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Abstract

Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies
have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often
been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21
actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/
divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences
are still observed differentiating the two. In vitro we found that both FGF’s activate FGFRs in the context of bKlotho (KLB)
expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency.
Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor,
the FGF21 delta N17 mutant, also blocked FGF19’s effects, suggestive of a shared receptor activation mechanism. The key
differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to
bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we
treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight
and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on
proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using DN17 caused profound changes in
glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data
demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable,
supporting a shared mechanism of action for these two hormones in the regulation of energy balance.
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Introduction

In mammals the fibroblast growth factors (FGFs) play diverse

roles in the regulation of many cellular processes ranging from

development to survival [1,2]. The FGF superfamily consists of 22

members of which 3 have recently been classified to form an

‘‘endocrine’’ sub-group [3]. This classification is based on the high

degree of structural homology between the members of this sub-

family FGF19 (FGF15 in mice), FGF21 and FGF23. These

hormone-like FGFs lack a conventional heparin binding domain,

which allows them to reach the circulation where they are present

in measurable amounts. Instead of heparin, FGF19, FGF21, and

FGF23 utilize Klotho co-factor proteins to permit binding to and

activation of fibroblast growth factor receptors (FGFRs).

Previous publications have demonstrated that FGF15/19 and

FGF21 bind to the bKlotho (KLB) isoform of the Klotho family

while FGF23 has distinct affinity for the aKlotho (KL) subtype [4].

There has been some discussion of FGF15/19 binding to KL [5],

however, this finding has not been replicated by others [6]. While

the tissue distribution of FGFRs is relatively widespread there is a

discrete pattern of KLB expression mainly in metabolically active

tissues such as the liver, pancreas and white adipose tissue. This

distribution suggests that it is the presence of KLB rather than the

expression of a particular FGFR which determines the tissue

specificity of FGF19 and FGF21 action in vivo [6,7].

FGF23 plays a well described role in phosphate metabolism and

has not previously been shown to affect energy balance [8].

However, a large body of literature is now emerging supporting a

role for both FGF19 and FGF21 in the regulation of energy

homeostasis [3,9,10]. FGF19 and FGF21 have both previously

been reported to have significant effects on energy homeostasis in

obese animals [10–12]. However, to date there has not been a

direct comparison of the in vivo and in vitro determinants of their

actions on metabolism and the relative magnitude of their

physiological effects.

We demonstrate here that on both a molecular and whole

organism level there are many similarities in the action of FGF19

and FGF21. While FGF21 showed no direct FGFR binding,

FGF19 was able to bind FGFR4 independent of KLB. In

functional studies we show in 3T3-L1 fibroblasts expressing

KLB, both FGF19 and FGF21 were able to stimulate glucose

uptake with similar pharmacodynamic properties. When 3T3-L1
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adipocytes were treated with a combination of both FGF19 and

FGF21 we saw no additive or synergistic effect. Furthermore,

treatment with an inhibitory truncated form of FGF21 (termed

DN17) [13] blocked increases in phosphrylation of extracellular

signal-regulated kinase (pERK) and glucose uptake stimulated by

both FGF21 and FGF19. We hypothesize that these effects are

likely due to the two factors operating upstream via the same

FGFR receptor complex(s) in the context of KLB expression.

Nevertheless, we also show that FGF19 is not only able to bind,

but also to activate FGFR4 directly as measured by phosphory-

lation of ERK in both FGFR4 over-expressing 3T3-L1 fibroblasts

and FGFR4 expressing L6 myoblasts which lack KLB. As FGF19

has previously been reported to induce mitogenicity, we examined

the effects of FGF19 and FGF21 in an in vivo BRDU

incorporation assay. FGF19 signficantly increased the number of

BRDU-positive hepatocellular nuclei in the liver, however, FGF21

had no effect confirming differences in the proliferative properties

of the two factors. To determine if the interchangeability we

observed at the cellular level carries over to metabolic physiology

we treated diet induced obese mice with either FGF19 or FGF21.

In DIO animals both treatments lead to a significant but

comparable reduction in body mass. Furthermore, we show that

serum glucose is lowered in an equivalent manner by both factors

at corresponding doses. In ob/ob mice we see a similar pattern in

that both FGF19 and FGF21 reduce body mass accrual during the

treatment period to a similar extent with a mildly greater effect

seen in the FGF21 treated mice. Serum glucose was significantly

lowered following treatment in ob/ob mice treated with either

FGF19 or FGF21, however, the magnitude of the reduction was

not different between the two factors. Finally, we show that DN17,

which we and others have previously reported is able interact with

KLB but unable to induce FGFR activation due to the lack of N-

terminus, acts in an antagonistic manner in mice by blocking

FGF21 mediated reductions in serum glucose. We go on to show

that in the fasted state treatment with DN17 alone leads to

elevated serum glucose, suggesting a role for FGF21 and KLB in

glucose regulation during the normal fed/fasted transition, and

establishing KLB as a key molecule required to propagate FGF21

action at the whole body level. Taken as a whole, our data

demonstrate that the metabolic actions of the ‘‘endocrine’’ FGFs

likely occur via activation of a similar molecular pathway.

