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Abstract

Goal-directed human behavior is enabled by hierarchically-organized neural systems that process executive commands
associated with higher brain areas in response to sensory and motor signals from lower brain areas. Psychiatric diseases and
psychotic conditions are postulated to involve disturbances in these hierarchical network interactions, but the mechanism
for how aberrant disease signals are generated in networks, and a systems-level framework linking disease signals to specific
psychiatric symptoms remains undetermined. In this study, we show that neural networks containing schizophrenia-like
deficits can spontaneously generate uncompensated error signals with properties that explain psychiatric disease
symptoms, including fictive perception, altered sense of self, and unpredictable behavior. To distinguish dysfunction at the
behavioral versus network level, we monitored the interactive behavior of a humanoid robot driven by the network. Mild
perturbations in network connectivity resulted in the spontaneous appearance of uncompensated prediction errors and
altered interactions within the network without external changes in behavior, correlating to the fictive sensations and
agency experienced by episodic disease patients. In contrast, more severe deficits resulted in unstable network dynamics
resulting in overt changes in behavior similar to those observed in chronic disease patients. These findings demonstrate that
prediction error disequilibrium may represent an intrinsic property of schizophrenic brain networks reporting the severity
and variability of disease symptoms. Moreover, these results support a systems-level model for psychiatric disease that
features the spontaneous generation of maladaptive signals in hierarchical neural networks.
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Introduction

The complex and diverse cognitive behavior of humans is

enabled by the evolution of functional hierarchies in brain

networks [1–3]. In these hierarchical neural systems, orderly

interactions between top-down goal-directed processes, associated

with prefrontal cortex, and bottom-up sensory-driven processes in

primary and associative sensorimotor cortices are essential for

flexible behavior [4–6]. However, while hierarchical neural

systems provide significant advantages for adaptive behavior in

social environments, their failure to properly develop or maintain

precisely aligned signaling of goal-directed behavioral sequences is

proposed to result in neuropsychiatric disease symptoms.

Schizophrenia is a psychiatric disease whose symptoms include

spontaneous episodic hallucinations, delusions, disturbances of self,

and, in more severe cases, disorganized behavior such as repetitive

and cataleptic behaviors. Neuroclinical observations suggest

schizophrenia is associated with abnormal functioning of the

prefrontal cortex and posterior parts of the brain such as the

parietal [7,8] and temporal cortex [9]. However, the diverse

symptoms of schizophrenia cannot be explained merely by

anatomical or physiological abnormalities in focal regions, but

likely have a global, systems-level origin. Based on this rationale,

theoretical [10–12] and clinical [13] studies have suggested that

the basic pathology of schizophrenia may be associated with

‘‘functional disconnectivity’’ in the hierarchical network of the

brain, primarily between prefrontal and posterior brain regions.

Such network deficits might arise via cellular defects in circuit

formation or function [14,15]. Likewise, studies from the

perspective of motor control theory [16,17] hypothesized that

disturbance of self, a core symptom of schizophrenia, arises due to

a failure of patients to form appropriate sensory predictions or

‘‘forward models’’ [18] that are essential for skillful behavior. In

this view, the impaired forward model results in a mismatch

between the forward prediction and actual sensory feedback,

resulting in the patient’s feeling that his actions are not generated

by himself but by some outside force. Yet another line of theory

suggests that schizophrenic patients may have disruptions in error/

conflict-related signals [19–21], which are an important aspect of

top-down and bottom-up interactions. However, since the target

symptoms and level of explanation for each of these theories are

different, existing models of schizophrenia remain fragmentary.

More importantly, the mechanism by which disconnected brain

networks could produce defective neural network interactions is

unknown. Here we show that underconnected neural networks

produce aberrant prediction error signals, and, in turn, these

defective signals produce changes in the goal-orientation of the

network, even in the absence of behavior. Our proposed idea was

tested through a series of experiments in which behavioral control
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mechanisms were implemented by the physical actions of a

humanoid robot driven by a hierarchical neural network model

that was required to perform goal-directed behaviors via

interactions with its environment.

