(30 mM) exerted cytostatic effects on WI-38 and WRL-68 cells

with the growth of WI-38 subsequently recovering after 60 h of

treatment. At 15 mM, WI-38 was found to have fully recovered

from the initial cytotoxic effect, and began to re-proliferate,

attaining growth similar to that of the untreated control after 42 h

of treatment. WRL-68 also partially recovered from growth

inhibition at 15 mM PA. These results showed that PA has

selective toxicity against HUVECs and induces both cytostatic and

cytotoxic effects as its concentration increased.

PA Suppresses VEGF-induced Survival and Proliferation
of HUVECs
VEGF is an important mitogen and survival factor for

endothelial cells. In response to angiogenic stimulation, endothelial

cells enter into an active proliferative state. The effects of PA on

VEGF-induced proliferation and survival of HUVECs were

investigated. As shown in the RTCA profile (Figure 3A), non-

stimulated HUVECs in starvation medium (1.5% FBS) ceased to

proliferate and cell death ensued gradually, attributed to apoptosis

induced by serum withdrawal, as previously reported [20].

Stimulation with VEGF (50 ng/ml) significantly promoted pro-

liferation of quiescent HUVECs with maximal effect observed

after 24 h, with a 2.7 fold increase in normalized cell index

compared to non-stimulated HUVECs (Figure 3B). In addition,

VEGF treatment also enhanced survival by rescuing HUVECs

from cell death due to serum withdrawal.

Anti-endothelial effects of PA were found to be more potent

against VEGF-induced HUVECs with IC50 values of 3.53 mM.

Notably, treatment at 7 mM caused irreversible cytotoxicity in

contrast to the cytostatic effect observed in the absence of VEGF

stimulation (Figure 2A). Furthermore, co-administration of PA at

3.5 mM with VEGF effectively abrogated the protective effects of

VEGF on endothelial cells apoptosis. This effect was similar to

the activity of SU5416, a VEGFR2 (FLK-1/KDR) tyrosine

kinase inhibitor [21] which was included as positive control. It is

also noteworthy that PA did not further induce endothelial cell

death at this dose, indicating PA selectivity in inhibiting VEGF-

induced endothelial cell survival and proliferation, rather than

generalized PA cytotoxicity. The data suggest that PA was able

to suppress VEGF-induced survival and proliferation, and

VEGF-induced HUVECs were more sensitive to the cytotoxic

effects of PA.

PA Inhibits Morphogenesis of HUVECs
The effects of PA on endothelial cells tube formation were

examined using an in vitro Matrigel HUVECs tube formation

model. As depicted in Figure 4A, treatment by PA caused massive

disruption of the capillary tubes network in contrast to the

interconnecting capillary tube network in the untreated control.

Tubes formed in the PA-treated wells were rather incomplete with

shorter tube length and fewer branch points. VEGF, an

endogenous pro-angiogenic factor and Suramin, a well-known

angiogenic inhibitor were included as internal negative and

positive controls, respectively. VEGF stimulated complete and

well-formed networking of capillary tubes while Suramin com-

pletely impeded tube formation. Angiogenic Index (AI) is the

measure of the percentage of the image area covered by tubes

multiplied by 10 [22]. PA at 3.5, 7 and 14 mM significantly

reduced the AI compared to untreated control. In addition, tube

area and percentage of connected tubes as quantitated using an

automated algorithm were also found to be negatively interrupted

by PA treatment (Figure 4B). These results demonstrate that PA

effectively inhibits HUVECs tube formation on Matrigel in a dose-

dependent manner.

Effect of PA on HUVECs Chemoinvasion
During angiogenesis, endothelial cells degrade the basement

membrane, invading and migrating towards an increasing

gradient of chemoattractant [23]. Further investigations were

done on the effects of PA on endothelial cell chemotaxis and

invasion towards complete ECM as the chemoattractant. PET

membranes of a CIM plate were pre-coated with Matrigel to

create a barrier through which HUVECs must invade. Uncoated

wells were also included to measure the basal migration (with

complete ECM at the bottom chamber) and background

migration (with serum free ECM at the bottom chamber). This

would ensure the migration measured was chemotactic rather than

random cell motility. The number of migrated cells was monitored

in real-time mode using RTCA and expressed as Cell Invasion

Index (CII), defined as the ratio of Cell Index of basal invasion to

basal migration at a given time point. Basal invasion was defined

as the invasion of untreated HUVECs towards complete ECM.