Methods

Proteins
For both in vitro and in vivo studies FGF19, FGF21 and DN17

were generated as previously described [14].

Animals
All animals were individually housed in a temperature-

controlled (24uC) facility with 12 h/12 h light/dark cycle. Animal

protocols in this study were approved by the Eli Lilly and Co.

Animal Use and Care Committee (Protocol No. 09012).

FGF treatment of DIO animals
Male C57Bl/6J mice (n = 6 per group) (Taconic Farms) were

maintained on a calorie-rich diet consisting of 40% fat, 39%

carbohydrate, and 21% protein caloric content (TD95217; Harlan

Teklad, Madison, WI) and had free access to food and water

before randomization by weight. Mice were administered either

FGF19 or FGF21 for a period of 7 days via continuous infusion

using osmotic minipumps (ALZET, Cupertino, CA) at the doses

specified. Following sacrifice glucose levels were determined using

Precision G Blood Glucose Testing System (Abbott Laboratories,

Abbott Park, IL).

FGF treatment of ob/ob animals
Male ob/ob mice (n = 6 per group) (Taconic Farms) were

maintained on a standard chow diet (Purina, 5001) and had free

access to food and water before randomization by weight. Mice

were administered either FGF19 (1 mg/kg/day) or FGF21 (1 mg/

kg/day) for a period of 7 days via continuous infusion using

osmotic minipumps (ALZET, Cupertino, CA). Following sacrifice

glucose levels were determined using Precision G Blood Glucose

Testing System (Abbott Laboratories, Abbott Park, IL).

Antagonism of FGF21 action by DN17 in ob/ob mice
Male ob/ob mice (n = 6 per group) (Harlan, IN) were

maintained on a standard chow diet (Purina, 5001) and had free

access to food and water before randomization by weight. Mice

were administered with either FGF21, DN17 or a combination of

both via daily injection at doses indicated for a period of 3 days

after which serum was collected for analysis. Prior to sacrifice and

blood collection on day 3 the fasted cohorts were deprived of food

overnight. Following sacrifice glucose levels were determined using

Precision G Blood Glucose Testing System (Abbott Laboratories,

Abbott Park, IL).

BRDU incorporation assay
On day 1 of the study, an osmotic minipump (ALZET,

Cupertino, CA) containing 5-bromo-2-deoxyuridine (16 mg/ml;

BrdU, Sigma Aldrich) was implanted subcutaneously into each 9-

week-old male C57bl/6J mouse (n = 10 per group; Charles River

Laboratories, Charles River, MA). Each mouse was given daily

subcutaneous injections of either phosphate-buffered saline (PBS,

vehicle), FGF19 (2 mg/kg/day) or FGF21 (2 mg/kg/day) for 7

consecutive days. At the end of the 7-day study samples of liver

were collected from each mouse, placed in 10% neutral-buffered

formalin, processed routinely, and embedded in paraffin. Multiple

tissue sections were produced from each paraffin block, stained

with Hematoxylin & Eosin (H&E), or immunolabeled for BRDU

by routine immunohistochemical methods as outlined below. The

H&E tissue sections were evaluated routinely for microscopic

changes [15]. BRDU-immunolabeled sections were used to

enumerate BRDU-positive nuclei per 2006 microscopic field

and for evaluating the pattern and distribution of BRDU-positive

hepatocellular nuclei.

Cellular incorporation of BrdU was detected by digesting

deparaffinized tissue sections with 0.1% protease (Sigma Aldrich)

and treating the sections with 2N hydrochloric acid. Sections were

blocked with CAS BLOCK (Zymed Laboratories Inc., San

Francisco, CA), incubated with a rat antibody to BrdU (Accurate,

Westbury, NY), and bound rat antibody was detected with

biotinylated rabbit antibody to rat IgG (Vector Laboratories,

Burlingame, CA; catalogue no. BA 4001, lot no. S0907). Tissue

sections were quenched with Peroxidase Blocking Solution

(DAKO Corp, Carpinteria, CA) and retained biotin was detected

with Vectastain Elite ABC kit (Vector Laboratories). Reaction sites

were visualized with DAB Substrate-Chromagen System (DAKO

Corp, Carpinteria, CA) followed by DAB enhancer (Invitrogen,

Carlsbad, CA). Sections were counterstained with hematoxylin.

Surface plasmon resonance (BiaCore) studies
BiaCore studies were performed on a BiaCore 2000 instrument

(BiaCore, Inc., Uppsala, Sweden). Proteins were covalently

immobilized on censor chip CM4 using amine coupling according

Regulation of Metabolism by Hormone like FGFs

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e38438



to the manufacturer’s protocol. Typically, 100–50 response units

(RU) were immobilized on individual flow cells of the sensor chip.

