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The classical paradigm for evaluating test performance
compares the results of an index test with a reference
test. When the reference test does not mirror the
“truth” adequately well (e.g. is an “imperfect” reference
standard), the typical (“naïve”) estimates of sensitivity
and specificity are biased. One has at least four
options when performing a systematic review of test
performance when the reference standard is “imper-
fect”: (a) to forgo the classical paradigm and assess the
index test’s ability to predict patient relevant outcomes
instead of test accuracy (i.e., treat the index test as a
predictive instrument); (b) to assess whether the
results of the two tests (index and reference) agree or
disagree (i.e., treat them as two alternative measure-
ment methods); (c) to calculate “naïve” estimates of the
index test’s sensitivity and specificity from each study
included in the review and discuss in which direction
they are biased; (d) mathematically adjust the “naïve”
estimates of sensitivity and specificity of the index test
to account for the imperfect reference standard. We
discuss these options and illustrate some of them
through examples.
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INTRODUCTION

In the classical paradigm for evaluating the “accuracy” or
performance of a medical test (index test), the results of the
test are compared with the “true” status of every tested
individual or every tested specimen. Sometimes, this “true”
status is directly observable (e.g., for tests predicting short-
term mortality after a procedure). However, in many cases
the “true” status of the tested subject is judged based upon
another test as a reference method. Problems can arise when
the reference test does not mirror the “truth” adequately
well: one will be measuring the performance of the index
test against a faulty standard, and is bound to err. In fact, the
worse the deviation of the reference test from the

unobserved “truth”, the poorer the estimate of the index
test’s performance will be. This is otherwise known as
“reference standard bias”.1–4

In this paper we discuss how researchers engaged in the
Effective Healthcare Program of the United States Agency
for Healthcare Research and Quality (AHRQ) think about
synthesizing data on the performance of medical tests when
the reference standard is “imperfect”. Because this chal-
lenge is a general one and not specific to AHRQ’s program,
we anticipate that the current paper is of interest to the
wider group of those who perform or use systematic
reviews of medical tests. Of the many challenges that
pertain to issues with reference standards, we will discuss
only one, namely, the case of a reference standard test that
itself misclassifies the test subjects at a rate we are not
willing to ignore (“imperfect reference standard”). We will
not discuss verification bias, where the use of the reference
standard is guided by the results of the index test and is not
universal.

IMPERFECT REFERENCE STANDARDS

What is Meant by “Imperfect Reference
Standard” and Why is it Important
for Meta-Analysis and Synthesis in General?

Perhaps the simplest case of test performance evaluation
includes an “index test” and a reference test (“reference
standard”) whose results are dichotomous in nature (or are
made dichotomous). Both tests are used to inform on the
presence or absence of the condition of interest, or predict
the occurrence of a future event. For the vast majority of
medical tests, both the results of the index test and the
reference test can be different than the true status of the
condition of interest. Figure 1 shows the correspondence
between the true 2 × 2 table probabilities (proportions) and
the eight strata defined by the combinations of index and
reference test results and the presence or absence of the
condition of interest. These 8 probabilities (α1, β1, γ1, δ1,
α2, β2, γ2 and δ2) are not known, and have to be estimated
from the data (from studies of diagnostic or prognostic
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accuracy). More accurately, a study of diagnostic accuracy
tries to estimate quantities that are functions of the eight
probabilities.

Diagnostic Accuracy—the Case of the “Perfect”
Reference Standard. A “perfect” reference standard
would be infallible, always match the condition of
interest, and, thus, in Figure 1 the proportions in the grey
boxes (α2, β2, γ2 and δ2) would be zero. The data in the 2
× 2 table are then sufficient to estimate the four remaining
probabilities (α1, β1, γ1, and δ1). Because the four
probabilities necessarily sum to 1, it is sufficient to
estimate any three. In practice, one estimates three other
parameters, which are functions of the probabilities in the
cells, namely, the sensitivity and specificity of the index
test and the prevalence of the condition of interest
(Table 1). If the counts in the table 2 × 2 are available
(e.g., from a cohort study assessing the index test’s

performance), one can estimate the sensitivity and the
specificity of the index test in a straightforward
manner: dSeindex ¼ true positives

true positives þfalse negatives
, and

dSeindex ¼ true negatives
true negatives þfalse positives

, respectively.