Results

System overview: neural network-driven robot
To study the relationship between neural network activity and

goal-directed behavior, we employed a humanoid robot driven by

a hierarchical network. The goal of the robot was to repeatedly

produce two different types of behavior following a rule associated

with the positions of an object (Fig. 1A). In addition to producing a

series of action sequences, the robot was also required to flexibly

switch between the two types of behavior according to unpredict-

able changes in its environment under experimental manipulation.

In order to achieve such human-like flexible adaptation, the robot

must contain an internal neural representation for the current

ongoing task and this representation has to be switched for the

target task behavior. In this study, this internal representation and

corresponding neural activity related to the task behavior are

referred to as the ‘‘intention/goal’’ and ‘‘intention state’’,

respectively.

An artificial neural network controlling the robot actions was

instantiated by a hierarchical recurrent neural network (RNN)

model [3]. Thanks to its capacity to reproduce complex dynamics,

the RNN is often used for modeling temporal sequence learning

[22–25]. Spatio-temporal patterns of behavior arise from dynam-

ics of neural activities through neural connectivity. The RNN is as

such considered to emulate characteristic features of actual neural

systems, and the current model is considered consistent at the level

of the macro-level mechanisms of biological neural systems [24–

26].

The network receives input from current proprioception and

vision sensory modalities, and generates forward predictions of

those for the next time step (Fig. 1B). The forward prediction of

proprioception was sent to the robot in the form of target joint

angles. This forward prediction of sensory states is made possible

by the capacity of the RNN to preserve its internal state, which

enables it to reproduce complex dynamics. As a result of training,

the self-organization of a functional hierarchy occurred, within

which one grouping, referred to as a higher level, represented the

executive intention/goal for the task behavior, and the other

grouping, referred to as a lower level, represented sensorimotor

interactions ([3], see also Methods).

Flexible switching of behavior though hierarchical
interactions

Based on this hierarchical representation, the network success-

fully reproduced learned task behavior sequences as top-down

prediction of proprioceptive sequences with the interaction of the

robot’s body and its physical environment. In addition to top-

down forward predictions, in order to achieve quick adaptation to

environmental changes, intention states could be modulated based

on prediction errors, the discrepancy between the network’s

prediction and reality (Fig. 1B, see Methods for details). Through

the bottom-up modulation process in which the intention state is

modulated so as to minimize prediction error [5,6], the robot

successfully adapted to unpredictable sensory perturbations (Movie

S1).

Figure 2A illustrates an example of sensorimotor sequences and

changes in the activity of the trained network during the robot’s

task execution through real-time interactions between top-down

prediction and bottom-up modulation processes. Due to the

unpredictable switching of the object’s position, prediction error

was temporarily increased and this induced modulation of the

robot’s intention state resulting in the flexible switching of its overt

behavior in response to its environment. This switching of

intention through bottom-up modulation can be thought of as

corresponding to recognition of a situation.

Figure 1. The behavioral task for the robot and system overview. (A) The task for the robot is to repeatedly produce two different types of
behavior: (i) move the object up and down three times at the position L, and (ii) move the object backward and forward three times at the position R.
For each series of actions, the robot began from the home position and ended at the same home position. The robot repeatedly generates the same
series of actions unless the object was located at the same position. The object position was switched by an experimenter at unpredictable timing. (B)
System overview.
doi:10.1371/journal.pone.0037843.g001
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Simulations of functional network disconnection in
schizophrenia

To test the hypothesis of a failure in top-down and bottom-up

interactions in schizophrenia, we simulated functional disconnec-

tion between levels of the hierarchical network. Specifically,

connective weights between the higher level intention/goal and

the lower level sensorimotor interaction, which are expected to

represent altered synaptic connectivity in brain, were slightly

modified by adding random noise. We then assessed changes in

the robot’s behavior and corresponding neural network activity

while varying the level of network disconnection (see Methods).