BSA (Pierce Chemical; Rockford, IL) was immobilized on flow cell

1 as a negative control. Proteins suspended in HBS-P (BiaCore,

Inc.) were then injected for 30 min at a flow rate of 30 ml/min

using the kinject command. KD kinetic constants were calculated

by BiaEvaluation 4.1 software using a 1:1 Langmuir model.

Glucose uptake assays
Cells were treated as indicated for 3 h and glucose uptake was

assayed as previously described [16]. 3T3-L1 adipocytes were

differentiated as previously described [16] and treated as indicated

prior to assessment of glucose uptake.

ERK1/2 phosphorylation assays
Cells were treated as indicated for 5 min and subsequently

lysed. Total ERK phosphorylation was assessed using an

AlphaScreen SureFire Phospho-ERK1/2 Assay Kit (Perkin Elmer)

according to the manufacturer’s instructions and an EnVision

Multilabel Microplate Reader Model 2103 (Perkin Elmer) with the

AlphaScreen HTS Turbo option was used for signal detection.

RNA isolation, RT and real-time quantitative PCR
RNA was isolated from tissues using TRIzol reagent (Invitro-

gen, Carlsbad, CA) or by homogenization of frozen samples in

Lysing Matrix D shaker tubes (MP Biomedicals, Santa Ana, CA)

and was reverse transcribed into cDNA using a High-Capacity

cDNA Reverse Transcription Kit (PE Applied Biosystems, Foster

City, CA). Reactions were performed in triplicate on an ABI Prism

7900HT (PE Applied Biosystems) and were normalized to either

36B4 mRNA or 18S rRNA. ssays-on-Demand Gene Expression

Products (PE Applied Biosystems) were as follows: hEGR1,

Hs00152928_m1; hFGFR1, Hs00915142_m1; hFGFR2,

Hs01552926_m1; hFGFR3, Hs00179829_m1; hFGFR4,

Hs01106908_m1; hKL, Hs00183100_m1; hKLB,

Hs00545621_m1; mFGFR1, Mm00438930_m1; mFGFR2,

Mm01269930_m1; mFGFR3, Mm00433294_m1; mFGFR4,

Mm01341852_m1; mKL, Mm00473122_m1; mKLB,

Mm00502002_m1; rFGFR1, Rn00577234_m1, rFGFR2,

Rn01269940_m1; rFGFR3, Rn00584799_m1; rFGFR4,

Rn01441815_m1; rKL, Rn00580123_m1.

Statistical analysis
Data are presented as mean 6SEM. Statistical analysis was

performed using one-way ANOVA, followed by Dunnett’s

multiple comparisons test where appropriate. Differences were

considered significant when P = ,0.05.

Results

Prior to testing FGF19 and FGF21 for activity in cell based

assays we measured expression of FGF receptors and Klotho

subtypes in the cell lines we used via RT-qPCR. We found that the

expression of FGFR isoforms and the Klotho co-factors differed

greatly between the lines. In 3T3-L1 fibroblasts we saw high levels

of FGFR1 in addition to lower expression of FGFR2 and only

traces of FGFR3 with no detectable FGFR4, KL or KLB

(Figure 1A). In Hep3B cells there were very high amounts of

FGFR4 with modest levels of FGFR1, FGFR2 and KLB, low

FGFR3 and no detectable KL (Figure 1B). In L6 cells the

expression of all the FGFRs was extremely low when compared to

the other cell lines we analyzed, KL and KLB were not detectable

(Figure 1C).

In order to assess the specificity and functional significance of

the interaction between FGF19, FGF21, FGF23 and the Klotho

family we conducted studies in which we expressed either KL or

KLB in 3T3-L1 fibroblasts. We chose 3T3-L1 fibroblasts as

neither KL or KLB is natively present in these cells [6]. Firstly, we

examined phosphorylation of ERK, an event known to be

downstream of FGF receptor activation [17]. The addition of

KL to 3T3-L1 cells to led to a robust induction of pERK following

Figure 1. Expression of FGF receptors and Klotho co factors in
cell culture models. In 3T3-L1 cells we found a high level of FGFR1
expression along with modest levels of FGFR2 and FGFR3. In these cells
FGFR4, KL and KLB were not detectable (A). In Hep3B cells there was
detectable expression of all 4 FGF receptor subtypes, however, we
detected especially high levels of FGFR4. Hep3B cells were also found
have appreciable expression of KLB while KL was not detectable (B). In
L6 cells expression of all FGFRs was extremely low in comparison to
other cells lines we screened in addition to undetectable levels of KLB at
baseline (C).
doi:10.1371/journal.pone.0038438.g001
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stimulation with FGF23. There was no effect of either FGF19 or