Diagnostic Accuracy—the Case of the “Imperfect”
Reference Standard. Only rarely are we sure that the
reference standard is a perfect reflection of the truth. Most
often in our assessments we accept some degree of
misclassification by the reference standard, implicitly
accepting it as being “as good as it gets”. Table 2 lists
some situations where we might question the validity of the
reference standard. Unfortunately, there are no hard and fast
rules for judging the adequacy of the reference standard;
systematic reviewers should consult content experts in
making such judgments.

Figure 1. Correspondence of test results and true proportions in the 2 × 2 table. The cells in 2 × 2 the table, α, β, γ, δ are the true population
proportions corresponding to combinations of test results. The diagram depicts how these proportions break down according to the

(unknown) true status of the condition of interest. For example, the proportion when both the index test and the reference standard are
positive is α = α1 + α2 (i.e., the sum of the proportion of positive index and reference test results when the condition is present (α1) and
absent (α2)), and similarly for the other groups. A white colored box and the subscript 1 is used when the reference standard result matches

the true status of the condition of interest; a grey colored box and the subscript 2 is used when it does not.

Table 1. Parameterization When the Reference Standard is Assumed “Perfect” (“Gold Standard”)

Reference standard (+) Reference standard (-)

Index test (+) p� Seindex
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�1

þ 0
|{z}

�2

ð1� pÞ � ð1� SpindexÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þ 0
|{z}

�2

Index test (-) p� ð1� SeindexÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þ 0
|{z}

�2

ð1� pÞ � Spindex
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þ 0
|{z}

�2

Only three unknowns exist: the sensitivity and specificity of the index test (Seindex and Spindex, respectively) and the disease prevalence (p). The
under-braces refer to the probabilities of the 8 strata in Figure 1. These can be estimated from test results in a study, as discussed in the appendix of
another paper in this supplement of the journal.5
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Table 3 shows the relationship between the sensitivity
and specificity of the index and reference tests and the
prevalence of the condition of interest when the results of
the index and reference tests are independent among those
with and without the condition of interest (“conditional
independence”, one of several possibilities). For condition-
ally independent tests, estimates of sensitivity and specific-
ity from the standard formulas (“naïve estimates”) are
always smaller than the true values (see an example in
Fig. 2, and later for a more detailed discussion).

Options for Systematic Reviewers

So how should one approach the challenge of synthesizing
information on diagnostic or prognostic tests when the
purported “reference standard” is judged to be inadequate?
At least four options exist. The first two change the
framing of the problem, and forgo the classical paradigm

for evaluating test performance. The third and fourth
work within the classical paradigm and rely on qualify-
ing the interpretation of results, or on mathematical
adjustments:

1. Forgo the classical paradigm; assess the index test’s
ability to predict patient relevant outcomes instead of
test accuracy (i.e., treat the index test as a predictive
instrument).5,6 This reframing applies when outcome
information (usually on long term outcomes) exists, and
the measured patient outcomes are themselves valid. If
so, the approach to such a review is detailed in Chapter
11 in this supplement of the Journal.7

2. Forgo the classical paradigm; assess simply whether the
results of the two tests (index and reference) agree or
disagree (i.e., treat them as two alternative measurement
methods). Instead of calculating sensitivity and speci-
ficity one would calculate statistics on test concordance,
as mentioned later.

