
Hindawi Publishing Corporation
Neural Plasticity
Volume 2012, Article ID 584071, 26 pages
doi:10.1155/2012/584071

Review Article

Mouse Models of Down Syndrome as a Tool to
Unravel the Causes of Mental Disabilities
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Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine
chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model,
the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS
individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice.
Enhanced inhibition due to alterations in GABAA-mediated transmission and disturbances in the glutamatergic, noradrenergic
and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental
alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been
shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse
models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of
therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain
the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.

1. Introduction

Trisomy 21, or Down syndrome (DS), is the most common
genetic cause of intellectual disability. It affects 1 in 850–1000
infants [1] and is characterized by a number of phenotypes,
including cardiovascular, skeletal, and motor alterations.
However, the most prominent feature of DS is an intel-
lectual disability that affects 100% of the individuals with
this condition. DS individuals typically display an average
Intelligence Quotient (IQ) of 50 (ranging from 30 to 70) [2]
and show an array of altered cognitive and behavioral pheno-
types, including the incomplete and delayed acquisition of
motor [3], linguistic [3, 4] and visual-spatial abilities [3],
impairments in learning and memory [3–6], and neurobe-
havioral disorders [4] and have a higher risk of developing
Alzheimer-like dementia by the age of 40 [7, 8]. Great inter-
individual variability, however, is present in both the nature
and the intensity of all of these conditions.

In recent years, the question of how trisomy of Hsa21
leads to this set of phenotypes has been a matter of
debate. Two hypotheses have been proposed to account for

this phenomenon: the “amplified developmental instability”
hypothesis [9] and the “gene-dosage effect” hypothesis [10–
12]. The first hypothesis proposes that trisomy of Hsa21
causes a general alteration in developmental homeostasis that
leads to the DS phenotypes; the “gene-dosage effect” pro-
posal maintains that these alterations result from the over-
expression of a subset of genes and their encoded proteins.

The analysis of DS cases resulting from partial trisomies
of Hsa21 and the development of a number of mouse models
of this condition have provided insight on the causative role
of dosage-sensitive genes on DS phenotypes. These studies
have yielded evidence that support both theories; while the
role of single dosage-sensitive genes on different phenotypes
has been confirmed, research has also demonstrated that
many of these DS features are due to the complex effects of
multiple Hsa21 genes (see [13]) and their interactions with
genes of other chromosomes.

To identify the biological mechanisms underlying differ-
ent pathologies and to evaluate the efficacy of novel ther-
apies, thousands of animal models of human disorders have
been developed. For an animal model of a human disorder to
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be considered valid, it has to satisfy three criteria: construct,
face, and predictive validity [14, 15]. Construct validity relates
to the similarity between the etiology of the human and the
animal disorder (e.g., in the case of mouse models of DS, the
triplication of Hsa21 genes). Face validity refers to how well
the model mimics the molecular, cellular, physiological, and
behavioral phenotypes observed in humans. Predictive valid-
ity requires that the new knowledge obtained in the animal
model makes accurate predictions of what will be found in
the human condition. This validity is particularly important
for unraveling the neurobiological causes of the cognitive
deficits found in DS that cannot be assessed in humans for
ethical or practical reasons and for developing and testing
new therapies.

In the following sections, we will summarize (1) the simi-
larities between the genetic overdose of various mouse mod-
els of DS and human trisomy 21; (2) the concordance
between the behavioral, neuromorphological, and neuro-
chemical phenotypes of DS mouse models and the human
condition; (3) the knowledge obtained in these animals
about the neurobiology of DS that have yielded the develop-
ment and analysis of several therapeutic strategies that could
potentially be used to attenuate cognitive impairments in DS
individuals.

2. Mouse Models of Down Syndrome

The long arm of Hsa21 contains approximately 552 genes,
166 of which are orthologous to genes localized in syntenic
regions of three mouse chromosomes: Mmu16 (110 orthol-
ogous genes), Mmu17 (19 orthologous genes), and Mmu10
(37 orthologous genes) [16]. Based on these homologies,
several mouse models that are trisomic for different sets
of Hsa21 genes have been developed (Figure 1). The first
attempt to create a mouse model of DS was to develop
a mouse, named Ts16, which was trisomic for the entire
Mmu16 [17]. However, this model does not resemble the DS
aneuploidy because Mmu16 presents syntenies with regions
of Hsa3, Hsa8, Hsa16, and Hsa21; thus, it has triplicated
many genes that are not in trisomy in DS and, consequently,
does not exhibit good construct validity. Furthermore, Ts16
embryos die in utero, making it impossible to test pheno-
types in young and adult mice, thus restricting the face and
predictive validities of this model.

The next approach adopted was the generation of mouse
models with partial trisomies of sets of Mmu16 genes orthol-
ogous to those found in Hsa21. In 1993, Davisson et al. [18]
created the Ts65Dn mouse, which is now the most commonly
used and best characterized model of DS. This mouse bears a
partial trisomy of a segment of Mmu16, extending from the
Mrp139 to the Znf295 genes, and contains approximately 92
genes orthologous to Hsa21 genes [16]. Additionally, Ts65Dn
mice also carry a trisomy of ∼10 Mb of Mmu17 containing
60 genes nonhomologous to Hsa21 [19]. Thus, this model
does not have perfect construct validity because many of the
orthologous genes found in Hsa21 are not triplicated in this
mouse and because a set of genes not triplicated in DS are
in trisomy in this model. However, as detailed below, the
Ts65Dn mouse is currently the model that displays the best

face validity. Additionally, in some cases, DS results from a
partial trisomy of different regions of Hsa21, and there is
strong evidence that some regions of this chromosome con-
tribute more to the DS phenotype [12, 20]. Moreover,
according to the “gene-dosage effect” hypothesis, different
DS phenotypes are determined by the increased dosage of
only a subset of genes. A comparison of the phenotypes in
Ts65Dn mice with those of other partial trisomic models (see
below) suggests that the set of genes triplicated in this model
contribute to several DS phenotypes, including cognitive and
neuroanatomical impairments (Tables 1 and 2).

The Ts2Cje model carries the same segment of Mmu16
triplicated in the Ts65Dn mouse but is translocated to
chromosome 12 [21]. Although this model also shows some
of the DS-relevant phenotypes found in the Ts65Dn mouse,
it has not been fully characterized.

Several other segmental trisomic models of different seg-
ments of Mmu16, 17, and 10 have been created. In the
late 90s, Sago and coworkers generated two mouse models
with the triplication of two different regions of Mmu16: the
Ts1Cje mouse, which presents a trisomy of 81 genes localized
in the region of Mmu16 that extend from Sod1 to Znf295
[22]; the Ms1Ts65 mouse, which has a partial trisomy of
33 genes mapped in the region of Hsa21 that extend from
App to Sod1 [23]. In addition, to evaluate the influence of
the so-called Down syndrome critical region (DSCR), Olson
et al. [24] developed the Ts1Rhr mouse, a model that is
trisomic for the Cbr1-Orf9 region of Mmu16, which contains
33 genes. Finally, Li et al. [25] generated a mouse trisomic
for the complete Hsa21 syntenic region on Mmu16 (between
Lipi and Zfp295) containing 110 orthologous genes, the
Dp(16)1Yey/+ mouse [16].

To model the trisomy of Hsa21 orthologous genes located
in Mmu17, two mouse models have been created: the
Ts1Yah mouse, trisomic for 12 genes in the Mmu17 region,
syntenic to the subtelomeric region of Hsa21 [26] and the
Dep(17)1Yey/+ mouse which is trisomic for the entire Hsa21
syntenic region on Mmu17 that contains 19 orthologous
genes [16, 27, 28]. Additionally, Vacı́k et al. [29] created the
Ts43H model, a mouse that is trisomic for 30 Mb of Mmu17
containing over 300 genes but only ∼20 of them are ortho-
logs of Hsa21 genes. Therefore, this is not a valid DS mouse
model.

The last segmental trisomic mouse generated is a mouse
that models the trisomy of Hsa21 orthologous genes located
in Mmu10. The Dp(10)1Yey mouse is trisomic for the region
of Mmu10 syntenic to the distal part of Hsa21 containing 37
orthologous genes [16, 27].

After the tree partial trisomic models for all the
Hsa21 syntenic regions on Mmu10 (Dp(10)1Yey/+), Mmu16
(Dp(16)1Yey/+) and Mmu17 (Dep(17)1Yey/+) were estab-
lished, Yu et al. [27] cross-breeded them to generate
a mouse that is trisomic for the entire Hsa21 syntenic
regions on Mmu10, Mmu16, and Mmu17 chromosomes: the
Dp(10)1Yey/+Dp(16)1Yey/+; Dep(17)1Yey/+ mouse. This is
a promising new model with excellent construct and face
validities, as it shows several DS phenotypes [27].

The Tc1 model is a mouse in which the entire human
Hsa21 has been triplicated [30]. This mouse shows different
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Figure 1: Schematic representation of Hsa21 and syntenic regions of Mmu16, Mmu17, and Mmu10 and the different mouse models trisomic
for different sets of genes orthologous to those of Hsa21. The flanking genes found at the boundaries of the triplicated region in each model
are written in italics. Modified from [3, 137].

DS-relevant phenotypes [30–32], although its characteriza-
tion is not as complete as those performed on the different
segmental trisomic models. However, the Tc1 mouse pre-
sents variable levels of mosaicism of the extra chromosome
in different tissues, confounding the analysis of phenotypic
consequences. In addition, although the starting material was
an intact Hsa21, delections occurred and this mouse has
triplicated ∼83% of the genes on Hsa21.