FGF21 in 3T3-L1/KL cells (Figure 2A). However, when we

treated KLB expressing cells we saw a very potent induction of

pERK by FGF21 and to a slightly lesser degree FGF19, but no

effect with FGF23. We then examined the capability of the FGFs

to induce glucose uptake in the same cell lines to provide a

functional readout of their activity. As in our pERK assay only

FGF23 was able to significantly induce glucose uptake in the KL

expressing cells (Figure 2C). In 3T3-L1/KLB cells FGF21 and

FGF19 both induced glucose uptake with FGF21 again slightly

more potent (Figure 2D) as we have reported previously [6]. Next

we expressed FGFR4 in 3T3-L1 fibroblasts to confirm FGF19

activity in the absence of KLB. As predicted only FGF19 was able

to significantly increase glucose uptake in 3T3-L1/FGFR4 cells

(Figure 2E). To determine if receptor isoform distribution was

mediating the difference in potency of the factors we assayed the

ability of FGF19 and FGF21 to induce the immediate early gene

early growth response 1 (EGR1) in Hep3B cells which express a

high level of FGFR4. In these cells we found that FGF19 was very

potent in terms of its ability to induce EGR1 gene expression.

FGF21 did induce EGR1 in these cells but with reduced efficacy

when compared to FGF19 (Figure 2F).

To determine if differentiation from fibroblast to adipocyte

alters the response of 3T3-L1 cells to the hormone-like FGFs we

treated 3T3-L1 adipocytes with either FGF19 or FGF21 and

assessed their effects on ERK phosphorylation and glucose uptake.

The expression of FGFRs in these cells is very similar to that which

we showed for 3T3-L1 fibroblasts [18]. However, as we have

previously reported the one major difference in terms of hormone-

like FGF signaling capacity in these cells is that 3T3-L1 adipocytes

unlike 3T3-L1 fibroblasts express KLB [6]. In these cells FGF19

showed increased potency over FGF21 which was evident in our

glucose uptake assay (Figure 2G). Importantly, when 3T3-L1

adipocytes were treated with either FGF19, FGF21 or a

combination of both we did not observe any synergistic or additive

effects suggesting an identical receptor activation mechanism

(Figure 2H).

As both 3T3-L1 and Hep3B cells express appreciable amounts

of FGFRs we turned to L6 cells to confirm our findings as these

cells have been reported previously to have vanishingly low

expression of both FGFRs and KLs [19]. In parental L6 cells there

was no detectable induction of ERK phosphorylation with either

FGF19 or FGF21 treatment (Figure 2I & J). Contrary to the

notion that L6 cells do not possess sufficient FGFR expression to

permit signaling, we saw a similar but appreciable induction of

pERK in both FGF19 and FGF21 treated cells. Addition of

FGFR4 in the presence of KLB caused a significant increase in

pERK in the FGF19 treated cells (Figure 2I). Treatment of

FGFR4/KLB cells with FGF21 also led to a significant increase in

pERK, however, in comparison to FGF19 the effect was

significantly less potent (Figure 2J). Supporting our earlier data

in 3T3-L1/FGFR4 cells we also saw an induction following

FGF19 stimulation in cells expressing FGFR4 in the absence of

KLB (Figure 2I). In the same cells there was no change in pERK

following FGF21 treatment further reinforcing KLB independent

R4 mediated pERK induction as a defining feature separating the

two factors (Figure 2J). These findings align well with the fact that

only FGF19 is able to directly bind FGFR, and only one variant,

FGFR4, with 6.5 nM affinity in a KL and-KLB-independent

manner. This was evident from our binding analysis of FGF19,

FGF21, and FGF23 with various FGFR-Fc constructs (data not

shown).

We have previously demonstrated that N terminally truncated

FGF21 (DN17) acts in vitro as a competitive antagonist and leads to

inhibition of FGF21 mediated signaling by binding to KLB and

blocking FGF21 mediated receptor activation [13]. As FGF19 in

the context of KLB expression is able to activate FGFRs other

than FGFR4 ([6] Figure 2D) we sought to test if DN17 could also

inhibit the action of FGF19. Indeed, in 3T3-L1 fibroblasts

expressing KLB treatment with DN17 was able to block the

induction of ERK phosphorylation caused not only by FGF21 but

also by FGF19 (Figure 3A). Furthermore, in our glucose uptake

assay in 3T3-L1 adipocytes DN17 also suppressed the activity of

both FGF19 and FGF21 (Figure 3B & 3C).

To determine if the inhibition of FGF19/21 signaling we see in

vitro translates to effects on metabolic parameters in vivo we

examined fed and fasted glucose levels in ob/ob mice treated with

FGF21, DN17 or a combination of both. In fasted animals FGF21

reduced glucose, an effect blocked by combination with DN17.