Changes in prediction error and robot behavior associated with

various levels of disconnection are summarized in Figure 3.

When the level of disconnection was mild, the robot was able to

generate outwardly normal behavior. However, due to the

impairment of the forward model induced by the functional

disconnection, spontaneous intermittent increases of prediction

error were observed (Fig. 2B, Fig. 3A), resulting in the robot’s

intention state being automatically modulated to minimize

prediction error. Moreover, intermittent increases in prediction

Figure 2. Neural activity and task behavior in normal and disconnected networks. (A) Flexible switching of behavior through the bottom-
up modulation process induced by sensory perturbation. (B) Outwardly normal behavior with intermittent increases of prediction error and aberrant
modulation of intentional states (arrows) induced by simulated mild functional disconnection in the hierarchical network. (C) Cataleptic and (D)
stereotypic behavior induced by the severe disconnection. Arm: 4 dimensional joint angles. Vision: relative position of the object (x-y axis). A long
sideways rectangle indicates the single unit activity over many time steps. Colors of rectangles indicate activation level (cf. color bar). Low and High
indicates activity of units in the lower level and the higher level of the network. Intent indicates the activity of parametric bias (PB) units in the higher
level, whose activity corresponds to the top-down intention for the task behavior (see Methods). Pred error indicates prediction error accumulating
for the past 25 steps.
doi:10.1371/journal.pone.0037843.g002
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error generation sometimes resulted in irregular switching of the

intention state of the network (arrows in Fig. 2B, Movie S2).

When we modeled severe disconnection of the network, the

behavior of the robot became disorganized and behavioral

sequences no longer followed logical rules (Fig. 3B). We observed

abnormal patterns of behavior that are characteristic of more

severe cases of schizophrenia, such as cataleptic (stopping or

freezing in one posture) and stereotypic (repeating the same action

many times) behavior (Fig. 2C, 2D, Movie S2). Modeling

experiments indicated these abnormal patterns of behavior

appeared as a consequence of the network dynamics converging

to a stable equilibrium (limit cycle or point attractor) through the

process of the robot attempting to minimize prediction error due

to aberrant modulation.

Discussion

In this study, we demonstrate that schizophrenia can be

understood as a failure of essential mechanisms for adaptive

behavior. Specifically, mild disconnection in network connectivity

resulted in the spontaneous appearance of uncompensated

prediction errors and altered interactions within the hierarchical

network without external changes in behavior. Based on these

findings, we propose that despite no external sensory perturbation

in schizophrenia patients, such covert fictive prediction error

signals could signal equivalently to normally-generated prediction

error signals and, in principle, be indistinguishable by the patient

to prediction errors generated from real external sensory stimuli.

The results raise the possibility that, in schizophrenia, uncompen-

sated modulatory signals resulting from relatively mild functional

disconnection within patients hierarchical neural networks may

induce the perplexing feeling that ‘something is wrong’ although

s/he cannot identify the source. This feeling, referred to as a

delusional mood, is a characteristic prodromal or mild symptom of

schizophrenia [27]. In cases where aberrant prediction errors

resulted in covert irregular switching of the intention/goal, these

results are consistent with the induction of a patient’s feeling that

their actions are affected by some outside force, termed a

disturbance of self. If uncompensated modulatory prediction error

signals without explicit external sources are spontaneously

generated and cascaded through the network, invading neural

circuits related to various perceptual or cognitive modalities, the

patient might develop delusions and hallucinations, symptoms

observed in typical cases of schizophrenia [28]. At more severe

levels of disconnection, we observed overt behavioral defects

showing striking similarities to those observed in advanced chronic

schizophrenia patients. Thus, the current study provides a systems-

level computational principle explaining both the variability and

severity of symptoms in schizophrenia, namely the strength and

location of connectivity deficits between different layers of a

hierarchical network. This idea is consistent with the previously

proposed hypotheses of schizophrenia emphasizing the impor-

tance of prediction error and functional disconnection in

hierarchical networks [10–12,19–21,29].