Figure 5A shows the kinetic profile of HUVECs chemoinvasion

towards complete ECM for 18 h, and the cell invasion index is

illustrated in Figure 5B. PA inhibited the chemotactic invasiveness

of HUVECs with IC50 of 2.61 mM. At 3.5 mM, the inhibitory

effects of PA on HUVECs chemoinvasion were observed at ,5 h

post-treatment. However, exposure to PA at 7 mM completely

impaired the migratory and invasive capability of HUVECs

immediately after treatment commenced at the beginning of the

assay. The data suggest that PA inhibited the chemoinvasion of PA

in both time and dose-dependent manners.

Anti-Angiogenic Activities of Panduratin A
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PA Inhibits the Migratory Ability of HUVECs
Scratch-wound assay, a commonly used model [24], was

performed to assess the effects of PA on the migratory ability of

HUVECs. The effects on HUVECs migration were observed for

8 h, prior to the doubling time of HUVECs (,24 h) in order to

exclude any possible interference by HUVECs proliferation. In

response to the wound, endothelial cells migrated into the denuded

area, in a manner that mimicked the pattern of endothelial cell

migration in vivo [25,26]. As shown in Figure 6, untreated

HUVECs migrated to the denuded area, but treatment with PA

inhibited HUVECs migration in a dose-dependent manner, with

PA doses of 3.5, 7, and 14 mM significantly reducing the

percentage of migrated cells.

PA Suppresses the Secretion and Activation of MMP-2
MMP-2 is important in degrading the extracellular matrix

during the course of endothelial cell invasion in angiogenesis. The

correlation between the inhibitory effects of PA on HUVECs

chemoinvasion through Matrigel, with the inhibition of MMP-2

secretion, was tested. Conditioned media of HUVECs exposed to

PA (3.5 mM) at different time points were collected and

quantitated using ELISA assay. As shown in Figure 7A, PA

effectively suppressed the secretion of MMP-2, whereas untreated

HUVECs continuously secreted MMP-2 into conditioned media,

as depicted by the gradual increase of MMP-2 between 2 to 24 h.

In contrast to the untreated control, PA treatment disrupted this

pattern of time-dependent increase of MMP-2 secretion. This

inhibitory PA effect on MMP-2 secretion was observed as early as

2 h post-exposure, where its expression was reduced by 3 folds.

The suppression of MMP-2 persisted up to 24 h and resulted in

a 6.5 fold reduction compared to the untreated control.

MMP-2 is secreted as inactive zymogen (pro MMP-2; 72 kDa)

and is then activated to the intermediate form (64 kDa) and

subsequently to the active form (active MMP-2; 62 kDa). Due to

cross-reactivity in the ELISA assay, it was impossible to

differentiate these different forms of MMP species. Gelatin

zymography was used to further study the effects of PA on

MMP-2 secretion and activation. The same conditioned media

used for the ELISA assay was subjected to gelatin zymography and

the result is illustrated in Figure 7B. Gelatin zymography separated

MMP-2 into 3 bands; the pro MMP-2 (top), intermediate (middle)

and active MMP-2 (bottom) (Lane 1, Figure 7B). It is observed that

pro MMP-2 was the main species responsible for the increased

MMP-2 secretion observed in the ELISA assay. A time-dependent

increase in pro MMP-2 secretion was observed in untreated

HUVECs (Lanes 2,4,6, Figure 7B). Treatment with PA for 24 h

resulted in significant reduction of pro MMP-2 (Lane 7, Figure 7B)

compared to untreated cells (Lane 6, Figure 7B). This result

showed that PA had decreased the expression of pro MMP-2 in

HUVECs which contributed, at least in part, to the invasive

capability of HUVECs.

In addition, expressions of the intermediate MMP-2 species

were observed at 8 and 24 h, while active MMP-2 only appeared

at 24 h, signifying the gradual activation of pro MMP-2 to active

MMP-2 by HUVECs. PA treatment significantly reduced

expression in this moiety of MMP-2, suggesting that PA may also

attenuate the activation of MMP-2.