Table 2. Situations Where One Can Question the Validity of the Reference Standard

Situation Example

The reference method yields different measurements over time
or across settings

Briefly consider the diagnosis of obstructive sleep apnea, which
typically requires a high Apnea-Hypopnea Index (AHI, an objective
measurement), and the presence of suggestive symptoms and signs.
However, there is large night-to-night variability in the measured
AHI, and there is also substantial variability between raters and
between labs

The condition of interest is variably defined This can be applicable to diseases that are defined in complex ways
or qualitatively (e.g., based both on symptom intensity and on
objective measurements). Such an example could be a complex
disease such as psoriatic arthritis. There is no single symptom, sign,
or measurement that suffices to make the diagnosis of the disease
with certainty. Instead a set of criteria including symptoms, signs,
imaging and laboratory measurements are used to identify it.
Unavoidably, diagnostic criteria will be differentially applied across
studies, and this is a potential explanation for the varying prevalence
of the disease across geographic locations34 and over time

The new method is an improved version of a usually applied test Older methodologies for the measurement of parathyroid hormone (PTH)
are being replaced by newer, more specific ones. PTH measurements
with different methodologies do not agree very well.35 Here, it would be
wrong to assume that the older version of the test is the reference standard
for distinguishing patients with high PTH from those without

Table 3. Parameterization When the Reference Test is Assumed to be Imperfect, and the Index and Reference Test Results are Assumed
Independent within the Strata of the Condition of Interest

Reference test (+) Reference test (-)

Index test (+) p� Seref � Seindex
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þð1� pÞ � ð1� Spref Þ � ð1� SpindexÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2

ð1� pÞ � Spref � ð1� SpindexÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þ p� ð1� Seref Þ � Seindex
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2

Index test (-) p� Seref � ð1� SeindexÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þð1� pÞ � ð1� Spref Þ � Spindex
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2

ð1� pÞ � Spref � Spindex
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

þ p� ð1� Seref Þ � ð1� SeindexÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2

We now have five unknowns: the sensitivity and specificity of the index test (Seindex and Spindex, respectively) and of the reference test (Seref and Spref,
respectively), and the disease prevalence (p). The under-braces refer to the probabilities of the 8 strata in Figure 1. Note that sensitivity and
specificity always refer to the (unknown) true status of the condition of interest. Further, the results of the tests are assumed to be independent given
the true status of the condition of interest. The cross-tabulation of the results of the index and reference tests is not sufficient to specify the problem,
and additional information is necessary. It is easy to see that if the reference test is “perfect” (Seref = 1, Spref = 1), one obtains the parameterization
in Table 1. If the results of the index and reference tests are not independent among units with or without the condition of interest, the formulas in
Table 1 change; in fact, several parameterizations are possible.18,25–31
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3. Work within the classical paradigm, and calculate
“naïve estimates” of the index test’s sensitivity and
specificity from each study, but qualify study findings.

4. Adjust the “naïve” estimates of sensitivity and speci-
ficity of the index test to account for the imperfect
reference standard.

Our subjective assessment is that, when possible, the first
option is preferred as it recasts the problem into one that is
inherently clinically meaningful. The second option may be
less clinically meaningful, but is a defensible alternative to
treating an inadequate reference standard as if it were
effectively perfect. The third option is potentially subject to
substantial bias, which is especially difficult to interpret
when the results of the test under review and the “reference
standard” are not conditionally independent (i.e., an error in
one is more or less likely when there is an error in the other).
The forth option would be ideal if the adjustment methods
were successful (i.e., eliminated biased estimates of sensitiv-
ity and specificity in the face of an imperfect reference
standard). However, the techniques available necessarily
require information that is typically not included in the
reviewed studies, and require advanced statistical modeling.

1. Assess index test’s ability to predict patient-relevant
outcomes instead of test accuracy.

This option is not universally possible. Instead of
assessing the diagnostic or screening performance of
the test, it quantifies the impact of patient management
strategies that include testing on (usually long term)
clinical outcomes. When it is possible and desirable to
recast the evaluation question as an assessment of a

tests ability to predict health outcomes, there are specific
methods to consider when performing the assessment.
For a more detailed discussion, the reader is referred to
Paper 11 in this supplement of the Journal.7

2. Assess the concordance of difference tests instead of
test accuracy

Here, the index and reference tests are treated as two
alternative measurement methods. One explores how
well one test agrees with the other test(s), and perhaps if
one test can be used in the place of the other. Assessing
concordance may be the only meaningful option if none
of the compared tests is an obvious choice for a reference
standard (e.g., when both tests are alternative methodol-
ogies to measure the same quantity).