The present study, for the first time, experimentally links

functional deficits in connectivity to the hypothesized role of

forward models in schizophrenia. Several studies demonstrate that

sensory prediction is impaired in schizophrenic patients [30,31]

while other studies suggest that schizophrenic patients can

normally solve a task which requires action control based on

forward sensory predictions [32,33] or that the impaired forward

model hypothesis is inconsistent with clinical observations that

patients experience an abnormal sense of self only sporadically

[34]. Our findings may clarify these puzzling observations by

showing that functional dissociation defects in hierarchically

organized forward models can be spontaneously induced by

network disconnection. We demonstrate that impairments in

forward models occur sporadically as a result of intermittent

increases in prediction error generation upon network disconnec-

tion and triggering a failure in communication between levels of

the hierarchical network. On the other hand, forward models

corresponding to sensorimotor interaction levels appeared to be

preserved.

The present study also links an error-driven behavioral

adjustment process to the development of core symptoms of

schizophrenia. As known error-detection and error-based behav-

ioral adjustment networks, including medial prefrontal cortex,

inferior parietal cortex and temporal parietal junction [35–37] are

also involved with attribution of agency and self-other referential

processing [36,38] those brain regions may contribute to the

pathology of schizophrenia. Studies have suggested that schizo-

phrenic patients have functional abnormalities in these brain

regions [20,37,38], however, their contribution to the develop-

ment of clinical schizophrenic symptoms has remained unclear.

The spontaneous generation of prediction errors we observed may

provide a theoretical framework for linking discrete brain regions

and their underlying network computational principles to the

development of core symptoms of schizophrenia.

Our results demonstrate that variable symptoms of schizophre-

nia including covert altered subjective experiences and overt

abnormal behavior can be understood as maladaptive processes

induced by disconnection between levels responsible for goal-

oriented behavior in hierarchical networks. At a systems compu-

Figure 3. Changes in prediction error and robot behavior
associated with levels of disconnection. (A) Prediction error for
various levels of disconnection is shown. Bars in the graph correspond
to mean values over 30 trials for each parameter setting. Error bars
indicate the degree of standard deviation. (B) Changes in robot
behavior with various levels of disconnection are shown. Bars in the
graph correspond to the occurrence ratio of each behavior type over 30
trials for each parameter setting. Levels of disconnection are
determined by the parameter k (see Method).
doi:10.1371/journal.pone.0037843.g003
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tational level, the hypothesis of abnormal patterns of behavior as

compensation for a failure of brain networks to maintain

prediction error equilibrium may provide possible insight into

other psychiatric diseases considered to have defective error-

related signaling and functional disconnection such as autism [39],

obsessive compulsive disorder [40] and attention-deficit/hyperac-

tivity disorder [41].

Our results also support the general premise that in normal

brain the minimization of prediction error may comprise a general

computational rule of network communication [4–6]. Specifically,

our model show that production, recognition and learning of

adaptive behavior can be achieved based on a single computa-

tional principle of minimizing prediction error. This idea is

parallel to another line of theory using statistical formulation such

as the active inference [42] and predictive coding [4].

Recent studies have emphasized the importance of employing

dynamical systems perspectives for understanding higher cognitive

functions of the brain [43,44]. Our findings clearly indicate, for the

first time, emergent network properties that produce unexpected

effects in underconnected networks on error signaling and

abnormal behavior. Our findings may open the door to the

further study of critical systems-level issues that should be

addressed in future patient and animal model studies. We suggest

that our methodology of a network model-driven robot could

become an effective approach for examining the hypothesis of

network dysfunction and abnormal behaviors in neuropsychiatric

conditions. Likewise, physiologists studying the basis of disrupted

goal-oriented behavior in animal models and humans may be able

to employ similar models to track parameters related to spurious

error signals.