Effects of PA on the Cytoskeletal Systems of HUVECs
Migration of HUVECs depends on the activation of several

signaling pathways which eventually lead to cytoskeletal remodel-

ing and ultimately, motility of cells, which prompted investigations

into whether the observed anti-migration and anti-invasion effects

of PA were due to disruption of actin and tubulin cytoskeletal

systems. As shown in Figure 8A, paucity of stress fibers was

observed in PA-treated HUVECs at 7.5 and 15 mM, in contrast to

the well-developed, dense array of stress fibers in untreated

controls. Analyses using Cellomics Morphology BioApplication

algorithm showed 3 fold and 1.6 fold reduction in F-actin stress

fiber count, respectively (Figure 8B), compared to untreated

controls. Conversely, microtubule distribution and polymerization

remained undisturbed in PA-treated HUVECs (Figure 8C). As

a control, overnight treatment with cytochalasin B caused

HUVECs actin depolymerization whereas paclitaxel, a microtu-

bule-stabilizing agent [23], caused an increase in microtubule

count. Collectively, these data suggest that the inhibition of

HUVECs’ stress fiber formation may be one of the mechanisms

exerted by PA in inhibiting HUVECs migration and invasion.

PA Inhibits in vivo Angiogenesis in the Murine Matrigel
Plug and Zebrafish Angiogenesis Models
The anti-angiogenic potential of PA was subsequently validated

in in vivo models. To determine whether PA could suppress or

inhibit VEGF-induced angiogenesis in the Matrigel plug, mice

were injected with 500 ml of Matrigel containing VEGF with or

without PA, or Matrigel alone as negative control. In the presence

of VEGF, the Matrigel plug appeared bright red, indicating that

VEGF had induced and activated the mice endothelial cells to

develop functional neo-vessels into the plug, whereas the Matrigel

plug which lacked VEGF appeared pale. PA at 5 mM suppressed

VEGF-induced neovascularisation, as observed from the reduction

in neo-vesssel development into the plugs (Figure 9A). Hemoglobin

content of the plugs were measured as an indirect indicator of

angiogenesis. PA-containing plugs contained significantly lower

hemoglobin content compared to VEGF-induced controls

(Figure 9A). PA significantly inhibited or suppressed angiogenesis

induced by VEGF in the murine Matrigel plug model.

Zebrafish embryos were exposed to PA at 24 hpf (21 somite

stage), prior to the development of angiogenic vessels in order to

determine the effects of PA on angiogenesis. The embryos were

exposed to PA for 24 h, after which the embryos were returned to

normal embryo medium for the next 24 h. The effects of PA on

the intersegmental vessels (ISVs), the most easily observed

Figure 2. Selective cytotoxicity and anti-proliferative effects of PA on HUVECs. Dynamic growth and kinetic response of cells upon PA
treatment were monitored using Real-Time Cell Analyzer. Representative Real-Time Cell Analysis Profiles of (A) HUVECs, (B) WRL-68, and (C) WI-38
cells treated with PA for 72 H.
doi:10.1371/journal.pone.0038103.g002

Table 1. IC50 values of PA on HUVECs, WRL-68, and WI-38
derived from MTT assay and RTCA respectively.

IC50 values (mM)

MTT RTCA

24 h 24 h

HUVECs 5.9760.35 6.9160.85

WI-38 18.8660.22 15.1760. 45

WRL-68 12.3460.89 14.8960.53

doi:10.1371/journal.pone.0038103.t001
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Figure 3. PA suppresses VEGF induced survival and proliferation on HUVECs. (A) Representative RTCA profile of VEGF induced growth and
survival. HUVECs were seeded in an E-Plate and allowed to attach and grow overnight. At exponential growth phase, HUVECs were serum-starved for
6 h before stimulation with VEGF and co-treatment of PA (B) Normalized cell index of HUVECs at different time points upon co-administration with
PA and VEGF. Data are expressed as means6 SEM of three independent experiments. Statistical significance is expressed as ***, P,0.001; **, P,0.01;
*, P,0.05 versus VEGF control.
doi:10.1371/journal.pone.0038103.g003
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angiogenic vessels, were monitored. As shown in the video (Video

S1), the ISVs of control zebrafish embryo at 72 hpf were well

developed, arranged in an extremely regular array, and achieved

robust circulation [27]. Treatment with 7 mM PA did not exhibit

anti-angiogenic effects (data not shown). The percentage of viable

embryos after 24 h of treatment with 15 mM PA was 92.1%

(Table 2). In the following 24 h of incubation in normal embryo

medium, viability was further reduced to 74.6% (Table 2). In the

positive control group, the percentage of viable embryos exposed

to SU5416 was 95% (n= 20), with 100% of the viable embryos

displaying disruption in blood flow (Table 3). However, after 24 h

exposure to 15 mM PA (n= 63), disruption or loss of blood flow

through ISVs (Video S2) were observed in 75% of the embryos

(Table 3), suggesting that PA inhibits or delays ISV development.