Finally, to study the role of particular genes in the DS
phenotypes, a number of mouse models with the triplication
of single genes and trisomic mice in which the expression of
only one of the genes triplicated in DS have been normalized
have been created (see [13]).

3. Cognitive and Behavioral Deficits in
Mouse Models of DS

This section describes the similarities between the cognitive
and behavioral disturbances found in various mouse models
of DS compared to the human condition (Table 1).

Motor dysfunction is a hallmark of DS. Hypotonia, hypo-
reflexia, reduced muscular strength, disturbances in striate
muscle control, and delays in the acquisition of fine and gross
motor skills are found in DS individuals from early child-
hood [33–35].

Ts65Dn mice are not impaired in sensorimotor abilities
such as forelimb strength, postural skills, equilibrium, and
climbing [36, 37]. However, these mice show poorer balance
and motor coordination [38]. Ts65Dn mice are hyperactive
in the dark [36, 39, 40] and in other settings that provoke
caution and lack of movement in normal animals, such as in
open-field and plus-maze tests [36, 41–43]. This hyperactiv-
ity has been proposed to be due to a failure to inhibit activity
or as a deficit in the ability to attend to relevant stimuli [44–
46]. Attention deficits in Ts65Dn mice have been confirm-
ed by Driscoll et al. [47]. Unlike Ts65Dn, the other models
that are partially trisomic for different segments of Mmu16
are not hyperactive. Ts1Cje and Ms1Ts65 mice do not exhibit
altered spontaneous activity [23], and Ts1Rhr mice display
normal performances in the open-field test [48]. How-
ever, Tc1 mice present higher spontaneous locomotor activ-
ity, reduced ability to habituate to new environments, and
several deficits of motor coordination and balance in the
rotarod and static-rod tests [32].

Similar to DS [6], Ts65Dn mice are impaired in perform-
ing hippocampal-dependent tasks, such as spontaneous
alterations in the T-maze, contextual fear conditioning, novel
object recognition [49, 50], and spatial memory in the radial
arm maze [51–54] and the Morris water maze tests [23, 40,
42, 45, 55]. Ts65Dn mice also show deficits in learning an
operant conditioning paradigm [56].
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Ts1Cje and Ms1Ts65 mice display poor performance in
hippocampal-dependent tasks such as the T-maze [52] and
the Morris water maze [22, 23]. Ts1Rhr mice are impaired in
spontaneous alterations in the T-maze task [48] and show
altered long-term memory in the novel object recogni-
tion test [48] but not in the Morris water maze [57].
Dp(16)1Yey/+ mice showed impaired performance in the
Morris water maze and in the contextual fear conditioning
test [27].

Regarding the two mouse models trisomic for segments
of Mmu17, Ts1Yah mice are impaired in the novel object
recognition and Y-maze test, but their performance in the
Morris water maze is enhanced [26]; however, Dp(17)1Yey+
do not show alterations in performance in the later task or in
the contextual fear conditioning test [28].

The Dp(10)1Yey/+Dp(16)1Yey/+; Dep(17)1Yey/+ mouse
is impaired in the Morris water maze and in the contextual
fear conditioning test [27]. Finally, Tc1 mice show altered
performance in the novel object recognition test but not in
the T-maze [30].

In summary, most of the above-mentioned mouse mod-
els show characteristic DS cognitive and behavioral pheno-
types, although they differ in the degree of impairment.

4. Neuromorphological Alterations in
DS and DS Mouse Models

Several mechanisms have been proposed to be the neuro-
biological correlates of intellectual disability in DS, includ-
ing altered neurogenesis, hypocellularity, altered synaptic
development, increased inhibition, and neurodegeneration.
Table 2 summarizes the main neuromorphological and elec-
trophysiological alterations found in DS individuals and in
the different mouse models of DS, and Table 3 describes the
outcome of several studies that tested the ability of different
therapeutical approaches to rescue different phenotypic
alterations in the Ts65Dn mouse and in DS individuals.

4.1. Reduced Volume and Hypocellularity. In DS individuals,
the volume of the brain is reduced, beginning at early deve-
lopmental stages [57–62]; in adults, the reduction in size
reaches approximately 20% [63, 64], and, during aging, neu-
rodegeneration further deteriorates this scenario [65].

The brain volume of Ts65Dn, Ts1Cje, and Ts2Cje mice is
also reduced during the embryonic period, but not after birth
or during adulthood [39, 52, 66–68]. Ms1Rhr mice also show
reduced brain volume [66], as does the Ts1Rhr mouse, at 4
months of age [69] but not at later stages [48]. Thus, most
DS mouse models do not show changes in total brain volume
during adulthood.

A number of studies demonstrated that brain areas are
dissimilarly affected. Reduced volumes of the hippocampus,
entorhinal, frontal, prefrontal, and temporal cortices, amyg-
dala, cerebellum, brain stem nuclei, and mammillary bodies
of the hypothalamus have been reported in children and
adults with DS [63, 64, 70–78].

Consistently, size and anatomical alterations have been
found in some brain regions of trisomic mice. The hippo-
campus and the cerebellum appear to be the most affected

structures. Spatial learning is known to depend on the func-
tional integrity of the hippocampus, a structure that plays
a key role in information encoding and retrieving in the
CNS [79, 80]. In Ts65Dn mice, the hippocampal granule cell
layer and hilus show reduced volume [54, 81–83]. The hip-
pocampal area of Ts1Cje mouse is not reduced [52], and
the Ts1Rhr mice show greater volume of the posterior hip-
pocampus [48].

In DS individuals, cell density is not compromised in
early gestation [60, 62, 84], but neuron number is reduced
in late gestation (after weeks 19–23). Indeed, the number
of neurons in the hippocampus, parahippocampal gyrus,
cerebellum and neocortex of fetuses [60, 61, 85], and new-
born DS individuals [60, 62, 84] is reduced. Hypocellularity
persists in different areas of the brain [86] and cerebellum
[37] of children and adults with DS.

Ts65Dn mice show reduced cell density during prenatal
(E 18.5) and early postnatal stages in the neocortex (P8) [67].
At 1 month of age, Ts65Dn mice display a normal number of
neurons in the hippocampal CA1–CA3 areas [81]. However,
CA1 neuron density is lower in older (17-18 month) Ts65Dn
mice [87, 88]. The dentate gyrus (DG) of Ts65Dn mice has
fewer granule cells at all examined ages [54, 81, 87, 89, 90].
However, in 18-month-old Ts1Cje mice, the thickness of the
granule cell layer and molecular layer of the DG is not affect-
ed [52].

The cerebellum has been traditionally implicated in
motor coordination, but there is increasing evidence for the
role of this structure in higher cognitive processes, including
attention, cognitive flexibility, and memory [91]. Consistent
with what is found in DS, the volume of the cerebellum is
significantly reduced in Ts65Dn, Ts1Cje, and Ts1Rhr mice
[37, 48, 66, 92]. However, Ms1Ts65 mice do not show chang-
es in cerebellar volume [92].

As expected from the reduced cerebellar volume of DS
and trisomic mice, the cerebellum of Ts65Dn mice has a
lower number of granule and Purkinje cells from early post-
natal stages to adulthood [37, 93, 94]. Ts1Cje, Ms1Rs65,
and Tc1 mice also show a decrease in cerebellar granule cell
density [30, 92].

One of the anatomical substrates of learning and atten-
tion is the septohippocampal cholinergic system [95, 96]. In
the aging DS brain, there is a loss of cholinergic neurons [97,
98]. Several studies have demonstrated an age-dependent
decline in cholinergic markers in Ts65Dn mice. Starting at
6 months of age, Ts65Dn mice basal forebrain cholinergic
neurons show a loss of the cholinergic phenotype. These
neurons show a decrease in choline acetyltransferase (ChAT)
and p75NGFR, a neurotrophin receptor localized in basal fore-
brain cholinergic neurons, immunoreactivity. Furthermore,
there is a decrease in the size of these cholinergic neurons cell
bodies [82, 99–102].

In conclusion, persistent hypocellularity is one cause of
intellectual disability in the trisomic condition. The follow-
ing sections will describe the evidence showing that these
neuroanatomical alterations could be caused by impaired
cell proliferation, increased apoptosis and/or neurodegener-
ation.



6 Neural Plasticity

T
a

bl
e

2:
N

eu
ro

m
or

ph
ol

og
ic

al
an

d
el

ec
tr

op
hy

si
ol

og
ic

al
al

te
ra

ti
on

s
D

S
an

d
D

S
m

ou
se

m
od

el
s.