In the case of categorical test results, one can
summarize the extent of agreement between two tests
using Cohen’s κ statistic (a measure of categorical
agreement which takes into account the probability that
some agreement will occur by chance). A meta-analysis
κ of statistics may also be considered to supplement a
systematic review8; because it is not common practice in
the medical literature, such a meta-analysis should be
explained and interpreted in some detail.

In the case of continuous test results, one is
practically limited by the data available. If individual
data points are available or extractable (e.g., in
appendix tables or by digitizing plots) one can directly
compare measurements with one test versus measure-
ments with the other test. One way is to perform an
appropriate regression to obtain an equation for
translating the measurements with one test to the
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Figure 2. “Naïve” estimates versus true values for the performance of the index test with an imperfect reference standard. Seindex and
Spindex: sensitivity and specificity of the index test, respectively; Seref and Spref: sensitivity and specificity of the reference test, respectively;
p: disease prevalence. If the results of the index and reference tests are independent conditional on disease status, the “naïve” estimates for
the performance of the index test are underestimates. The thin reference lines are the true sensitivity (solid) and specificity (dashed) of the
index test. Note that the “naïve” estimate for the sensitivity and specificity of the index test approach the true values as the sensitivity and
specificity of the reference test approaches 100%. In the left plot the “naïve” estimate of sensitivity does not reach 70% (the true value)
when the sensitivity of the reference test, Seref, is 100%, because the specificity of the reference test is not perfect (Spref=90%). Similarly, on
the plot on the right, the specificity of the index test does not reach the true value of 80% when the specificity of the reference test, Spref, is
100%, because the sensitivity of the reference test is not perfect (Seref=80%). The “naïve” estimates would be the same as the true values

only if both the sensitivity and the specificity of the reference test are 100%.
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measurements of the other. Because both measurements
have random noise, an ordinary least squares regression
is not appropriate; it treats the “predictor” as fixed and
error-free, and thus underestimates the slope of the
relationship between the two tests. Instead one should
use a major axis or similar regression,9–12 or more
complex regressions that account for measurement
error; consulting a statistician is probably wise. An
alternative and well-known approach is to perform
difference versus average analyses (Bland–Altman-type
of analyses13–15. A qualitative synthesis of information
from Bland–Altman plots can be quite informative (see
example).16 As of this writing the authors have not
encountered any methods for incorporating difference
versus average information from multiple studies.

If individual data points are not available, one has to
summarize study-level information of the agreement of
individual measurements. Of importance, care is needed
when selecting which information to abstract. Summa-
rizing results from major axis regressions or Bland–
Altman analyses is probably informative. However,
other metrics are not necessarily as informative. For
example, Pearson’s correlation coefficient, while often
used to “compare” measurements with two alternative
methods, is not a particularly good metric for two
reasons: First, it does not inform on the slope of the line
describing the relationship between the two measure-
ments; it informs on the degree of linearity of the
relationship. Further, its value can be high (e.g., >0.90)
even when the differences between the two measure-
ments are clinically important. Thus, one should be
circumspect in using and interpreting a high Pearson’s
correlation coefficient for measurement comparisons.

3. Qualify the interpretation of “naïve” estimates of the
index test’s performance

This option is straightforward. One could obtain
“naïve” estimates of index test performance and make
qualitative judgments on the direction of the bias of
these “naïve” estimates.

Tests with Independent Results within the Strata of the
Disease. We have seen already in Table 3 that, when the
results of the index and reference test are independent among
those with and without the disease (conditional
independence), the “naïve” sensitivity and specificity of the
index test is biased down. The “more imperfect” the reference
standard, the greater the difference between the “naïve”
estimates and true test performance for the index test (Fig. 2).

Tests with Correlated Results within the Strata of the
Disease. When the two tests are correlated conditional on
disease status, the “naïve” estimates of sensitivity and
specificity can be overestimates or underestimates, and the
formulas in Table 3 do not hold. They can be overestimates
when the tests tend to agree more than expected by chance.