In contrast, the percentage of viable embryos in the vehicle control

group (n = 40) was 100% (Table 2), with all embryos displaying

normal blood flow (Table 3). Endogenous alkaline phosphatase

staining was done in situ to visualize the blood vessels. As shown in

Figure 9B, ISVs of vehicle controls were well formed whereas

embryos treated with PA showed incomplete ISV formation. This

data suggests that PA inhibits neo-vascularization in zebrafish at

the tested dose, in agreement with in vitro data.

Figure 4. PA inhibits morphogenesis of endothelial cells. (A) Representative images of fluorescent-labeled HUVECs treated with different
concentrations of PA. Greyscale fluorescence images are shown with colored overlays from the algorithm identifying the different entities measured:
connected tubes are outlined in blue, unconnected objects are in aqua, nodes where the tube branches are marked by pink dots, and objects
rejected from the quantitative analysis are in orange (B) Effects of PA on properties of tube formed (Angiogenic Index, Percentage of connected tubes
and Tube area) as quantitated by Tube Formation BioApplication. Data are expressed as means 6 SEM of three independent experiments. Statistical
significance is expressed as ***, P,0.001; **, P,0.01; *, P,0.05 versus untreated control. Scale bar indicates 200 mm.
doi:10.1371/journal.pone.0038103.g004
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Figure 5. Effects of PA on Chemoinvasion as examined with Boyden-like CIM-plate coupled with RTCA xCELLigence system. (A)
Representative figure of Real-time profile of HUVECs chemoinvasion (B) Cell invasion index (CII) of HUVECs at 18 h post-treatment with PA. Data are
expressed as means 6 SEM of three independent experiments. Statistical significance is expressed as ***, P,0.001 versus basal invasion.
doi:10.1371/journal.pone.0038103.g005

Figure 6. Effects of PA on HUVECs migratory ability as determined by scratch-wound assay. (A) Confluent monolayer of HUVECs was
wounded and treated with either PA (1.75, 3.5, 7, 14) or medium alone (untreated control) for 8 h. The cells were then fixed and stained with Hoechst
33342 and CellomicsH whole cell stain green (B) Quantification of the number of migrated cells after 8 h exposure to indicated concentrations of PA.
For each monolayer sample, three measurements were taken in three independent wounds. Percentage of inhibition was expressed using untreated
wells at 100%. Data are expressed as means6 SEM of three independent experiments. Statistical significance is expressed as ***, P,0.001; **, P,0.01;
*, P,0.05 versus untreated control. Scale bar indicates 200 mm.
doi:10.1371/journal.pone.0038103.g006
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Discussion

Four decades ago, Folkman introduced the concept of targeting

angiogenesis as a novel approach to the treatment of cancer [2].

Research in this area has since intensified to gain further

understanding of the mechanisms and significance of angiogenesis

in sustaining tumor growth and metastasis to facilitate the

development of anti-angiogenic drugs. This includes the search

for potential anti-angiogenic agents from natural resources. In this

study, we demonstrated the anti-angiogenic potential of PA,

a natural chalcone, by systematically characterizing its effects on

various angiogenic functions of HUVECs, the most commonly

used endothelial cell for in vitro angiogenesis assays. Angiogenesis

progression depends on the increase in the viability and pro-

liferation of endothelial cells [28], and we have shown that PA

inhibits the growth of HUVECs in a dose-dependent manner. It is

also noteworthy that PA is not cytotoxic at doses that inhibit

angiogenic functions. Furthermore, fibroblast and epithelial cells

were relatively resistant to PA at these doses, suggesting there is

selectivity by PA against endothelial cells. VEGF is a major pro-

angiogenenic factor that governs angiogenesis, in both physiolog-

ical and pathological settings. Secretion of VEGF by tumor cells in

response to hypoxia is an important factor that drives tumor

angiogenesis and has been implicated in cancer progression [29].

We demonstrated that PA suppresses VEGF-induced survival and

proliferation of HUVECs, implicating PA as an inhibitor of

VEGF-driven angiogenesis. Capillary tube formation which

involves attachment, matrix remodeling and morphogenesis, or

differentiation of endothelial cells [30], is another prerequisite in

angiogenesis progression. In vitro, endothelial cells plated on

Matrigel will, once stimulated, attach, enter into growth arrest,

and secrete proteases to invade the gel. The cells then migrate and

differentiate into capillary tube networks in a manner that closely

resembles the in vivo environment [30,31]. Using a similar

approach, we showed that PA disrupts in vitro tube formation,

implicating PA with inhibitory effects on endothelial cell attach-

ment, migration and invasion.