Interestingly, we found that in fasted animals, treatment with

DN17 partially blocked the reduction in serum glucose one

normally observes in fasted animals, suggesting DN17 may

interfere endogenous glucose homeostasis in the fasted state

(Figure 3E). Furthermore, these data support a critical role for

FGF19/FGF21 signaling in regulating serum glucose levels in the

fed to fasted transition.

FGF19 has previously been reported to induce mitogenicity in

animals [18,20,21]. Therefore, we assessed the effects of both

FGF19 and FGF21 on hepatocellular proliferation in an in vivo

model utilizing BRDU incorporation. FGF19 treated mice had a

significantly greater number of BRDU positive hepatocellular

nuclei when compared to vehicle treated animals (Figure 4A-C).

To date there have been no reports of cellular proliferation

associated with FGF21 treatment [14]. Consistent with this, there

was no significant difference in the number of BRDU positive

nuclei when compared to the vehicle group (Figure 4D).

Our group and others have previously reported on the efficacy

of FGF21 in the treatment of obesity in animal models [22]. To

compare the metabolic effects of FGF19 treatment to those seen

with FGF21 we examined the metabolic effects of chronic

administration of the factors to high fat diet induced obese

c57BL/6 mice. FGF19 therapy reduced body mass in a dose

dependent fashion (Figure 5A) with approximately 3.7 g difference

between the highest dose of FGF19 (1 mg/kg) and the vehicle

treated animals. FGF21 treatment also led to a dose dependant

reduction in body mass with a 4 g reduction in weight in the

1 mg/kg treated animals. This weight loss occurred in the absence

of any significant effects on caloric intake with either FGF19 or

FGF21 (Figure 5B). MRI measurements of body composition

showed the weight loss was primarily due to reduced fat mass in

both FGF19 and FGF21 treated cohorts (Figure 5C). Further-

more, all FGF19 and FGF21 treated animals exhibited a

significant drop in serum glucose which did not show dose

dependency although there was a trend toward increased efficacy

at the 1 mg/kg dose in the FGF19 treated cohorts when compared

to FGF21 (Figure 5D).

In an effort to compare efficacy of the factors in another model

of obesity we examined the effects of chronic FGF19 and FGF21

infusion in ob/ob mice. Interestingly ob/ob mice seem to display a

differential response to FGF treatment when compared to WT

mice. In both the FGF19 and FGF21 treatment groups there was a

significant attenuation of body mass accrual over the 7 day

treatment period, furthermore, the magnitude of the effect was

greater in FGF21 treated animals when compared to FGF19

treatment (Figure 6A). FGF19 treatment led to a significant

reduction in food intake, while there was also a trend to reduced

food intake in the FGF21 treated animals it did reach statistical

significance (Figure 6B). In spite of lower body mass in the FGF
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treated animals there was no significant difference in fat mass in

either group (Figure 6C). Consistent with earlier reports admin-

istration of either FGF19 and FGF21 led to significant reductions

in serum glucose in ob/ob mice, however, the magnitude of the

effect was equivalent for both factors (Figure 6D).

Discussion

The therapeutic potential of both FGF19 and FGF21 in the

treatment of metabolic disorders has been discussed extensively in

the literature [7,9,14,20]. Several studies have now demonstrated

that administration of FGF19 or FGF21 can have beneficial effects

in rodent and primate models of obesity and diabetes

[10,20,23,24]. However, despite the similarities in the actions of

the two factors there has been no direct comparison of their effects

to date.