Tr
is

om
y

H
sa

21
Se

gm
en

t
of

M
m

u
16

Se
gm

en
t

of
M

m
u

17
Se

gm
en

t
of

M
m

u
10

Se
gm

en
t

of
M

m
u

16
,

M
m

u
17

,a
n

d
M

m
u

10

H
sa

21

D
S

D
p(

16
)1

Ye
y/

+
Ts

65
D

n
Ts

2C
je

Ts
1C

je
M

s1
Ts

65
Ts

1R
h

r
D

ep
(1

7)
1Y

ey
/+

Ts
1Y

ah
D

p(
10

)1
Ye

y/
+

D
p(

10
)1

Ye
y/

+
;

D
p(

16
)1

Ye
y/

+
;

D
ep

(1
7)

1Y
ey

/+
Yu

et
al

.,
20

10

T
c1

B
ra

in
vo

lu
m

e
R

ed
u

ce
d

R
ed

u
ce

d

R
ed

u
ce

d
du

ri
n

g
th

e
em

br
yo

n
ic

p
er

io
d

R
ed

u
ce

d
du

ri
n

g
th

e
em

br
yo

n
ic

p
er

io
d

R
ed

u
ce

d
R

ed
u

ce
d

at
4

m
on

th
s

of
ag

e

N
eu

ro
n

al
de

n
si

ty
R

ed
u

ce
d

R
ed

u
ce

d
R

ed
u

ce
d

N
ot

aff
ec

te
d

C
er

eb
el

la
r

vo
lu

m
e

R
ed

u
ce

d
R

ed
u

ce
d

R
ed

u
ce

d
N

ot
aff

ec
te

d
R

ed
u

ce
d

R
ed

u
ce

d

C
er

eb
el

la
r

n
eu

ro
n

al
de

n
si

ty
R

ed
u

ce
d

R
ed

u
ce

d
R

ed
u

ce
d

R
ed

u
ce

d

N
eu

ro
ge

n
es

is

(i
)

Im
pa

ir
ed

n
eu

ra
lp

re
cu

rs
or

pr
ol

if
er

at
io

n

(i
)

Im
pa

ir
ed

n
eu

ra
l

pr
ec

u
rs

or
pr

ol
if

er
at

io
n

(i
)

Im
pa

ir
ed

n
eu

ra
l

pr
ec

u
rs

or
pr

ol
if

er
at

io
n

(i
)

Im
pa

ir
ed

n
eu

ra
l

pr
ec

u
rs

or
pr

ol
if

er
at

io
n

(i
i)

Sl
ow

in
g

of
th

e
ce

ll
cy

cl
e

(i
i)

Sl
ow

in
g

of
th

e
ce

ll
cy

cl
e

(i
i)

Im
pa

ir
ed

n
eu

ro
di

ff
er

-
en

ti
at

io
n

(i
ii

)
Im

pa
ir

ed
n

eu
ro

di
ff

er
en

-
ti

at
io

n

(i
ii

)
Im

pa
ir

ed
n

eu
ro

di
ff

er
-

en
ti

at
io

n

(i
ii

)
Im

pa
ir

ed
ce

re
be

lla
r

n
eu

ro
ge

n
es

is
(i

v)
Im

pa
ir

ed
ce

re
be

lla
r

n
eu

ro
ge

n
es

is

(i
v)

Im
pa

ir
ed

ce
re

be
lla

r
n

eu
ro

ge
n

es
is

D
en

dr
it

es
an

d
de

n
dr

it
ic

sp
in

es

(i
)

Im
pa

ir
ed

m
or

ph
ol

og
y

(i
)

Im
pa

ir
ed

m
or

ph
ol

og
y

(i
)

Im
pa

ir
ed

m
or

ph
ol

og
y

(i
)

Im
pa

ir
ed

m
or

ph
ol

og
y

(i
)

Im
pa

ir
ed

m
or

ph
ol

og
y

(i
i)

R
ed

u
ce

d
de

n
si

ty
(i

i)
R

ed
u

ce
d

de
n

si
ty

(i
i)

R
ed

u
ce

d
de

n
si

ty
(i

i)
R

ed
u

ce
d

de
n

si
ty

(i
i)

R
ed

u
ce

d
de

n
si

ty



Neural Plasticity 7

T
a

bl
e

2:
C

on
ti

n
u

ed
.

Tr
is

om
y

H
sa

21
Se

gm
en

t
of

M
m

u
16

Se
gm

en
t

of
M

m
u

17
Se

gm
en

t
of

M
m

u
10

Se
gm

en
t

of
M

m
u

16
,

M
m

u
17

,a
n

d
M

m
u

10

H
sa

21

D
S

D
p(

16
)1

Ye
y/

+
Ts

65
D

n
Ts

2C
je

Ts
1C

je
M

s1
Ts

65
Ts

1R
h

r
D

ep
(1

7)
1Y

ey
/+

Ts
1Y

ah
D

p(
10

)1
Ye

y/
+

D
p(

10
)1

Ye
y/

+
;

D
p(

16
)1

Ye
y/

+
;

D
ep

(1
7)

1Y
ey

/+
Yu

et
al

.,
20

10

T
c1

Sy
n

ap
ti

c
de

n
si

ty
(i

)
R

ed
u

ce
d

(i
)

Si
ze

of
pr

es
yn

ap
ti

c
bo

u
to

n
s

an
d

av
er

ag
e

le
n

gt
h

of
sy

n
ap

ti
c

cl
ef

ts
ar

e
in

cr
ea

se
d

(i
i)

Si
ze

of
pr

es
yn

ap
ti

c
bo

u
to

n
s

an
d

av
er

ag
e

le
n

gt
h

of
sy

n
ap

ti
c

cl
ef

ts
ar

e
in

cr
ea

se
d

In
h

ib
it

io
n

(i
)

In
cr

ea
se

d
n

u
m

be
r

of
in

h
ib

it
or

y
sy

n
ap

se
s

(i
)

R
ed

is
tr

i-
bu

ti
on

of
in

h
ib

it
or

y
sy

n
ap

se
s

(i
i)

D
ec

re
as

ed
n

u
m

be
r

of
ex

ci
ta

to
ry

sy
n

ap
se

s
(i

ii
)

R
ed

is
tr

i-
bu

ti
on

of
in

h
ib

it
or

y
sy

n
ap

se
s

(i
v)

In
cr

ea
se

d
n

u
m

be
r

of
G

A
B

A
er

gi
c

in
te

rn
eu

ro
n

s

E
le

ct
ro

ph
y-

si
ol

og
y

(i
)

E
E

G
ab

n
or

m
al

it
ie

s
(i

)
Im

pa
ir

ed
h

ip
po

ca
m

pa
l

LT
P

(i
)

Im
pa

ir
ed

h
ip

po
ca

m
pa

l
LT

P

(i
)

Im
pa

ir
ed

h
ip

po
ca

m
-

pa
l

LT
P

(i
)

Im
pa

ir
ed

h
ip

po
ca

m
-

pa
l

LT
P

(i
)

E
n

h
an

ce
d

h
ip

po
ca

m
pa

l
LT

P

(i
)

U
n

ch
an

ge
d

LT
P

(i
)

Im
pa

ir
ed

h
ip

-
po

ca
m

-
pa

l
LT

P

(i
i)

E
E

G
co

h
er

en
ce

di
ff

er
en

ce
s

(i
ii

)
A

lt
er

at
io

n
s

in
ev

en
t-

re
la

te
d

po
te

n
ti

al
s



8 Neural Plasticity

Table 3: Therapeutical approaches tested in DS and in the Ts65Dn mouse.

Therapies DS Ts65Dn

Targeting neurogenesis

(i) Fluoxetine
(ii) Lithium
(iii) SAG 1.1
(iv) Environmental enrichment

(i) Not tested
(ii) Not tested
(iii) Not tested
(iv) Improves cognition

(i) Restores BDNF levels, neurogenesis, dendritic
maturation and branching and cognition

(ii) Restores neurogenesis
(iii) Restores neurogenesis and cognition
(iv) Restores neurogenesis, improves cognition, no

effect on dendritic arborization in TS mice

Targeting inhibition

(i) Picrotoxin
(ii) Bilobalide
(iii) PTZ
(iv) α5IA

(i) Not tested
(ii) Not tested
(iii) Not tested
(iv) Not tested

(i) Rescues LTP and cognition
(ii) Rescues LTP and cognition
(iii) Rescues LTP and cognition
(iv) Rescues cognition

Targeting NMDA receptor functioning

(i) Memantine (i) No effect (i) Improves cognition, reduces APP levels

Targeting NA functioning

(i) L-DOPS
(ii) Xamoterol

(i) Not tested
(ii) Not tested

(i) Rescues cognition
(ii) Rescues cognition

Targeting neurotrophins

(i) NGF (i) Not tested (i) Rescues BFCNs altered size and number

(ii) Peptide 6 (CNFT) (ii) Not tested
(ii) Improves learning and memory, enhanced

neurogenesis

(iii) EGCG (iii) Not tested
(iii) Rescued BDNF levels, brain size, and LTP in the

Dyr1A Tg mouse

(iv) Neurotrophin (iv) Not tested
(iv) Prevents decline in BDNF expression, improves

cognition

Targeting inflammatory activity

(i) Minocycline (i) Not tested
(i) Inhibits microglia activation, prevents neuron loss,

improves working, and reference memory

Neuropeptides

(i) NAP and SAL (i) Not tested
(i) Rescues acquisition of neurodevelopmental

milestones, increases ADNP levels and rescued
ADNP levels

Targeting oxidative stress: antioxidants

(i) SGS111
(ii) Vitamin E
(iii) Combined antioxidant supplementation
(iv) Folinic acid/ folinic acid + antioxidants

(i) Not tested
(ii) No effect
(iii) No effect
(iv) Beneficial effect on

developmental age/no effect

(i) No effect on cognition
(ii) Reduced oxidative stress, improved cognitive

performance, reduced cholinergic neuron pathology,
and increased cell density in the DG

Estrogens (i) Not tested
(i) In females enhanced cognition, increased the size

and number of cholinergic neurons and NGF levels

Targeting AD neuropathology

(i) DAPT
(ii) Donepezil

(i) Not tested
(ii) No effect/small effect

(i) Reduced beta-amyloid levels, rescued cognition
(ii) No effect

4.2. Neurogenesis

4.2.1. Neurogenesis in Trisomic States. Neurogenesis is severe-
ly compromised in DS from early developmental stages.
Impaired neuronal precursor proliferation, slowing of the
cell cycle, and altered differentiation are thought to account
for altered neurogenesis.

In DS fetuses, a reduced number of dividing cells is found
in the dentate gyrus (DG) and lateral ventricle [60, 89].