Migration of endothelial cells towards pro-angiogenic modula-

tors is an integral feature of angiogenesis and this process can be

simulated in vitro using Matrigel as an extracellular matrix barrier

for invasion of HUVECs following the addition of a chemoat-

tractant [14]. Migration can also be demonstrated using a scratch-

wound assay, wherein in vitro denuded endothelial cells, when

stimulated, will polarize towards the denuded space and migrate in

a unidirectional fashion to make contact with migrating cells from

the opposing wound edge [32], a mechanism that involves cell

migration and cell-cell interactions [33]. In both models, it was

shown that PA inhibits the migratory potentials of endothelial cells

by preventing chemoinvasion of HUVECs towards serum-

supplemented media, and migration of cells towards the denuded

space in scratch wound assay. These data suggest that PA anti-

migration activity is mediated through impedance of cell-cell

interactions as well as a direct effect on endothelial cell locomotion

apparatus, such as F-actin and microtubules.

Endothelial cell locomotion is a coordinated process which

encompasses signal transduction, and cytoskeletal dynamics and

re-organization. Stress fibers are bundles of actin filaments

required for the contractions of the cell body during migration

[34]. In sharp contrast to the dense array of stress fibers in

untreated controls, stress fibers were scarce in PA-treated cells. PA

Figure 7. Effects of PA on HUVECs secretion of MMP-2. (A) Quantitative measurement of secreted MMP-2 by ELISA assay. Data are expressed
as means 6 SEM of two independent experiments. Statistical significance is expressed as P,0.01; *, P,0.05 versus untreated control (B) Qualitative
analysis of expression of pro, intermediated and active MMP-2 using Gelatin zymography. Gel images were acquired on a Bio Rad Chemi XR Gel doc
System.
doi:10.1371/journal.pone.0038103.g007
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had significantly interrupted the formation of actin stress fibers in

endothelial cells, disrupting the contraction forces required for cell

migration. Studies have unravelled the pivotal role of ROS in

regulating endothelial cell migration and actin reorganization

[35]. We propose that the inhibition of stress fiber formation in

HUVECs observed is due to reported anti-oxidant properties of

PA [36]. Sohn et al. [10] demonstrated the ability of reduction in

intracellular ROS production by PA. The possible mechanism for

the inhibitory effect by PA on migration is, at least in part,

mediated through the reduction in endothelial intracellular ROS

production, resulting in decreased stress fiber formation.

MMPs are a family of zinc-dependent endopeptidase that are

capable of degrading components of the basement membrane and

ECM, allowing endothelial cells to invade and migrate towards

pro-angiogenic factors [37]. In intact cells, MMP-2 is secreted as

an inactive zymogen (pro MMP-2; 72 kDA), which is further

activated in extracellular milieu by the membrane-type MMP

(MT1-MMP) with the aid of TIMP-2 to a 64 kDA active

intermediate form [38], and a subsequent intermolecular autolytic

cleavage leads to auto-activation to the 62 kDA activated MMP-2

[39]. Here, we showed that PA suppressed the secretion of MMP-2

and possibly attenuated its activation. The absence of active

MMP-2 (62 kDA) moiety in PA-treated samples at 24 h could be

due to physical interference by PA on the intermediate form of

MMP-2, impeding its activation through an auto-proteolysis

mechanism; or rather, this could be due to the decrease in

intermediate forms, resulting in the activation of a minute amount

of MMP-2 which could not be detected within current experi-

mental conditions. MMP-2 has been strongly implicated in

angiogenesis and is a critical factor for the switch to an angiogenic

phenotype in tumors [40]. Intriguingly, endothelial-derived MMP-

2 has been implicated in promoting cancer cell extravasation,

thereby increasing the tumor’s metastatic potential [41]. We

anticipate that the inhibitory effects demonstrated by PA against

MMP-2 secretion will hold great pharmaceutical value as an anti-

angiogenic agent for metastatic malignancies.

In addition, the anti-angiogenic potential of PA was also

evidenced in two in vivo models. The use of zebrafish as an in vivo

angiogenesis model has gained much attention due to its

physiological similarities to mammals [42]. We were able to show

that PA (15 mM) distinctly inhibited angiogenesis in zebrafish

embryos following 24 h exposure. It was also observed that longer

exposure to PA could result in toxicity to the embryos, while anti-

angiogenic effects were not observed at a lower dose of PA (7 mM).