They can be underestimates when the correlation is relatively
small, or the tests disagree more than expected by chance.
A clinically relevant example is the use of prostate-

specific antigen (PSA) to detect prostate cancer. PSA levels
have been used to detect the presence of prostate cancer,
and over the years, a number of different PSA detection
methods have been developed. However, PSA levels are not
elevated in as many as 15 % of individuals with prostate
cancer, making PSA testing prone to misclassification
error.17 One explanation for these misclassifications (false-
negative results) is that obesity can reduce serum PSA
levels. The cause of misclassification (obesity) will likely
affect all PSA detection methods—patients who do not have
elevated PSA by a new detection method are also likely to
not have elevated PSA by the older test. This “conditional
dependence” will likely result in an overestimation of the
diagnostic accuracy of the newer (index) test. In contrast, if
the newer PSA detection method was compared to a non-
PSA based reference standard that would not be prone to
error due to obesity, such as prostate biopsy, conditional
dependence would not be expected and estimates of
diagnostic accuracy of the newer PSA method would likely
be underestimated if misclassification occurs.
Because of the above, researchers should not assume

conditional independence of test results without justifica-
tion, particularly when the tests are based upon a common
mechanism (e.g., both tests are based upon a particular
chemical reaction, so that something which interferes with
the reaction for one of the tests will likely interfere with the
other test as well).18

4. Adjust or correct the “naïve” estimates of sensitivity
and specificity

Finally, one can mathematically adjust or correct the
“naïve” estimates of sensitivity and specificity of the
index test to account for the imperfect reference
standard. The 2 × 2 cross-tabulation of test results is
not sufficient to estimate the true sensitivities and
specificities of the two tests, the prevalence of the
conditions of interest, and correlations between sensitiv-
ities and specificities among those with and without the
condition of interest. Therefore, additional information is
needed. Several options have been explored in the
literature. The following is by no means a comprehen-
sive description; it is just an outline of several of the
numerous approaches that have been proposed.

The problem is much easier if one can assume condi-
tional independence for the results of the two tests, and
further, that some of the parameters are known from prior
knowledge. For example, one could assume that the
sensitivity and specificity of the reference standard to detect
true disease status is known from external sources, such as
other studies,19 or that the specificities for both tests are
known (from prior studies) but the sensitivities are un-
known.20 In the same vein one can encode knowledge from
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external sources with prior distributions instead of fixed
values, using Bayesian inference.21–24 Using a whole
distribution of values rather than a single fixed value is less
restrictive and probably less arbitrary. The resulting posterior
distribution provides information on the specificities and
sensitivities of both the index test and the reference standard,
and of the prevalence of people with disease in each study.
When conditional independence cannot be assumed, the

conditional correlations have to be estimated as well. Many
alternative parameterizations for the problem have been
proposed.18,25–31 It is beyond the scope of the paper to
describe them. Again, it is advisable to seek expert statistical
help when considering such quantitative analyses, as model-
ing assumptions can have unanticipated implications32 and
model misspecification can result in biased estimates.33

Illustration

As an illustration we use a systematic review on the diagnosis
of obstructive sleep apnea (OSA) in the home setting.16

Briefly, OSA is characterized by sleep disturbances secondary
to upper airway obstruction. It is prevalent in 2 to 4 % of
middle-aged adults, and has been associated with daytime
somnolence, cardiovascular morbidity, diabetes and other
metabolic abnormalities, and increased likelihood of accidents
and other adverse outcomes. Treatment (e.g., with continuous
positive airway pressure) reduces symptoms, and, hopefully,
long term risk for cardiovascular and other events. There is no
“perfect” reference standard for OSA. The diagnosis of OSA is
typically established based on suggestive signs (e.g. snoring,
thick neck) and symptoms (e.g., somnolence), and in
conjunction with an objective assessment of breathing patterns
during sleep. The latter is by means of facility-based
polysomnography, a comprehensive neurophysiologic study
of sleep in the lab setting. Most commonly, polysomnography
quantifies one’s apnea-hypopnea index (AHI) (i.e., how many
episodes of apnea [no airflow] or hypopnea [reduced airflow]
a person experiences during sleep). Large AHI is suggestive of
OSA. At the same time, portable monitors can be used to
measure AHI instead of facility based polysomnography.