Methods

Experimental environment
A humanoid robot was used in the role of a physical body

interacting with its actual environment. The robot is roughly

50 cm in height, with an arm span of about 30 cm. The robot was

fixed to a stand, with tasks involving only movement of the head

and arms of the robot. Each arm moves with 4 degrees of freedom

(3 shoulders and 1 elbow) and the head motor moves with 2

degrees of freedom (vertical and horizontal). The joints of the

robot have a maximum rotation that ranges from 70 degrees to

110 degrees, depending on the type of joint. Rotation ranges were

mapped to values ranging from 0.0 to 1.0. Encoder values of these

arm joint sensors were received as the current proprioceptive

sensory feedback and sent to the network. A vision system

mounted on the robot’s head automatically fixated a red mark on

the object, regardless of the robot’s actions. The direction of the

robot’s head, indicated by encoder values of two neck joints,

expressed the object position in the visual field relative to the

robot. This relative location of the object was treated as visual

input to the network. When the robot received target joint angles,

it automatically generated movements corresponding to these

angles using a preprogrammed proportional-integral-derivative

(PID) controller. Computational processes of the neural network

model were implemented in a separate computer communicating

with the robot by sending target joint angles and receiving encoder

values through a local computer network.

A workbench was set up in front of the robot, and a cubic object

(approximately 96969 cm) placed on the workbench served as

the goal object. The object was located at two different positions

(positions right (R) and left (L)) whose distance was 8 cm.

Model overview
Inputs to the system were the proprioception p̂pt (8 dimensional

vectors representing the angles of arm joints) and the vision sense ŝst

(2 dimensional vector representing object position). Based on the

current p̂pt and ŝst, the system generated forward predictions of

proprioception pt+1 and the vision sense st+1 for the next time step.

This prediction of the proprioception pt+1 was sent to the robot in

the form of target joint angles in generating movements and

interacting with the physical environment. Changes in the

environment were sent back to the system as sensory feedback

(Fig. 1B).

The main component of the system was modeled by a

continuous time recurrent neural network (CTRNN). The

CTRNN is a type of RNN which implements a feature of

biological neurons, namely that the activities of neurons are

determined not only by current synaptic inputs but also by the past

history of neural states. The current model is considered consistent

at the level of the macro-level mechanisms of biological neural

systems [24–26]. However, consistency in physiological details,

such as features of neural activity at the level of individual neurons

and characteristics of individual synapses, are not considered in

detail. Due to the level of modeling, possible implications of the

current results can be discussed only at an abstract level, in terms

of the model employed in the current study.

In the current study, the CTRNN is made up of two different

types of context units (fast and slow), each with its own distinct time

constant t (‘‘multiple timescale recurrent neural network

(MTRNN)’’ [3]). Through the introduction of multiple timescales,

a functional hierarchy, within which the fast sensorimotor units

represent ‘‘behavioral primitives’’ (reusable parts of actions) as a

lower level and the slow context units represent orders and

combinations of primitives as a higher level, can be self-organized

[3].

In the proposed model, several slow context units were assigned

as ‘‘parametric bias’’ (PB) unit [5]. The PB is static vector input to

the network which acts as the bifurcation parameters of nonlinear

dynamical systems [5]. Owing to this characteristic of the PB, the

proposed network was able to generate multiple patterns of visio-

proprioceptive sequences through the self-organized associations

between a specific PB activity and different dynamic patterns in

the slow context units (i.e. different combinations of behavior

primitives). Therefore, PB activity associated with a particular

dynamics of the slow context units can be thought of as

corresponding to top-down ‘‘intention/goal’’ for a particular task

behavior.