Our group and others have previously reported that the

metabolic activity of FGF21 or lack of thereof is determined by

the presence or absence of the cofactor KLB [6,17,25]. Here we

show in 3T3-L1 fibroblasts that the over-expression of either KL

or KLB permits signaling by specific FGFs. When cells express KL

we observe that FGF23 treatment leads to both increased

phosphorylation of ERK and as well as manifestation of functional

effects such as increased glucose uptake. In 3T3-L1/KL cells we

did not see any effect of FGF19 or FGF21 on either signaling or

glucose uptake confirming specificity for FGF23. This is an

important observation as it has been reported previously that

Figure 2. The ‘‘hormone like’’ FGFs exhibit different signaling properties in vitro. Panel 1. In 3T3-L1 fibroblasts over-expressing KL we saw
phosphorylation of the FGF target ERK upon treatment with FGF23, while FGF19 and 21 had no effect (A). Conversely, in 3T3-L1/KLB cells we saw no
effect of FGF23 but potent signaling with FGF19 or FGF21 treatment (B). When we examined glucose uptake in the 3T3-L1/KL cells we found that only
FGF23 lead to its stimulation (C). As we saw with pERK in 3T3-L1/KLB cells FGF19 and FGF21 both increased glucose uptake significantly (D). In 3T3-L1
fibroblasts expressing FGFR4 in the absence of KLB only FGF19 was able to increase glucose uptake (E). Furthermore, in Hep3B cells which show a
relative enrichment of FGFR4, FGF19 was significantly more potent than FGF21 in inducing expression of the immediate early gene EGR1 (F). When
3T3-L1 cells were differentiated to become mature adipocytes FGF19 was also more potent than FGF21 even in the absence of FGFR4 expression
suggesting a possible unknown factor which is not present on fibroblasts may be affecting FGF19’s action in these cells, or vice versa (G). In 3T3-L1
adipocytes treated with either FGF19, FGF21 or a combination of both we did not see any additive or synergistic effects of combination treatment
over individual therapy suggesting FGF19 and FGF21 share a common mechanism of action (H). To confirm our initial results regarding the specificity
of FGF19 for FGFR4 we turned to L6 cells which have been reported to have extremely low expression of FGFRs and KLs. In parental L6 cells treatment
with FGF19 had no effect on the level of ERK phosphorylation, however, when cells were transfected with KLB a small but significant increase in pERK
was detected. Furthermore, when FGFR4 was added the response to FGF19 stimulation was magnified. Interestingly, we saw again that in cells
transfected with FGFR4 alone FGF19 was also able to induce pERK confirming KLB independent signaling with this ligand can occur (I). In contrast to
FGF19, cells treated with FGF21 showed pERK induction only in the presence of KLB with the level of this baseline induction similar to that seen with
FGF19 treatment (J).
doi:10.1371/journal.pone.0038438.g002
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Figure 3. Inhibition of FGF21 signaling also blocks FGF19 action in vitro. Panel 1. In 3T3-L1/KLB fibroblasts co-treatment with the
competitive agonist DN17 was able to block the induction of ERK phosphorylation caused not only by FGF21 but also by FGF19 (A). In our glucose
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FGF19 was able to bind KL and induce signaling in KL-

expressing cells [26].

In 3T3-L1/KLB fibroblasts we saw FGF19 and FGF21

mediated signaling and glucose uptake with FGF21 more potent

than FGF19. We did not see any effect of FGF23 in the 3T3-L1/

KLB cells consistent with previous data showing specificity for KL

alone [27]. In a somewhat surprising result we found that if 3T3-

L1 fibroblasts were differentiated to become adipocytes, FGF19

becomes more potent than FGF21 in inducing both pERK and

glucose uptake. Interestingly, the sensitivity of 3T3-L1 adipocytes

to FGF19 is higher than that observed with FGF19 treatment in

the 3T3-L1/KLB fibroblasts suggesting an as yet unknown factor

which modulates FGF19 action may be present in adipoctyes but

absent in fibroblasts, or vice versa. Given the fact that FGF21

activity is similar on both 3T3-L1 adipocytes and 3T3-L1/KLB

fibroblasts this factor is likely FGF19 specific. Furthermore, we

show that FGF19 is able to act on adipocytes with higher potency

than FGF21. This is a novel observation as FGF19 was previously

considered to act predominantly on cells of hepatic origins and

liver [28].

In cells which predominantly express FGFR4 but do not express

KLB, FGF19 was active but FGF21 was not. In the presence of

KLB, both FGF19 and FGF21 can signal via FGFR4 but FGF19

appears to be significantly more potent than FGF21. This was

evident in 3T3-L1 fibroblasts stably expressing FGFR4 in which

FGF19 was able to act directly in the absence of KLB and induce

glucose uptake, while FGF21 did not have any activity. This

finding is important as while previous reports have shown binding

of FGF19 to FGFR4 [18,20,21], our report is the first to show that

the physical FGF19/FGFR4 interaction leads to subsequent

activation of FGFR4. Our data also contrasts with previously

the suggested hypothesis that FGF21 cannot signal via FGFR4 and

act directly on cells of hepatic origin [29,30], but is in agreement

with a recent report demonstrating FGF21 signaling in the liver

[17]. In our experiments FGF21 was significantly less potent than

FGF19 in liver-derived Hep3B cells which do express detectable

levels of KLB, however, it clearly is able to signal in these cells

(Figure 2F). The differences in FGF19 and FGF21 potencies could

be due to the presence of high levels of FGFR4 in these cells and

differential ability of FGF19 and FGF21 to activate this FGFR. To

test this association we investigated FGF19 and FGF21 action in

L6 myoblasts which have previously been employed extensively in

FGF signaling assays due to extremely low endogenous expression

of FGFRs and KLs [19]. Consistent with our earlier result in 3T3-

L1/FGFR4 cells (see Figure 2E) we also found in L6 cells that

FGF19 but FGF21 not is able to signal in via R4 in the absence of

KLB. Nevertheless, FGF19 action was significantly improved

when KLB was co-expressed with FGFR4 (Figure 2I), and

importantly we show that again FGF21 is able to activate FGFR4

in the context of KLB co-expression.

On a side note, while L6 cells have previously been reported to

be free of background signaling due to a paucity of FGFR

expression [19,31] we see an appreciable background signal in

cells transfected with KLB alone with both FGF19 and FGF21

treatment. As FGF19 and FGF21 signaling in these cells can be

blocked with FGFR inhibitor (data not shown) these data suggest

sufficient FGFR 1–3 expression levels in L6 cells to allow

detectable signaling. It is unlikely that the FGFR permitting this

signal is FGFR4 as FGF19 cannot signal in the parental cell line

without FGFR4 over expression.