Reduced proliferation of neural precursor cells is also found
in mouse models of DS. In Ts65Dn mice, reduced neural
precursor proliferation is found in the neocortical ventric-
ular zone (VZ) during embryonic stages [67]. However,
in these mice, a larger progenitor population of inhibitory
neurons has been found in the embryonic medial ganglionic
eminence [103].

Reductions in neural progenitor cells and neuroblasts,
leading to altered neurogenesis, in the embryonic neocortex
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and subventricular zone (SVZ) of Ts1Cje and Ts2Cje mice
have also been reported [68, 104, 105].

It has been proposed that the extra copy of Hsa21 in DS
delays the mitotic cell cycle of neuronal precursors, thereby
affecting cell proliferation. Accordingly, a slowing of the cell
cycle in different trisomic conditions has been demonstrat-
ed. In Ts65Dn mice, the cell cycle is extended during
embryonic stages in CA3 [67] and in early postnatal life in
the DG [89]. The expression of two regulators of the G2/M
and G1/S transitions, Ccnb1 and Skp2, is decreased in new-
bornTs65Dn cerebellar granule cell precursors [82]. Hewitt
et al. [104] also observed dysregulated expression of genes
involved in cell cycle control in Ts1Cje mice.

Impaired differentiation also appears to contribute to the
smaller number of neurons in DS brains [106, 107]. Ts1Cje
neural progenitors have a reduced capacity to differentiate
into neurons [104, 105].

Adult hippocampal neurogenesis has been demonstrated
in many species, including rodents [108–111]. During the
entire life span, cell proliferation takes place in the SVZ and
in the subgranular zone (SGZ) of the DG, where a pool of
multipotent progenitor cells is located. In the SGZ, newborn
neurons migrate into the granular cell layer (GCL) and estab-
lish functional connections in the dentate molecular region,
where they receive excitatory synaptic input from perforant
path afferents [111]. Increasing evidence indicates that adult
hippocampal neurogenesis is implicated in the establishment
of long-term potentiation (LTP) and has a role in hippocam-
pal-dependent learning and memory [112–114]. Interest-
ingly, we have showed a negative correlation between perfor-
mance in the Morris water maze and the number of prolife-
rating cells in the DG of Ts65Dn mice and euploid littermates
(Figure 2).

In Ts65Dn mice, cell proliferation in the SVZ is reduced
from birth to adulthood [54, 114, 115]. In the DG, prolifera-
tion impairments have also been reported in newborn [81,
89], young [54, 116], middle-aged [117], and aged [83]
Ts65Dn mice. Adult (3-month-old) Ts1Cje and Ts2Cje mice
also present severe neurogenesis reduction in the SGZ [118].

Cerebellar neurogenesis is also affected by trisomy. DS
fetuses show reduced neurogenesis in the external granular
layer (EGL) of the cerebellum and in the VZ [61]. Newborn
(P0, P2, and P6) Ts65Dn mice also show reduced prolifera-
tion of cerebellar granule cell precursors in the EGL [93, 119];
their cell cycle is also dramatically slowed, and the G1 and G2
phases are the most affected [119]. One-month-old Ts65Dn
mice show reduced proliferation of the granule neurons of
the internal granular layer [94]. In Ts1Cje mice, proliferation
of cerebellar granule cells is reduced at birth but normal at
postnatal days 3 and 7 [120]. Differentiation is also altered in
the cerebellum of Ts65Dn mice because a smaller percentage
of cells acquire a neuronal phenotype [119]. Reductions in
cerebellar neurogenesis in Ts65Dn mice seem to be due to
the decreased response of granule cell precursors to the mito-
genic factor Sonic hedgehog (Shh) [93].

It can be concluded that neurogenesis impairment, due
to reductions in neural precursors, cell cycle timing and
differentiation, is a hallmark of trisomic conditions from pre-
natal to adult stages. This altered proliferation is likely to be
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Figure 2: Correlation between performance in the Morris water
maze (mean latency to reach the platform) and the number of
BrdU+ cells in the DG of Ts65Dn and euploid littermates (Rueda
et al., unpublished results; Pearson’s R: −0.4647; P < 0.001).

one of the mechanisms responsible for the widespread hypo-
cellularity leading to altered synaptogenesis, connectivity,
synaptic plasticity, and cognitive disabilities.

4.2.2. Trisomic Genes and Neurogenesis Impairment. A num-
ber of trisomic genes in DS have been proposed to play a role
in the proliferation impairment found in this condition. One
of the genes overexpressed in the DS brain is DYRK1A (dual-
specificity tyrosine-(Y)-phosphorylation regulated kinase
1A), an orthologous gene to the Drosophila gene minibrain
[121]. DYRK1A codes for a serine-threonine protein kinase
[122], which has important transcription factors as sub-
strates and, consequently, appears to be implicated in mul-
tiple biological pathways. DYRK1A is essential for normal
postembryonic neurogenesis [123, 124]. This gene plays a
role in neuronal progenitor proliferation, neurogenesis, and
neurodifferentiation, and regulates neuronal development,
brain volume and cellular density in different brain areas
[124–127]. The DYRK1A protein also modulates CREB
(cAMP response element-binding protein) activity, which
participates in synaptic plasticity signal transduction path-
ways [126]. Overexpression of DYRK1A inhibits prolifera-
tion, induces premature differentiation of neural progenitor
cells in the developing mouse cerebral cortex, and impairs
G1/G0-S phase transition in rat hippocampal progenitor cells
[128, 129]. Recent studies have suggested that the DYRK1A
gene could be a potential therapeutic target in DS because the
inhibition of DYRK1A expression rescued several DS rele-
vant phenotypes. Ortiz-Abalia et al. [130] demonstrated that
the normalization of the Dyrk1A expression in the striatum
of TgDyrk1A mice, through the injection of an adeno-asso-
ciated virus type 2-mediated Dyrk1A RNA inhibitor
(AAVshDyrk1A), rescued motor alterations in these animals.
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The Olig1 and Olig2 genes are also overexpressed in DS
individuals. These genes encode transcription factors that
have been implicated in neurogenesis and oligodendrogene-
sis [131–133]. Chakrabarti et al. [103] have demonstrated the
implication of these genes in the regulation of the number
of inhibitory neurons during embryonic development. The
normalization of Olig1 and Olig2 expression in Ts65Dn mice
rescued the abnormal interneuron production and the bal-
ance between excitatory and inhibitory transmission [103].

The APP gene is triplicated in DS and in most DS mouse
models, and it is thought to play a role in different DS pheno-
types, such as the development of AD pathology. It has
been proposed that the APP gene may also be involved in
the altered neurogenesis characteristic of the trisomic con-
dition. Trazzi et al. [115] have recently related increased levels
of the APP fragment AICD to the overexpression of the
negative regulator of the Shh pathway, Ptch1, in Ts65Dn mice
neural precursors and to their proliferation impairment. APP
overexpression may also alter the differentiation of newly
born cells by acting upon the Notch pathway, which is impli-
cated in the acquisition of a glial phenotype [134]. Notch is
upregulated in the cortex of DS and AD patients and in DS
fibroblasts [135]; therefore, it could shift the balance towards
a glial phenotype rather than a neuronal phenotype in newly
born cells.

4.2.3. Therapies Targeting Neurogenesis. The implication of
adult neurogenesis defects in DS-related cognitive impair-
ments suggests that therapies targeted to rescue neurogenesis
may be of value in treating intellectual disability in DS indi-
viduals.

The selective serotonin reuptake inhibitor fluoxetine is an
antidepressant that has been shown to increase neurogenesis
in the mouse DG and SVZ [113, 136]. Chronic treatment
with fluoxetine restored neurogenesis in adult Ts65Dn mice
[116]. Bianchi et al. [54] have recently shown that Ts65Dn
mice treated with fluoxetine during the first two weeks of
postnatal life showed rescued proliferation in the DG and
SVZ, differentiation, and survival. Furthermore, this treat-
ment restored brain derived neurotrophic factor (BDNF)
expression, total granule cell number, and cognitive perfor-
mance in a contextual fear conditioning task.

Another drug that markedly increases neurogenesis in
the DG of adult normal mice is lithium, a drug prescribed for
the treatment of bipolar depression [113]. Lithium treatment
for 1 month rescued neurogenesis in the SVZ of 12-month-
old Ts65Dn mice [114].

As mentioned above, the Shh pathway plays a key role in
granule precursor cell (GPC) proliferation. Drugs targeting
this pathway rescue neurogenesis alterations. Treatment of
Ts65Dn mice with an activator of the Shh pathway, SAG 1.1,
increased mitosis, restored cerebellar granule cell precursor
populations [93], and rescued the cell proliferation of neural
progenitors from the SVZ and DG [115]. Furthermore, a
single injection of SAG 1.1 to newborn Ts65Dn mice restored
cognition in these mice when they became adults [137].

Active care programs are one of the most success-
ful therapeutic interventions used in DS individuals. In
rodents, environmental enrichment has been associated with

morphological, physiological, and cognitive improvements.
These changes include increases in cortical weight and
thickness, hippocampal neurogenesis, dendritic branching,
length, number of dendritic spines and size of dendritic
spines [138–140], facilitation of long-term potentiation [141,
142], and more efficient learning during different tasks [143–
145].

Exposure of Ts65Dn mice to environmental enrichment
for 7 weeks modulated spatial memory in a sex-dependent
manner [55]. Environmental enrichment improved the per-
formance of Ts65Dn females in the Morris water maze but
lowered the performance of Ts65Dn male mice. In a sub-
sequent study [42], it was shown that the deterioration found
after environmental enrichment in Ts65Dn males was likely
due to the stress induced by increased intermale aggression
when the animals were housed in large groups. Enriching TS
males in large groups (8–10) produced a large deterioration
of performance in the Morris water maze and an increase
in corticosterone plasma levels, effects that were not found
when TS mice were housed in standard laboratory conditions
or enriched in groups of 2-3.