In addition to the top-down forward prediction, in order to

achieve quick adaptation to environmental changes, we also

introduced a bottom-up modulation process [5]. When there is

unpredictable change in the environment, a discrepancy between

prediction and reality (prediction error) would arise. Based on this

prediction error, PB activity is automatically updated in a direction

that minimizes prediction error. As a result of this iterative process

of bottom-up modulation, PB activity eventually reaches a

particular state that corresponds to another task behavior suitable

to a new situation, resulting in the robot’s ability to flexibly switch

its behavior. This switching of the intention through bottom-up

modulation can be thought of as corresponding to recognition of a

situation. In the generation of behavior, interactions between top-

down intention and bottom-up recognition are conducted in real-

time, allowing the robot to successfully generate adaptations to

unpredictable sensory perturbation.

Spontaneous Prediction Error Generation
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Forward dynamics
The neuronal model is a conventional firing rate model, in

which each unit’s activity represents the average firing rate over a

group of neurons. The continuous time characteristics of the

MTRNN are described as follows,

ti _uui,t~{ui,tz
X

j

wijxj,t ð1Þ

where ui,t is the membrane potential and xi,t is neural state of the

ith unit at time t, wij is synaptic weight from the jth unit to the ith

unit. Forward predictions of sensory states were made possible by

the capacity of the MTRNN to preserve the internal state, which

enables it to reproduce complex visio-proprioceptive sequences. In

the MTRNN, context units are divided into two groups based on

the value of time constant t. The first group consisted of fast

context units with a small time constant (t = 10) whose activity

changed quickly, whereas the second group consisted of slow

context units with a large time constant (t = 100) whose activity, in

contrast, changed much more slowly.

The number of MTRNN units for this study was 142. The first

100 units correspond to input-output units (O) which receive

external input; their activation values yi,t correspond to output of

the MTRNN. The next 40 units correspond to the context units.

Among the context units, the first 30 units correspond to the fast

context units (Cf), and last 10 units correspond to the slow context

units (Cs). The remaining 2 units correspond to PB units (PB).

Every unit of the MTRNN, with exceptions described in the

followings, is connected to every other unit, including itself. PB

units were only connected to slow context units. Input units were

not directly connected to slow context units (if iMO ‘ jMCs, or if iMCs
‘ jMO, then wij is fixed at 0).

Acquisition of forward dynamics (training)
Training of the network was conducted by means of supervised

learning using teaching sequences obtained through tutoring by

the experimenter. The conventional back-propagation through

time (BPTT) algorithm was used for learning of the model network

[45]. The objective of training was to find optimal values of

connective weights minimizing sensory prediction error. At the

beginning of training, synaptic weights of the network were set

randomly, resulting in the network generating random sequences.

Synaptic weights were modified based on the prediction error

between teaching signals and generated sequences. After many

repetitions of this process, the prediction error between teaching

sequences and model outputs eventually reached a minimum level.

This training process was conducted in an off-line manner, in the

sense that the prediction of the visio-proprioceptive sequences

were generated by means of so-called ‘‘closed-loop’’ operations in

which the current prediction of the proprioception and vision state

are used as virtual input for the next time step. Thus the network is

able to generate visio-proprioceptive sequences without producing

actual movements. In the current study, the BPTT was used not

for mimicking the learning process of biological neural systems,

but rather as a general learning rule. Interested readers could find

details of the MTRNN and learning algorithms described in our

previous work [3].

The associations between activities of PB units and a particular

pattern of behavior can self-organize through a learning process

[5]. This process, however, requires fine tuning of parameters in

balancing, for example, the learning rate for PB activity and the

learning rate for connective weights. Therefore, to reduce the

number of arbitrarily set parameters, PB activities in learning

process were arbitrary set by the experimenter at values

corresponding to different target behavior sequences. Initial states

of the context units are set at small random values, meaning that if

PB activity had not been set, the network would not have been

able to produce multiple behavior sequences.

Real-time action generation with top-down and bottom-
up interaction

The procedure for the real-time top-down and bottom-up

interaction during task execution of the robot was conducted

within a time window h which moves along the increment of the

network time-step. This time-window is necessary to avoid the

modulation of PB activity according to short-term sensor

fluctuations. In this study, the time window h is set to 25.