Identifying (Defining) the Reference Standard. One
consideration is what reference standard is most common,
or otherwise “acceptable”, for the main analysis. In all
studies included in the systematic review, patients were
enrolled only if they had suggestive symptoms and signs
(although it is likely that these were differentially
ascertained across studies). Therefore, in these studies, the
definition of “sleep apnea” is practically equivalent to
whether people have a “high enough” AHI.
Most studies and some guidelines define AHI≥15 events

per hour of sleep as suggestive of the disease, and this is the
cut-off selected for the main analyses. In addition, identified
studies used a wide range of cut-offs in the reference method
to define sleep apnea (including 5, 10, 15, 20, 30, and 40

events per hour of sleep). As a sensitivity analysis, the
reviewers decided to summarize studies also according to the
10 and the 20 events per hour of sleep cut-offs; the other cut-
offs were excluded because data was sparse. It is worth
noting that, in this case, the exploration of the alternative cut-
offs did not affect the results or conclusions of the systematic
review, but did require substantial time and effort.

Deciding How to Summarize the Findings of Individual
Studies and How to Present Findings. The reviewers
calculated “naïve” estimates of sensitivity and specificity of
portable monitors, and qualified their interpretation (option
3). They also performed complementary analyses outside
the classical paradigm for evaluating test performance to
describe the concordance of measurements with portable
monitors (“index” test) and facility-based polysomnography
(“reference” test; this is option 2 ).

Qualitative Analyses of “Naïve” Sensitivity and Specificity
Estimates. The reviewers depicted graphs of the “naïve”
estimates of sensitivity and specificity in the ROC space (see
Fig. 3). These graphs suggest a high “sensitivity” and
“specificity” of portable monitors to diagnose AHI≥15
events per hour with facility-based polysomnography.
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versus laboratory-based polysomnography to detect AHI > 15
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the grey areas (darker grey polygon) have both a positive
likelihood ratio more than 10 and a negative likelihood ratio less

than 0.1.
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However, it is very difficult to interpret these high values.
First, there is considerable night-to-night variability in the
measured AHI, as well as substantial between-rater and
between-lab variability. Second, it is not easy to deduce
whether the “naïve” estimates of “sensitivity” and “specificity”
are underestimates or overestimates compared to the unknown
“true” sensitivity and specificity to identify “sleep apnea.”
The systematic reviewers suggested that a better answer

would be obtained by studies that perform a clinical validation
of portable monitors (i.e., their ability to predict patients’
history, risk propensity, or clinical profile—this would be
option 1) and identified this as a gap in the pertinent literature.

Qualitative Assessment of the Concordance Between
Measurement Methods. The systematic reviewers decided
to summarize Bland–Altman type analyses to obtain
information on whether facility-based polysomnography
and portable monitors agree well enough to be used
interchangeably. For studies that did not report Bland–
Altman plots, the systematic reviewers performed these
analyses using patient-level data from each study, extracted
by digitizing plots. An example is shown in Figure 4. The
graph plots the differences between the two measurements
against their average (which is the best estimate of the true

unobserved value). An important piece of information from
such analyses is the range of values defined by the 95
percent limits of agreement (i.e., the region in which 95 %
of the differences are expected to fall). When the 95 %
limits of agreement are very broad, the agreement is
suboptimal (Fig. 4).
Figure 5 summarizes such plots across several studies. For

each study, it shows the mean difference in the two
measurements (mean bias) and the 95 % limits of agreement.
The qualitative conclusion is that the 95 % limits of
agreement are very wide in most studies, suggesting great
variability in the measurements with the two methods.
Thus, AHI measurements with the two methods generally

agree on who has 15 or more events per hour of sleep
(which is a low AHI). They disagree on the exact
measurement among people who have larger measurements
on average: One method may calculate 20 and the other 50
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Figure 4. Illustrative example of a difference versus average
analysis of measurements with facility-based polysomnography