We found no synergistic or additive effect on glucose uptake

when cells were treated with both FGF19 and FGF21 simulta-

neously. This indicates that these two factors share a common

signaling pathway via which they regulate glucose transport in cell

culture.

This commonality of the two factors extended to our studies of

inhibition using the competitive antagonist DN17 which we have

previously shown is effective in inhibiting FGF21 at the receptor

uptake assay in 3T3-L1 adipocytes DN17 also suppressed the activity of both FGF19 (B) and FGF21 (C). Panel 2. To determine if the inhibition of
FGF19/21 signaling we see in vitro translates to effects on metabolic parameters in vivo we examined fed and fasted glucose levels in ob/ob mice
treated with FGF21, DN17 or a combination of both. In fed mice treatment with DN17 alone had no effect on serum glucose. FGF21 treatment
reduced glucose levels significantly in the fed state, however, when the two treatments are combined the effect of FGF21 to reduce glucose is
abolished (D). In fasted animals FGF21 again reduced glucose, an effect blocked by combination with DN17. Interestingly, we found that in fasted
animals treatment with DN17 partially blocked the normal reduction in the serum glucose, suggesting DN17 may interfere in the regulation of
glucose homeostasis (E).
doi:10.1371/journal.pone.0038438.g003

Figure 4. FGF19 treatment leads to hepatocellular prolifera-
tion. All mice received a constant infusion of BRDU during the 7 days of
treatment. At the end of treatment samples of liver were harvested,
preserved in formalin, processed routinely, and embedded in paraffin.
Tissue sections were cut, immunolabeled for BRDU, and counterstained
with hematoxylin. Representative sections are shown here from mice
receiving injections of phosphate buffered saline (PBS; A), FGF19 (B), or
FGF21 (C). The average number of BRDU-positive nuclei per 2006
microscopic field is shown. Mice administered FGF19 had a statistically
significant increase (* = p,0.0001) in the numbers of hepatocytes with
BRDU-positive nuclei when compared to mice administered PBS (D). In
contrast to FGF19, FGF21 did not induce hepatocellular proliferation.
The arrowheads indicate the location of the centrilobular veins.
doi:10.1371/journal.pone.0038438.g004
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activation level in vitro. In the present study we observed that not

only does DN17 inhibit downstream FGF21 signaling but also

shows a similar efficacy in blocking FGF19 mediated effects. These

data support the hypothesis that in cell culture models FGF21 and

FGF19 operate by activation of a similar signaling cascade.

Furthermore, we go on to demonstrate that in vivo DN17 is also

able to block the glucose lowering action of exogenous FGF21 in

both fed and fasted mice. In both fed and fasted ob/ob mice

treated with FGF21 we see the usual glucose lowering effect we

have reported previously [10]. However, when FGF21 was co-

administered with DN17 FGF21s glycemic effects were completely

abolished (see Figure 3D). As DN17 acts as a competitive agonist

to prevent FGF21 and FGF19 interaction with KLB and

subsequent FGFR activation, this result establishes the critical

role of KLB to propagate glucose lowering action of FGF19/

FGF21 in vivo. This is a very novel and critical finding since to

date KLBs co-receptor function for FGF19/FGF21 has been

shown only in vitro [6,13,32] and uncertainty exists as to whether

KLB is required for FGF21 action in vivo [28].

It is also important to note that in vivo administration of dN17

alone affected plasma glucose but only in the fasted state. Given

the KLB antagonistic nature of DN17s mode of action, and the

absence of effects on glucose homeostasis in a fed mice treated with

the protein, we hypothesize that even though a substantial amount

of FGF21 is detected in plasma of fed ob/ob mice, it is likely

present in a non-functional form which is unable to interact with

endogenous KLB in the manner described previously [22,33]. In

contrast, significantly increased levels of FGF21 plasma levels

during fed to fast transition have been reported previously in

animals [34,35], and we confirmed this data in ob/ob mice (data

not shown). Thus, as DN17 is active on its own only in food-

deprived mice, fasting is likely a condition at which FGF21 is

present in mouse blood in its active, KLB interacting form. This

observation is novel and may call into question recent publications

debating the presence or absence of FGF21 resistance in obese

states [36,37].

As several previous studies have noted mitogenic effects in

animal models following treatment with FGF19 and absence of

thereof with FGF21, we examined both FGF19 and FGF21 in an

in vivo setting. In our hands FGF19 dosing led to a very significant

increase in proliferation in the liver while FGF21 had no effect.

Our data support earlier work suggesting FGFR4 binding by

FGF19 may mediate its mitogenic effects [38] and that blockade of

FGFR4 may be beneficial to treat proliferative diseases [39].