Chakrabarti et al. [146] have recently shown that envi-
ronmentally enriching groups of 2-3 Ts65Dn mice per cage
increased cell proliferation and neurogenesis in the DG and
SVZ of both male and female mice. It was proposed that this
cellular response could underlie the cognitive improvements
seen after special care programs in DS individuals.

Voluntary exercise is beneficial for cognition in both nor-
mal rodents and mouse models of altered cognition [110,
140, 147–149]. It has been suggested that these beneficial
effects could be mediated, at least in part, by enhanced hip-
pocampal neurogenesis [148, 150]. We have demonstrated
that voluntary physical exercise improved the performance of
TS mice in the Morris water maze but did not restore the neu-
romorphological phenotype (neurogenesis and hypocellu-
larity in the DG), which suggests that the cognitive impro-
vements produced by exercise were not mediated by neuro-
genesis-dependent mechanisms [83].

4.3. Apoptosis. Apoptosis or programmed cell death is
physiologically involved in nervous system development and
aging. It has been proposed that the hypocellularity found in
DS brains could also be due to increased cell death. However,
thus far, studies on the apoptotic processes in the trisomic
condition have led to contradictory results. Some groups
have reported increases in the number of apoptotic cells in
DS brains [60, 151] and in Ts65Dn [89] and Ts1Cje [105]
mice. In addition, changes in apoptotic regulatory proteins
in different structures of DS brains have been found [152–
156]. However, other studies have failed to find differences or
have shown a reduced rate of apoptotic cell death in human
and mouse trisomies [89, 157]. We have recently shown a
downregulation of the antiapoptotic Bcl-Xl protein in the
hippocampus of adult Ts65Dn mice, without changes in
other pro- or antiapoptotic proteins in the cortex or the hip-
pocampus [158]. Furthermore, we did not find any evidence
of changes in molecular or cellular markers of apoptosis, sug-
gesting that programmed cell death is not likely to play a role
in the hypocellularity found in these mice brains.
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4.4. Dendritic Hypotrophy. Altered synaptic plasticity is an
additional mechanism that may underlie intellectual disabil-
ity in DS individuals. Synaptic plasticity includes alterations
in the number and the functional characteristics of synapses,
which are mostly localized to dendrites and dendritic spines
[159, 160].

Numerous studies have demonstrated impaired dendritic
morphology in trisomic conditions. Although normal or
even increased dendritic branching has been reported in DS
fetuses and neonates [161–163], in DS children, neurons
of the motor [164], visual [163, 165], and parietal cortex
[166] show dendritic hypotrophy. These anomalies continue
throughout the lifespan; in DS adults, the visual cortex, CA1,
and CA3 are characterized by the presence of dendrites of
shorter length and dendritic trees with reduced branching
that progressively degenerate [161, 165, 167, 168]. Dendritic
spines also show altered morphologies in the DS brain. Start-
ing from infancy, spines are less numerous and smaller
[168, 169], and their density is reduced to a greater extent
in older DS individuals with AD [167, 170].

Mouse models also resemble the dendritic pathology of
DS. In adult Ts65Dn mice, neocortical pyramidal neurons
show a reduction in the length and arborization of dendrites
and in the density of spines [171]. Spine density is also
reduced in the granule cells of the DG in Ts65Dn, Ts1Cje,
Ts2Cje, and Ts1Rhr mice [21, 48, 52, 172, 173]. In addition,
in Ts65Dn, Ts1Cje, and Ts2Cje mice, these DG spines are
characterized by several morphological anomalies, including
an increase in the size of the heads and a decrease in the
length of the necks [21, 52, 172]. Ts1Rhr mice also display
enlarged spine heads, but no changes have been found in the
morphology of spine necks of neurons in the cortex or the
DG [174].

4.4.1. Therapies Targeting Dendrites and Dendritic Spines.
These anomalies in dendritic tree arborization, spine density,
and morphology lead to reduced density of synapses and
compromised synaptic function in DS individuals. Several
groups have tested the value of various therapeutic strategies
for rescuing dendritic pathologies.

Based on the observation that fluoxetine favors dendritic
development in normal animals [175], Bianchi et al. [54]
reported that the early administration of fluoxetine (P3–P15)
restored dendritic maturation and dendritic branching of
DG neurons in Ts65Dn mice. As mentioned above, this drug
also rescued neurogenesis and cognitive deficits in this mouse
model.

The enhancement of dendritic arborization and spine
density has been firmly established as one of the positive
effects of environmental enrichment [138, 139, 176]. Because
environmental enrichment has been shown to improve
cognition in female but not male Ts65Dn mice [55], Dierssen
et al. [171] tested the effect of this experimental protocol on
dendritic morphology. The authors found that the enriched
environment increased dendritic length and spine density
in the basal dendritic trees of the neocortical pyramidal
cells of euploid animals but had no effect on Ts65Dn mice
[171]. Thus, enhancements in dendritic arborization and

spine density do not appear to be the mechanism by which
enrichment improves cognition in Ts65Dn females.

4.5. Synaptic Pathology. As predicted by the reduced length
and number of branches of dendrites and density of spines,
the trisomic condition is characterized by a reduced number
of synaptic contacts and alterations in synaptic plasticity.
Ts65Dn mice show a reduction in synaptic density in the
neocortex and CA1 at P9 [67] and in the hippocampal DG,
CA1, and CA3 regions in adulthood [88]. However, the size
of presynaptic boutons and the average length of synaptic
clefts are increased in the cortex and hippocampus of Ts65Dn
and Ts1Cje mice [52, 69, 172].

Not only the number and characteristics of synapses but
also the relative distribution of different types of synapses is
altered in trisomic mice, leaving the balance between excita-
tory and inhibitory synapses shifted toward increased inhibi-
tion in the trisomic brain. Ts65Dn mice have less excitatory
(asymmetric) synapses in the temporal cortex, DG, CA1, and
CA3 [88, 177], and glutamatergic synapses are reduced in the
hippocampus of Ts65Dn mice [90]. An increased number of
inhibitory synapse markers [172] have been reported in the
DG of these mice, but no changes in the number of symmet-
ric or asymmetric synapses were found in the fascia dentata
of Ts65Dn mice [69]. Ts65Dn and Ts1Cje brains also show a
redistribution of inhibitory synapses, with a relative decrease
in inputs to the dendritic shafts and an increase in inputs on
spine necks [52, 172]. An increased number of GABAergic
interneurons in the somatosensory cortex of Ts65Dn mice
have been reported [178], which implies an enhancement
of inhibitory synapses. Finally, Chakrabarti et al. [103] have
found enhanced neurogenesis of inhibitory neurons in the
forebrain of Ts65Dn mice, which led to an increased inhi-
bitory drive.

Overall, these morphological and functional disturban-
ces compromise the physiological properties of synapses,
possibly leading to cognitive impairments in DS and trisomic
mice.

5. Electrophysiological Alterations in
DS and Mouse Models of DS

DS individuals present small electroencephalographic (EEG)
abnormalities. EEG alpha activity is relatively preserved in
young individuals with DS, but older patients with dementia
present abnormal activity [179]. EEG coherence differences
[180] and alterations in event-related brain potentials (ERPs)
have also been reported in DS individuals [181].

In mouse models of DS, altered synaptic plasticity in the
hippocampus has been consistently reported. Hippocampal
long-term potentiation (LTP) is considered to be the elec-
trophysiological substrate of learning. Ts65Dn mice display
reduced LTP in the hippocampal CA1 and DG regions [52,
182–186]. Similarly, Ts1Cje, Ts1Rhr, Dp(16)1Yey/+, and Tc1
mice show reduced hippocampal LTP [28, 30, 31, 48, 52].
However, Dep(17)1Yey/+ mice showed enhanced LTP [28].

It has been proposed that altered synaptic plasticity in the
hippocampus of DS mouse models results from increased
inhibition due to unbalanced excitatory and inhibitory
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neurotransmission [172, 186, 187]. Reduced activation of
NMDA receptors is thought to hinder LTP induction in triso-
mic mice [30, 48, 52, 186]. Enhanced hippocampal long-
term depression (LTD) has also been reported in the Ts65Dn
mouse [183]. Scott-McKean and Costa [188] have demon-
strated that increased cerebellar LTD, mediated by exagger-
ated NMDAR-dependent mechanisms, could be rescued by
the administration of the NMDA receptor antagonist mem-
antine.

In addition, overinhibition in the hippocampus of
Ts65Dn mice has also been shown to be dependent on
GABAA receptors [172] because the GABAA antagonist
picrotoxin rescued the reduction in LTP induced by theta-
burst stimulation (TBS) in these mice [184]. Furthermore,
Kleschevnikov et al. [189] have shown that both GABAA and
GABAB receptor-mediated components of evoked inhibitory
postsynaptic currents (IPSCs) were significantly higher in
Ts65Dn mice, suggesting an increase in presynaptic release of
GABA. Thus, both GABAA and GABAB receptors are impli-
cated in the reduced synaptic efficiency found in the DG of
Ts65Dn mice.

The G-protein-activated inwardly rectifying potassium
channel 2 (Girk2) gene is overexpressed in DS individuals.
Girk channels generate a GABAB receptor-dependent slow
inhibitory postsynaptic potential in hippocampal neurons
[190]. It has been proposed that an increase in Girk2
gene expression may produce overinhibition in hippocampal
neurons and contribute to LTP failure in the trisomic
condition [191].