In the top-down prediction process, based on the PB activity at

the current time-step t and the context states at time-step t-h, visio-

proprioceptive sequences corresponding to time-steps from t-h to t

are generated by the ‘‘closed-loop’’ operation. In this closed loop

operation, PB activity assumes a constant value. The context states

at time-step t-h act as initial states for this closed loop operation.

Generated prediction of visio-proprioceptive sequences for time-

steps from t-h to t are not actually ‘‘prediction’’ in the literal sense

of the word, but are more suitable referred to as re-interpretation

or ‘‘postdiction’’ [46,47] of the past based on the current intention.

In the bottom-up modulation process, prediction error within

the time window h is calculated according to the following

equation 2. Prediction error pet, is determined as a KL-divergence

between the prediction of the network yt and actual feedback ŷyt,

pet~
1

h

Xt

s~t{h

X
i[O

ŷyi,s log
ŷyi,s

yi,s

� �
ð2Þ

where O is a set of indices corresponding to output units.

Membrane potential of PB unit is updated in a direction opposite

to that of the gradient hpe/hu, which is also calculated using BPTT

algorithm. Actual updating of PB activity is computed according to

the following equations:

Dui nz1ð Þ~{ybp

Lpet

Lui nð Þ{ytop

Ltet

Lui nð Þ i[PB ð3Þ

tet~ min
g[G

1

2

X
k[PB

uk{uk,g

� �2 ð4Þ

where n is an index representing the iteration step in the bottom-

up modulation process, the G is a set of task behaviors in the rule

and uk,g is a mean activity of PB unit during generation of task

behavior g, which was used in the training. cbp and ctop are scaling

parameters, which were set to 1.0 and 0.0025, respectively. The

second term of Eq.3 is an additional term to avoid divergence of

PB values in the bottom-up process. tet is determined as the

distance between PB activities for the current time-step and those

for the nearest learned behavior. Therefore, the second term of the

Eq.3 makes PB activity grow asymptotically toward the values of

the nearest learned behavior.

Based on the updated PB activity, top-down prediction of visio-

proprioceptive sequences is re-generated. Ideally, the processes of

top-down prediction and bottom-up modulation of the PB activity

should be iterated many times until PB activity converges. For the

current experiment, however, in order to reduce time spent on

computation, the number of iterations is limited at 10. After 10

Spontaneous Prediction Error Generation
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iterations, prediction of proprioception for the time-step t+1 is

generated by the closed-loop operation and is sent to the robot as a

target joint angle, along with the increment of the network time-

step.

Simulating functional disconnection
Once a model learns to generate the task behavior, values of

synaptic weights are fixed during execution of the robot’s behavior

and the model network is considered to reproduce the behavior of

normal subjects. In the simulation of functional disconnection in

the hierarchical network, connective weights between the slow

(higher level) and fast (lower level) context units were slightly

modified by adding random noise as follows,

wdis
ij ~wijzU k wij

�� ��� �
i[Cs\j[Cf or i[Cf\j[Cs ð5Þ

where U(a) is the noise following a uniform distribution on the

interval [2a, a] and k is a parameter determining the level of

disconnection. In the mild and severe disconnection conditions, k
is set at 0.25, and 0.75, respectively. Adding random noise was

applied as one of the simplest implementations for simulating

disconnection.

Supporting Information

Movie S1 Movie of the robot experiment including (i)
flexible switching of behavior through a bottom-up
modulation process. Colored grids indicate neural activity of

fast context unit (upper left) and slow context unit (upper right).

Color bars indicate neural activity of PB unit corresponding to the

intention state. Red line indicates prediction error.

(WMV)

Movie S2 Movie of the robot experiment including (ii)
outwardly normal behavior with aberrant modulation of
the intention/goal induced by ‘‘mild’’ disconnection and
(iii) stereotypic behavior induced by ‘‘severe’’ discon-
nection.
(WMV)
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