These results, taken alongside the in vitro signaling differences

between FGF21 and FGF19 suggest that FGFR4 engagement

and/or the level of its activation may lead to functionally different

effects than those seen with activation of other FGFRs. Studies

using truncated forms of FGF19 have shown that activation of

FGFR4 is essential for the proliferative effect seen with FGF19

Figure 5. Treatment of DIO mice with either FGF19 or FGF21 improves metabolic dysfunction. Administration of recombinant FGF19 or
FGF21 led to a reduction in body mass in a dose dependent fashion (A). Both FGF19 and FGF21 therapy led to a trend towards increased food intake,
however, these differences were not significant (B). Treatment with FGF19 or FGF21 significantly reduced adiposity at both doses tested again in a
dose dependant manner (C), All FGF treatments caused a significant reduction in serum glucose in DIO animals, furthermore, the reduction in glucose
observed with the two proteins was strikingly similar (D).
doi:10.1371/journal.pone.0038438.g005
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Figure 6. Treatment of ob/ob mice with either FGF19 or FGF21 improves metabolic dysfunction. In ob/ob mice neither FGF19 nor FGF21
were able to reduce body mass significantly; however, both treatment groups exhibited significant reductions in body mass accrual over the 7 day
treatment period (A). Food intake was significantly reduced in the FGF19 treated mice while FGF21 treatment caused a trend to reduced caloric
intake (B). No difference in adipose mass was observer following administration of either FGF19 or FGF21 (C) While the ob/ob mice showed
significantly less profound effects on body mass and adiposity than was observed in the DIO group the glucose lowering following treatment with
either FGF19 or FGF21 was still very significant suggesting possible partitioning of the effects of the endocrine FGFs (D).
doi:10.1371/journal.pone.0038438.g006

Regulation of Metabolism by Hormone like FGFs

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e38438



treatment [18]. These data suggest that modification of FGF19 to

eliminate FGFR4 interaction while retaining binding to other

FGFRs may yet provide a possible avenue for potential therapies

[18].

Supporting this hypothesis is the finding that treatment with

FGF19 improves glucose tolerance in DIO FGFR4KO mice

suggesting activation of FGFR4 is not required in the mediation of

at least some of the metabolic effects of this factor [40]. Both our

data and studies in the literature show that FGF19 and FGF21 can

bind and activate multiple FGFRs in the presence of KLB

[11,17,41], and contrasts with the previous notion that FGF19

activity is strictly liver and FGFR4-specific [29]. Therefore it is

likely that the FGFR1/KLB complex possibly with contributions

from FGFR2 and FGFR3 are primary mediators of the positive

metabolic effects of FGF19 and FGF21. Nevertheless, the

phenotype of FGFR4 knock-out animals is also suggestive of a

metabolic role of this receptor [12].

To date direct comparisons of FGF19 and FGF21 treatment in

animal models have not been conducted. Here we show in DIO

mice both FGF19 and FGF21 have beneficial effects in the

treatment of metabolic dysregulation. It has been previously

demonstrated that in DIO models ranging from rodents to

primates that FGF21 treatment is able to correct the abnormal

metabolic parameters evoked by prolonged high fat diet feeding

[22]. In genetic models of obesity such as the ob/ob mouse either

direct treatment with FGF21 or its induction via feeding of a high

fat very low carbohydrate diet leads to weight loss and metabolic

improvement [10,42]. Our current data support these previous

publications and show that in DIO mice FGF21 treatment is

extremely effective in correcting metabolic dysfunction. Studies on

the metabolic effects of FGF19 have been much more limited in

scope, likely due to the known mitogenic effects of FGF19. FGF19

therapy has been shown to be effective in treatment of the

metabolic disturbances observed in DIO and ob/ob mice [11,20].

These data are supported by studies demonstrating that over-

expression of FGF19 on the ob/ob background leads to a

significant amelioration of the ob/ob phenotype [24].

Here we show that the metabolic effects of treatment with either

FGF19 or FGF21 are almost identical. The main difference noted

was increased potency of FGF21 when compared to FGF19 in

terms of its effect on weight loss. Other effects such as the glucose

lowering component of their action were indistinguishable,

supporting the hypothesis of a shared mechanism of action.

In conclusion, our study demonstrates that the effects of FGF19

and FGF21 both in vitro and in vivo show a high degree of

similarity. This interchangeability between the factors likely results

from the ability of both to bind KLB and FGFRs. In mice,

treatment with FGF19 and FGF21 both led to amelioration of the

obese phenotype with significant improvements in all parameters

tested. Our data demonstrate that both in vitro and in vivo FGF19

and FGF21 are able to potently activate the KLB/FGFR complex

and that this activation likely mediates the positive metabolic

outcomes we observe. Our data lend further support for further

investigation of both FGF21 and FGF19 as potential therapies for

obese/diabetic humans.
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