5.1. Therapies Targeting Overinhibition. Because overinhibi-
tion in the trisomic brain appears to underlie LTP impair-
ments and, therefore, alter learning and memory processes,
a number of studies have tested drugs that reduce GABA-
mediated inhibition in an attempt to rescue the electrophys-
iological substrates of cognition.

It is well established that the GABAA receptor system
plays an important role in cognition. Nonselective positive
modulators of the GABAA receptor disrupt learning and
memory processes [192–194], while nonselective negative
modulators improve cognitive processes [195–197]. Reduc-
ing inhibition in the Ts65Dn brain by administering the
GABAA antagonists picrotoxin (PTX), bilobalide (BB), or
pentylenetetrazole (PTZ) restored LTP and cognition in the
object recognition test in these mice [185]. Rueda et al. [198]
confirmed that chronic PTZ treatment also rescued Ts65Dn
mice performance in the Morris water maze.

However, non-selective GABAA negative modulators
cannot be safely used to improve cognition due to their anx-
iogenic and proconvulsant effects [199]. Among the different
GABAA receptor subtypes, GABAA α5 subunit-containing
receptors are known to facilitate cognition in hippocampal-
dependent tasks [200, 201]. Moreover, selective GABAA α5
negative allosteric modulators, also called inverse agonists,
have cognition-enhancing effects without anxiogenic or pro-
convulsant side effects [202–204]. A functionally selective
GABAA α5 inverse agonist, α5IA, has been shown to rescue
learning and memory deficits in TS mice without inducing
anxiogenic and convulsant side effects [205].

Further support for the efficacy of reducing GABA-medi-
ated overinhibition to improve cognition in trisomic mice
comes from a recent report that demonstrated that environ-
mental enrichment reduced the release of GABA in the hip-
pocampus and visual cortex of Ts65Dn mice while rescuing
spatial learning and hippocampal LTP [206].

6. Altered Neurotransmission and Receptors

Alterations in several neurotransmitters and changes in the
expression and function of their receptors, in both DS indivi-
duals and mouse models of this condition have been demon-
strated. These impairments may be responsible for other
phenotypes found in trisomic conditions, such as defects in
neurogenesis, synaptic transmission, and cognition. Dopam-
ine, taurine, and histamine levels have been shown to be
altered in the brains of DS fetuses and adults [97, 98, 207–
209]. The main neurotransmitter and receptor alterations
in DS and in the Ts65Dn mouse model are summarized in
Table 4.

6.1. GABA. GABA is reduced in DS fetuses [207]. However,
as predicted from the enhanced inhibition of the trisomic
brain, an increase in the number of inhibitory neurons has
been found in Ts65Dn mice due to the overexpression of the
Olig1 and Olig2 genes (see above) [103, 178]. Furthermore, it
has been suggested that enhanced presynaptic GABA release
may be responsible for the increased hippocampal inhibitory
postsynaptic potentials (IPSPs) observed in these mice [189].

A number of alterations have been reported in the expres-
sion of various GABA receptor subunits. In neurospheres
from fetuses with DS, upregulation of the α2 and downreg-
ulation of the α5 and β3 subunits of the GABAA receptor
have been reported [210]. In the hippocampus of Ts65Dn
mice, reductions in the number of β2 and β3 subunits of
the GABAA receptor were found [69]. Brain synaptosomes
of Ts65Dn mice show a reduction in GABAA α1 receptor
expression [211]. Changes in the R1 subunit of the GABAB

receptor have also been reported in Ts65Dn mice [69]. How-
ever, Kleschevnikov et al. [189] did not find changes in the
levels of GABAA or GABAB receptor subunits by western blot
analysis.

GABAA activity is known to regulate neuronal prolif-
eration, migration, differentiation, and integration of new-
ly generated neurons [212–214]. The enhanced GABAA-
mediated inhibition shown by Ts65Dn mice could, therefore,
be implicated in the alterations in neuronal proliferation and
survival found in these mice.

6.2. Excitatory Transmitters. Increased inhibition in the tri-
somic condition is also caused by alterations in excitatory
transmission. Although similar levels of glutamate [215] are
found in fetuses with and without DS, decreased levels of
aspartate and glutamate have been found in several areas of
the adult DS brain [97, 98, 208].

As detailed above, altered hippocampal LTP in trisomic
mice suggests disturbances in NMDA receptor signaling.
In Ts65Dn mice, a reduction of the GluR1 subunit of the
AMPA receptor [69] and of the NR2A and NR2B subunits of
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Table 4: Neurotransmitter and receptor alterations in DS and in the Ts65Dn mouse model of Down syndrome.

DS Ts65Dn

GABA (i) Reduced in fetuses (i) Increased number of GABAergic interneurons

Excitatory
transmitters

(i) Decreased levels of glutamate and aspartate in adults

(i) Alterations in the composition of the AMPA and
NMDA receptor

(ii) Alterations in the signalling mechanisms
downstream the NMDA receptor

5-HT
(i) Deficits of 5-HT in the frontal cortex
(ii) Reduced levels of the 5-HT1A receptor

(i) Unchanged levels of 5-HT
(ii) Reduced levels of the 5-HT1A receptor

Ach
(i) Deficits in the cholinergic system and in ChAT

activity
(i) Reduced levels of markers for Ach
(ii) Increased ChAT activity

NA
(i) Reduced levels in adult brains
(ii) Altered β-adrenoceptor function in aged brains

(i) Loss of locus coeruleus neurons starting at 6 months
of age

(ii) Altered β-adrenoceptor function

Neurotrophins

(i) BDNF
(ii) NT3
(iii) NGF

(i) Reduced levels in fetuses
(i) Reduced levels
(ii) Increased levels
(iii) Reduced levels

the NMDA receptor [216] has been reported. However, other
studies failed to find changes in the GluR1 subunit in brain
homogenates or changes in the NR2A and NR2B subunits in
synaptosomes of these mice [211].

Ts65Dn and Ts1Cje mice exhibit hypersensitivity to the
locomotor stimulatory effect of MK-801, an NMDA receptor
channel blocker [217].

Alterations in the signaling mechanisms downstream of
the NMDA receptor have also been reported; the hippo-
campi of Ts65Dn mice show disturbances in the calcium/
calmodulin-dependent protein kinase II (CaMKII), phos-
phatidylinositol 3-kinase (PIP3K)/Akt, extracellular signal-
regulated kinase (ERK), protein kinase A (PKA), and protein
kinase C (PKC), all of which have been shown to be involved
in synaptic plasticity [218].

One of the targets of the NMDA receptor is the protein
phosphatase calcineurin (CaN). The DSCR1 gene encodes
a protein that inhibits CaN, and this gene is overexpressed
in the Ts65Dn brain [219]. The inhibition of CaN activity
increases the mean open time and opening probability of the
NMDA receptor [220]. Memantine, a partial agonist of the
NMDA receptor, often prescribed for the treatment of AD-
dementia, acts as an open-channel blocker and has been pro-
posed to mimic the actions of CaN and restore the function
of the NMDA receptor. Costa et al. [221] demonstrated that
the acute administration of memantine improved contextual
fear conditioning in Ts65Dn mice. Chronic treatment with
memantine also improved Ts65Dn mice performance in the
Morris water maze [90] and in the novel object recognition
test and water radial arm maze [222]. Memantine slightly
reduced brain APP levels and normalized the levels of
hippocampal excitatory synapses in Ts65Dn mice [90].
However, memantine did not rescue Ts65Dn morphological
alterations, as the number of hippocampal granule [90],
basal forebrain cholinergic, and locus coeruleus neurons
[222] remained low in memantine-treated Ts65Dn mice.
Nevertheless, these mice showed increased BDNF levels in
the hippocampus and the prefrontal cortex.

In spite of the rescue induced by memantine of several
DS-relevant phenotypes in the Ts65Dn mouse, a recent
randomized double-blind clinical trial failed to find any
benefit of memantine administration for 52 weeks on cog-
nitive impairment and dementia in DS individuals over 40
years of age [223].

6.3. Serotonin. Deficits in serotonin (5-HT) have been
reported in the frontal cortex of DS fetuses [207] and in
adult DS brains [97, 98, 209]. However, Ts65Dn mice show
unchanged levels of 5-HT in the hippocampus [54], and no
alterations were found in the histological analysis of sero-
tonergic neurons of the dorsal and medial raphe nuclei of
these mice [224]. 5-HT has a role in neurogenesis, neuronal
differentiation, dendritic development, axon myelination,
and synaptogenesis [225]. Thus, the reduction of this trans-
mitter in DS fetal and adult brains may underlie a number of
altered neuromorphological and cognitive phenotypes.

The 5-HT1A receptor has also been implicated in the
regulation of neurogenesis [113, 226, 227]. Reduced levels of
the 5-HT1A receptor have been reported in the DS brain at
birth [228], in hippocampal neurospheres, and in the hip-
pocampus of newborn Ts65Dn mice [54]. Thus, reduced 5-
HT1A receptor expression may underlie the defective neu-
rogenesis found in Ts65Dn mice [54]. Moreover, treatment
with the 5-HT1A reuptake inhibitor fluoxetine rescued the
expression levels of this receptor in Ts65Dn mice, suggesting
that this effect may underlie the rescue of proliferation pro-
duced by this drug, as previously mentioned.