and portable monitors. Digitized data from an actual study where
portable monitors (Pro-Tech PTAF2 and Compumedics P2) were
compared with facility-based polysomnography (PSG).16 The

dashed line at zero difference is the line of perfect agreement. The
mean bias stands for the average systematic difference between the

two measurements. The 95 % limits of agreement are the
boundaries within which 95 % of the differences lie. If these are
very wide and encompass clinically important differences, one
may concur that the agreement between the measurements is

suboptimal. Note that the spread of the differences increases for
higher measurement values. This indicates that the mean bias and
95 % limits of agreement do not describe adequately the differ-
ences between the two measurements; differences are smaller for
smaller values and larger for larger AHI values. In this example
mean bias = -11 events/hour (95 % limits of agreement: –38, 17),
with statistically significant dependence of difference on average

(Bradley-Blackwood F test, p<0.01).
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Figure 5. Schematic representation of the mean bias and limits of
agreement across several studies. Schematic representation of the
agreement between portable monitors and facility-based poly-

somnography as conveyed by difference versus average analyses
across seven studies (the study of Fig. 4 is not included). The study
author and the make of the monitor are depicted in the upper and

lower part of the graph, respectively. The difference versus
average analyses from each study are represented by three

horizontal lines: a thicker middle line (denoting the mean bias);
and two thinner lines, which represent the 95 % limits of

agreement and are symmetrically positioned above and below the
mean bias line. The figure facilitates comparisons of the mean bias
and the 95 % limits of agreement across the studies by means of
colored horizontal zones. The middle light-gray-colored zone

shows the range of the mean bias in the seven studies, which is
from +6 events per hour of sleep in the study by Dingi et al.

(Embletta monitor) to -8 events per hour of sleep in the study by
Whittle et al. (Edentrace monitor). The uppermost and lowermost
shaded areas show the corresponding range of the upper 95 %

limits of agreement (upper shaded zone) and the lower 95 % limits
of agreement (lower shaded zone) in the seven studies.
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events per hour of sleep for the same person. The two
methods are expected to disagree on who has AHI for those
with >20, >30, or >40 events per hour.

SUMMARY

In approaching a systematic review of the performance of a
medical test, one is often faced with a reference standard
which itself is subject to error. Four potential approaches
are suggested:

1. If possible, recast the assessment task in which the
index test is used as an instrument to predict clinical
outcomes. This reframing is potentially applicable only
when measured patient outcomes are themselves valid.
If so, the approach to such a review is detailed in Paper
11 in this supplement of the journal.

2. Assess the condordance in the results of the index and
reference tests (i.e., treat them as two alternative
measurement methods).

3. Calculate “naïve estimates” of the index test’s sensitivity
and specificity from each study, but qualify study findings.

4. Adjust the “naïve” estimates of sensitivity and speci-
ficity of the index test to account for the imperfect
reference standard.

Systematic reviewers should decide which of the four
options is more suitable for evaluating the performance of
an index test versus an “imperfect” reference standard. To this
end, the following considerations should be taken into
account in the planning stages of the review: First, it is
possible that multiple (imperfect) reference standard tests, or
multiple cutoffs for the same reference test, are available. If an
optimal choice is not obvious, the systematic reviewer should
consider assessing more than one reference standard, or more
than one cutoff for the reference test (as separate analyses).
Whatever the choice, the implications of using the reference
standard(s) should be described explicitly. Second, the
reviewers should decide which option(s) for synthesizing test
performance is (are) appropriate. The four options need not be
mutually exclusive, and in some cases can be complementary
(e.g., a “naïve” and “adjusted” analyses would reinforce
assessments of a test if they both lead to similar clinical
implications.) Finally, most of the analyses alluded to in
option 4 would require expert statistical help; further, we have
virtually no empirical data on the merits and pitfalls of
methods that mathematically adjust for an “imperfect”
reference standard. In our opinion, in most cases options 1-3
would provide an informative summary of the data.
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