Figure 8. Effects of PA on cytoskeletals system of HUVECs. (A) HUVECs were treated with PA, paclitaxel, cytochalasin B, or medium alone
(untreated control) for 16 h. HUVECs were fixed and stained with DY554-phalloidin for F-actin, and anti-tubulin antibody for microtubules,
respectively. Images were acquired on Cellomics ArrayScan HCS Reader. Number of (B) F-actin (stress fiber), and (C) Microtubule fibers count were
analyzed by Cellomics Morphology BioApplication. Data are expressed as means 6 SEM of three independent experiments. Statistical significance is
expressed as ***, P,0.001; **, P,0.01; *, P,0.05 versus untreated control. Scale bar indicates 50 mm.
doi:10.1371/journal.pone.0038103.g008
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These observations suggest that the anti-angiogenic effect on the

embryos was partially due to an anti-endothelial effect at higher

doses. It is also noted that the anti-angiogenic effect of PA was

inferior to that of SU5416, which produced specific anti-

angiogenic effects at 1 mM in the embryos. However, in the

murine Matrigel plug model, treatment with a lower concentration

of PA (5 mM) did result in inhibition of VEGF-induced blood

vessel development into Matrigel plugs, alongside lower hemoglo-

bin levels in the plugs. The differences observed between the two in

vivo models could be attributed to different mechanisms of actions,

and warrants further investigation to determine the exact anti-

angiogenic mechanism of PA in different in vivo models.

In summary, our results strongly support the potential of PA as

anti-angiogenic agent, with its multiple effects in inhibiting

survival and proliferation of endothelial cells, morphogenesis,

migration, chemoinvasion, stress fiber formation, and secretion

and activation of MMP-2. To the best of our knowledge, these

results represent first line evidence of the novel biological

function of PA as an angiogenic inhibitor. Improvement of its

current structure for more effective and specific derivatives

should be considered for future development of PA as an anti-

angiogenic agent.

Figure 9. PA inhibits angiogenesis in in vivo murine Matrigel plug assay and in vivo zebrafish angiogenesis models. (A) PA inhibited
angiogenesis induced by VEGF in the murine Matrigel plug model. Female BALB/c mice were injected subcutaneously with 500 ml of Matrigel
containing VEGF (150 ng/ml) with or without PA (5 mM). VEGF plus SU5416 (5 mM) was used as positive control. The mice were sacrificed after seven
days and the Matrigel plugs were removed and photographed. The degree of angiogenesis was determined indirectly by measuring the content of
hemoglobin of the plugs using Drabkin’s assay. Data are expressed as means 6 SEM. Statistical significance is expressed as P,0.05 versus VEGF
induced control (n = 12–14) (B) PA exhibited anti-angiogenenic potential on the zebrafish angiogenesis model. Zebrafish embryos at 24 hpf were
dechorionated and treated with PA (15 mM) or 0.1% DMSO for 24 h at 28.5uC. Thereafter, the treatment was removed and the embryos were
maintained in normal embryo medium for another 24 h and fixed in 4% paraformaldehyde prior to in situ staining for endogenous alkaline
phosphatase activity to visualize the blood vessels. Arrows denote inhibited ISVs. Embryos are of lateral view, with anterior to the left.
doi:10.1371/journal.pone.0038103.g009

Table 2. Percentage of embryo viability upon treatment with PA.

Treatment Number of embryos (n) Number of fatalities Percentage of viability (%)

PA (15 mM) 63 5*; 11** 92.1%*; 74.6%**

SU5416 (1 mM) 20 1 95%

Vehicle control 50 0 100%

*Number of fatalities observed at 48 hpf (after 24 h treatment).
**Number of fatalities observed at 72 hpf (24 h treatment followed by 24 h recovery in normal embryo medium).
doi:10.1371/journal.pone.0038103.t002
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Supporting Information

Video S1 Robust circulation of intersegmental vessels
in control zebrafish embryos. Embryos were maintained in

normal embryos medium with 0.1% DMSO at 28.5uC. At 72 hpf,

video of blood circulation was shot using a camera mounted to

a Zeiss inverted microscope. Embryos are of lateral view, with

anterior to the right.

(MPG)

Video S2 PA disrupts the blood flow of intersegmental
vessels in zebrafish embryo. Embryos at 24 hpf were treated

with PA (15 mM) for 24 h at 28.5uC. The treatment was then

removed and embryos were maintained in normal embryo

medium for another 24 h. At 72 hpf, video of blood circulation

was shot using a camera mounted to a Zeiss inverted microscope.

Embryos are of lateral view, with anterior to the right.

(MPG)
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