6.4. Acetylcholine. One of the anatomical substrates of learn-
ing and attention is the septohippocampal cholinergic system
[95, 96]. A number of studies have demonstrated alterations
of this system in the trisomic condition. Deficits in the
cholinergic system have been found in DS fetuses [207], and
choline acetyltransferase (ChAT) activity is reduced in the
brains of adults with DS [97, 98].
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Although a normal number of cholinergic neurons is
found in young Ts65Dn mice, basal forebrain cholinergic
neurons (BFCNs) degenerate with age in these mice [99–
102]. However, ChAT activity is increased in the cortex and
hippocampus of 10-month-old Ts65Dn mice, likely in an
attempt to compensate for the reduced number of cholin-
ergic neurons [82, 100, 229, 230].

6.5. Noradrenaline. The levels of noradrenaline (NA) are
normal in DS fetuses [207] but are reduced in adult DS brains
[97, 98], likely as a consequence of the neurodegeneration of
the locus coeruleus [231, 232]. Ts65Dn mice also show a loss
of locus coeruleus neurons starting at 6 months of age [53].

Ts65Dn mice show unchanged numbers of β-adrenocep-
tors in the cortex and hippocampus; however, their function
is altered. Basal production of cyclic AMP in the hippocam-
pus of TS mice was impaired. In addition, the responses of
adenylyl cyclase to the stimulation of β-adrenoceptors with
isoprenaline and of the catalytic subunit with forskolin were
both severely depressed [233, 234]. Aging DS brains also
show a dramatic reduction in basal and stimulated cAMP
production [235].

NA has been shown to play a role in neurogenesis, as neu-
ron proliferation is enhanced or impaired following increases
or reductions in NA transmission, respectively [236]. There-
fore, altered NA transmission in the trisomic condition may
also play a role in the impairment of adult hippocampal neu-
rogenesis. Furthermore, a link between noradrenergic affer-
ents from the locus coeruleus to hippocampal neurons and
contextual learning has been demonstrated [237]. This hip-
pocampal-dependent cognitive process is impaired in indi-
viduals with DS [6] and in Ts65Dn mice [53]. A recent study
by Salehi et al. [53] demonstrated that enhancing NA trans-
mission through the administration of L-Threo-3, 4-dihy-
droxyphenylserine (L-DOPS), a synthetic amino acid that is
metabolized by NA-containing neurons to produce NA, or
xamoterol, a ß1-adrenergic receptor partial agonist, rescued
contextual learning in Ts65Dn mice. These authors hypoth-
esized that, given the finding that NA can activate or inhibit
GABAergic neurons and that GABA can increase the release
of NA, there could be an overlap in the mechanisms by
which GABAA antagonists and NA-enhancing drugs improve
learning in Ts65Dn mice.

6.6. Neurotrophins. The role of neurotrophins (NT) in neu-
ronal survival, differentiation, migration, and synaptic plas-
ticity is well documented [238–240]. Consequently, altera-
tions in their expression may alter many aspects of neurode-
velopment.

The reduced expression of BDNF has been observed
in the hippocampus of DS fetuses [241], and the reduced
expression of both BDNF and the tyrosine kinase receptor
TrkB has been observed in the cerebral cortex of DS fetuses
[242]. Young Ts65Dn mice also show reduced BDNF levels in
the hippocampus [54, 243] and in the frontal cortex during
adult stages [244]. Because BDNF has a role in neuronal
survival and differentiation [213, 215], it is a natural target
for several treatments to restore neurogenesis in the trisomic
brain. In Ts65Dn mice, fluoxetine restored BDNF expression,

survival of newborn cells, differentiation, and granule cell
number.

NT-3 is increased in the hippocampus of newborn and
adult Ts65Dn mice [245], potentially in an attempt to com-
pensate for the neuronal loss found in these mice.

Nerve growth factor (NGF) is generated in the hippo-
campus and retrogradely transported to the soma of BFCNs
[239]. NGF levels are reduced in the hippocampus of young
Ts65Dn mice [50], and the retrograde transport of NGF to
the basal forebrain is hindered in older Ts65Dn and Ts1Cje
mice [50, 100]. NGF enhances the survival, differentiation,
and maintenance of neurons, including BFCNs [239]. The
administration of NGF to Ts65Dn mice rescued the altered
size and number of BFCNs [100].

Peptide 6, an active region of ciliary neurotrophic factor
(CNTF), modulates the CNTF pathway by inhibiting the
antineurogenic activity of leukemia inhibitory factor, there-
by increasing neurogenesis [246]. Administration of peptide
6 to Ts65Dn mice reduced learning and memory deficits,
enhanced the pool of neural progenitor cells in the hip-
pocampus, and increased the level of synaptic proteins cru-
cial for synaptic plasticity [247].

Considering the role of Dyrk1A in neuronal progenitor
proliferation, neurogenesis, and neurodifferentiation, it has
been suggested that molecules targeting this gene could pro-
vide therapeutic benefits to DS phenotypes. Epigallocatechin
gallate (EGCG), an antioxidant extracted from green tea, is
an inhibitor of the protein kinase DYRK1A [248].

The chronic administration of EGCG from conception
to adulthood rescued BDNF levels in the hippocampus of
Dyrk1a transgenic mice [241]. Concomitant to this neuro-
trophic factor normalization, these mice presented an
increase in brain volume and improved cognitive perfor-
mance. Other studies have demonstrated that the acute
administration of EGCG normalizes hippocampal LTP in
Ts65Dn mice [249]. However, EGCG affects a wide array
of signal transduction pathways including the MAPK,
PI3K/AKT, Wnt, and Notch pathways [250], which are
altered in Ts65Dn mice [135]; thus, its beneficial effects
could be mediated by mechanisms different from Dyrk1A
inhibition.

Finally, Fukuda et al. [243] have recently demonstrat-
ed that the chronic administration of the analgesic neurotro-
phin to Ts65Dn mice prevents the age-dependent decline in
hippocampal BDNF expression. This treatment also enhanc-
ed the performance of these mice in the radial arm maze. It
has been proposed that the analgesic action of neurotrophin
is mediated by the noradrenergic and GABAergic systems
[251]; therefore, the cognitive-enhancing effects could also
be determined by improvements in the function of these
transmitter systems.

7. Neurodegeneration

Although neurodevelopmental alterations occurring from
early embryonic stages are likely to cause intellectual disabil-
ity, there are a number of neurodegenerative mechanisms in
DS that complicate this scenario. Atrophy of a number of
structures, including the hippocampus, amygdala [71, 252],
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Table 5: Neurodegenerative processes in DS and in the Ts65Dn mouse.

DS Ts65Dn

Neuroinflammation
(i) Activated microglia and increased levels of

proinflammatory cytokines
(i) Activated microglia

Oxidative stress (i) Increased (i) Increased

AD neuropathology (i) Cholinergic neuron loss, plaques, and tangles
(i) Cholinergic neuron degeneration, increased

APP and β-amyloid levels

the corpus callosum, and the parietal, frontal, and occi-
pital cortices [77, 78], has been reported in nondemented
adult DS brains. Furthermore, neuroinflammation, increas-
ed oxidative stress, and the development of AD neuropathol-
ogy are hallmarks of DS (Table 5).

7.1. Neuroinflammation. DS and AD brains are characterized
by activated microglia, and increased levels of proinflam-
matory cytokines that lead to neuroinflammation are likely
involved in neurodegeneration [253, 254]. The activation
of microglia may play a role in the loss of basal forebrain
cholinergic neurons in Ts65Dn mice.

Minocycline is a semisynthetic tetracycline that inhibits
neuronal death and reduces inflammatory activity by block-
ing inflammatory mediators [255]. The chronic administra-
tion of minocycline to adult Ts65Dn mice inhibits microglia
activation in the basal forebrain and hippocampus, prevents
the loss of cholinergic neurons in the medial septal nucleus,
attenuates the loss of hippocampal calbindin-positive neu-
rons, and improves working and reference memory in these
mice [102].

7.2. Neuropeptides. Vasoactive intestinal peptide (VIP) is
neuroprotective, as it promotes the release of several survival
factors from astrocytes and regulates neuropeptide release
from glial cells, including activity-dependent neuroprotec-
tive protein (ADNP) and activity-dependent neurotrophic
factor (ADNF) [256]. The active peptide fragments of ADNP
and ADNF, NAPVSIPQ (NAP), and SALLRSIPA (SAL) have
been shown to protect neurons from oxidative stress and
limit the severity of traumatic head injuries, stroke, and the
toxicity associated with the Aβ peptide [257, 258].

In cultures of DS cortical neurons, treatment with
SAL or NAP increases neuronal survival [259]. In Ts65Dn
mice, prenatal treatment with these two peptides rescued
the acquisition of neurodevelopmental milestones [260],
increased the reduced levels of ADNP, and normalized the
levels of the NMDA receptor subunits NR2A, NR2B, and the
GABAA receptor subunit β3 [216]. Furthermore, subchronic
treatments with D-NAP and D-SAL to adult Ts65Dn mice
rescued learning and memory and ADNP and NRD2 levels
[256].

7.3. Oxidative Stress. In DS individuals and in the Ts65Dn
mouse, there is an overexpression of SOD1, the gene
responsible for the formation of superoxide dismutase, an
enzyme that modifies oxygen free radicals into hydrogen
peroxide. The overproduction of hydrogen peroxide leads to

the overproduction of highly reactive oxygen free radicals,
which damage cell membranes, including the mitochondrial
membrane, and deteriorate lipids, proteins, and mitochon-
drial DNA. This set of alterations is called oxidative stress.
Evidence for increased mitochondrial superoxide production
in DS individuals has been repeatedly demonstrated [261,
262]. Therefore, in this condition, some cells are under
the permanent threat of oxidative stress with mitochondrial
damage, which deteriorates cell life, facilitating aging, and
death. This increase in oxidative stress occurs during pre-
and postnatal development. Increased oxidative stress in the
fetal stages can modify processes such as neurogenesis, differ-
entiation, migration and net connexion, as well as survival
[261, 263–265].

In an attempt to reduce oxidative stress-induced neu-
rodegeneration, several groups have tested the efficacy of var-
ious antioxidants to reduce the altered phenotypes in Ts65Dn
mice. SGS-111, an analogue of the nootropic piracetam, has
been shown to increase neuronal survival and prevent the
accumulation of intracellular free radicals, peroxidative dam-
age, and the development of neurodegenerative changes in
both normal and DS cultured neurons [265]. However, the
chronic administration of SGS-111 to Ts65Dn mice from
conception to adulthood did not rescue their cognitive
alterations [266]. Conversely, the administration of another
antioxidant, vitamin E, to Ts65Dn mice during adult stages
[267] or from conception throughout their entire life [268]
reduced markers of oxidative stress, improved cognitive
performance, reduced cholinergic neuron pathology in the
basal forebrain, and increased cell density in the DG.

A recent report [269] revealed a positive effect of folinic
acid on developmental age in children with DS. Folinic
acid has an antioxidant effect and is known to be involv-
ed in CNS development. Folate deficiency causes neurolog-
ical, psychiatric, and cognitive disorders, and DS probably
involves either folate deficiency or defective folate use [270].
However, in a randomized controlled trial, Ellis et al. [271]
failed to find any efficacy of antioxidants and folinic acid sup-
plementation in children with DS cognitive development. In
addition, a number of studies on the effects of antioxidant
supplementation in children and adults with DS did not find
any benefit of this treatment on cognition. Salman [272] per-
formed a systematic review of eleven randomized control-
led trials on the effects of dietary supplements (vitamins
and/or minerals) on cognitive function in subjects with DS.
None of these trials reported cognitive enhancing effects
in individuals with DS. Moreover, in a two-year rando-
mized, double blind, placebo-controlled trial daily oral
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antioxidant supplementation (α-tocopherol, ascorbic acid,
and the mitochondrial cofactor: α-lipoic acid) did not pro-
duce any improvement in cognitive functioning nor a stabi-
lization of cognitive decline in adults with DS [273].

7.4. Estrogens. Because estrogens maintain the function of
basal forebrain cholinergic neurons, it has been proposed
that the administration of estrogens may be useful in reduc-
ing the loss of these neurons in AD and DS individuals [274].

The chronic administration of estrogens to aged female
Ts65Dn mice enhanced cognition, increased the size and
number of cholinergic neurons, increased the levels of NGF
in the medial septum [275], restored the number of cho-
linergic terminals in hippocampus, and restored the levels of
the dendritic marker Map2 [276].

7.5. AD Neuropathology. One of the genes triplicated in the
trisomic condition is APP. In DS individuals, the increased
expression of this gene leads to the increased production
of β-amyloid, which is thought to be responsible for the
amyloid plaque pathology and degeneration of BFCNs found
in 100% of DS individuals over 40 years of age. Ts65Dn
mice also show age-related elevations in the levels of the APP
protein [277] and the β-amyloid peptide [278] in the cortex
and hippocampus. In these mice, the overexpression of APP
has also been implicated in the degeneration of both the
cholinergic and noradrenergic neurons that provide strong
modulatory inputs to the hippocampus [279]. Thus, this
age-related noradrenergic and cholinergic deafferentation is
likely compromising hippocampal function.

To test the effect of β-amyloid reductions on the Ts65Dn
mice altered phenotypes, Netzer et al. [278] administer-
ed the gamma secretase inhibitor DAPT (N-[N-(3,5-Diflu-
orophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester).
This treatment reduced β-amyloid levels and rescued spatial
learning in these mice. Because β-amyloid is a regulator of
the glutamatergic system, the authors proposed that the cog-
nitive enhancing effects of DAPT could be mediated by
an enhancement and/or a regulation of excitatory synaptic
transmission.

Given the role of the cholinergic system in cognition and
the degeneration of this system in AD and DS individuals,
it has been proposed that pharmacological enhancements of
this system could help diminish cognitive deterioration in
these conditions. Donepezil is an acetylcholinesterase inhi-
bitor that is widely prescribed to enhance cholinergic trans-
mission in the treatment of AD dementia. However, the
chronic administration of donepezil did not improve learn-
ing and memory in Ts65Dn mice [198]. Similarly, donepezil
administration to young adult individuals with DS has
produced ambiguous results [280–283].

Piracetam is a drug that shows cognitive-enhancing
effects in patients with a number of cognitive disorders and
dementia [284] and in several animal models. Although the
mechanisms underlying these effects are not known, it has
been proposed that piracetam may be enhancing cholinergic
and modulating glutamatergic transmission [284]. However,
piracetam treatment did not improve cognitive impairments
in children with DS [285] or in the Ts65Dn mouse [286].

8. Concluding Remarks

The first partial trisomic models, the Ts65Dn and Ts1Cje
models, demonstrated that DS phenotypes could be recapit-
ulated in mice. More recently, knockout and transgenic mice
for individual genes and new animals that are trisomic for
different regions of orthologues of Hsa21 regions are helping
to identify dosage-sensitive genes involved in DS phenotypes.
Although some of these triplicated genes may play a role
individually, it appears that DS phenotypes arise from the
complex effects of groups of Hsa21 genes.

In the last 20 years, the characterization of these animal
models of DS, particularly the Ts65Dn mouse, has been
enormously useful to understand of the neurobiological basis
of intellectual disability. Several mechanisms have been pro-
posed to underlie this altered cognition, including impaired
neurogenesis leading to hypocellularity in the cortex, hip-
pocampus, and cerebellum, altered dendritic morphology,
altered synapses, increased inhibition and neurodegenera-
tion. The new knowledge of the pathogenic mechanisms in
DS individuals has been applied to the development of new
pharmacotherapies. Several drugs have been shown to rescue
neurogenesis, hypocellularity, electrophysiological deficits,
and cognitive alterations in the Ts65Dn mouse. These
studies provide the basis for developing clinical trials in DS
individuals and sustain the hope that some of these drugs
will be useful in rescuing intellectual disability in DS indivi-
duals.
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Crespo, J. Nacher, and E. Varea, “Alteration in inhibitory
circuits in the somatoseensory cortex of Ts65Dn mice, a
model for Down’s syndrome,” Journal of Neural Transmission,
vol. 117, pp. 445–455, 2010.

[179] O. Devinsky, S. Sato, R. A. Conwit, and M. B. Schapiro,
“Relation of EEG alpha backgroud to cognitive function,
brain atrophy, and cerebral metabolism in Down’s sndrome.
Age specific changes,” Archives of Neurology, vol. 47, pp. 58–
62, 1990.

[180] R. G. Schmid, W. S. Tirsch, P. Rappelsberger, H. M.
Weinmann, and S. J. Poppl, “Comparative coherence studies
in healthy volunteers and Down’s syndrome patients from
childhood to adult age,” Electroencephalography and Clinical
Neurophysiology, vol. 83, pp. 112–123, 1992.

[181] J. H. Karrer, R. Karrer, D. Bloom, L. Chaney, and R. Davis,
“Event-related brain potentials during na extended visual
recognition memory task depict delayed development of
cerebelar inhibitory processes among 6-month-old infants
with Down synrome,” International Journal of Psychophysi-
ology, vol. 29, pp. 167–200, 1998.

[182] R. J. Siarey, J. Stoll, S. I. Rapoport, and Z. Galdzicki, “Altered
long-term potentiation in the young and old Ts65Dn mouse,
a model for Down Syndrome,” Neuropharmacology, vol. 36,
no. 11-12, pp. 1549–1554, 1997.

[183] R. J. Siarey, E. J. Carlson, C. J. Epstein, A. Balbo, S. I.
Rapoport, and Z. Galdzicki, “Increased synaptic depression
in the Ts65Dn mouse, a model for mental retardation in
Down syndrome,” Neuropharmacology, vol. 38, no. 12, pp.
1917–1920, 1999.

[184] A. C. S. Costa and M. J. Grybko, “Deficits in hippocampal
CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse:
a model of Down syndrome,” Neuroscience Letters, vol. 382,
no. 3, pp. 317–322, 2005.

[185] F. Fernandez, W. Morishita, E. Zuniga et al., “Pharmacother-
apy for cognitive impairment in a mouse model of Down
syndrome,” Nature Neuroscience, vol. 10, no. 4, pp. 411–413,
2007.

[186] A. M. Kleschevnicov, P. V. Belichenko, A. J. Villar, C. J.
Epstein, R. C. Malenka, and W. C. Mobley, “Hippocampal
long-term potentiation suppressed by increased inhibition
in the Ts65Dn mouse, a genetic model of down syndrome,”
Journal of Neuroscience, vol. 24, no. 37, pp. 8153–8160, 2004.

[187] J. E. Hanson, M. Blank, R. A. Valenzuela, C. C. Garner, and
D. V. Madison, “The functional nature of synaptic circuitry is
altered in area CA3 of the hippocampus in a mouse model of
Down’s syndrome,” Journal of Physiology, vol. 579, no. 1, pp.
53–67, 2007.

[188] J. J. Scott-McKean and A. C. Costa, “Exaggerated NMDA
mediated LTD in a mouse model of Down syndrome
and pharmacological rescuing by memantine,” Learning &
Memory, vol. 18, pp. 774–778, 2011.

[189] A. M. Kleschevnikov, P. V. Belichenko, J. Gall et al., “Increased
efficiency of the GABAA and GABAB receptor-mediated



Neural Plasticity 23

neurotransmission in the Ts65Dn mouse model of Down
syndrome,” Neurobiology of Disease, vol. 45, no. 2, pp. 683–
691, 2012.
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