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Abstract

Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that
exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any
orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or
hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary
attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are
unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically
structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated
with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the
design of anti-adhesive and bio-adhesion resistant surfaces.
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Introduction

Snails adhere to surfaces by coating them with a thin (10–

20 mm) layer of mucus [1–3], which is a complex mixture of

polysaccharides and proteins [4]. To propel themselves over the

mucus they use its non-linear properties to create pedal waves in a

process known as adhesive locomotion [1–3,5,6]. This adhesive

locomotion is one of the most energetically expensive, but

effective, methods of locomotion known in biology [2]. The

mucus snails’ use allows them to adhere strongly and isolates them

from the surface. This allows them to climb at any angle to the

vertical, but does limit their size. Because their foot is attached at

all times the danger of falling is much lower than with other

methods of locomotion and they are able to attach to a greater

variety of surfaces including the low energy non-adhesive

polytetrafluoroethylene (PTFE) and the water-coated slippery

hydrogels that represent the extremes of anti-adhesive non-slip

materials. The adhesive advantages of this method of locomotion

means it is being considered for small climbing robots, which are

prone to falling if surfaces or surface conditions change [7]. The

main disadvantages are the slow rate of movement, loss of water

and high metabolic cost compared with other methods of

locomotion [2].

One method of creating an anti-adhesive surface is to use

microscale or nanoscale topographic features to amplify intrinsic

non-wetting chemical properties of the surface. This can produce a

superhydrophobic surface with a high droplet contact angle and

small contact area, and low contact angle hysteresis [8,9]. Droplets

of water deposited on such a surface ball-up and roll-off so that

they are often thought of as the ultimate type of slippery and non-

stick surfaces [10]. The ability of a droplet to resist sliding from a

surface as it is tilted is determined by the extent of its three-phase

contact line and the contact angle hysteresis [11,12]. This has

recently been called shear hydrophobicity in contrast to tensile

hydrophobicity, which is the ability for a droplet to resist being

pulled away from a surface and which is determined by the

receding contact angle rather than contact angle hysteresis [13].

The wetting properties of surfaces to snail mucus and the direction

of forces on it is therefore likely to be of paramount importance in

its adhesive properties.

Results and Discussion

To screen anti-adhesive properties of superhydrophobic surfac-

es, we first used a snail feeding experiment where we left lettuce

leaves on two upturned plant pots, with different test coatings on

their sides, within a snail-filled enclosure overnight. During these

initial experiments it became clear that only one of the coatings

used, Hirec 1440 (a superhydrophobic coating used to repel water

on radar domes), was preventing the snails from climbing (Fig. 1a).

Other coatings, although apparently similar when tested with

water, were unable to prevent the snails from ascending over a

12 h period. A second superhydrophobic coating, Cytonix

1604 V, appeared to have a small effect, but did not prevent

snail attack altogether.

To further examine the coating that appeared to frustrate the

snails we used a snail track experiment consisting of a zigzag track

on a sheet of polyacrylic created by painting around a path within

which we desired to confine a snail. When the sheet was placed

horizontally the snails were able to cross the painted area and did
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not deviate from their path when crossing the track boundary.

This suggests that the effect of the coating was not related to

toxicity, chemical dislike, loss of water or loose solid/powder

particles coating the mucus and converting it to a solid-on-solid

contact. Snails could attach to the top or bottom of this sheet when

mounted horizontally, but when mounted vertically became

detached almost immediately. When snails were placed on the

track defined by the superhydrophobic paint and the sheet

mounted vertically they moved and remained attached within the

track, unless they could reach any other surface with their body

(Fig. 1b and on-line Video S1). At intermediate angles the snails

showed a limited preference for the track, remaining confined for a

while and then escaping (Fig. 1c). Tracks created using other

coatings neither presented problems to the adhesive performance

Figure 1. Snails cannot climb some surfaces. a) Snails have attacked the lettuce on one of the pots, but not on the other, even after 12 h. The
upper pot was coated with Hirec 1440 superhydrophobic paint and the lower pot with 1604 V superhydrophobic coating. Overlaid sequence of a
snail moving on a track bounded by a snail resistant superhydrophobic paint: b) track mounted vertically, and c) track inclined at a low angle. The
figure was produced by selecting and compositing frames where the snail had moved forward by around one shell length.d) Acceleration in units of
gravitational acceleration, g = 9.81 ms22, required to remove snails from various surfaces rotated in the horizontal plane. Only the Hirec 1440 required
less acceleration than 1 g.
doi:10.1371/journal.pone.0036983.g001
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of snails nor confined the snails to the track, although they

appeared to be slowed by some of the coatings.

From these two types of experiments it was clear that a sliding

force in the plane of the surface was most effective at removing a

snail from a superhydrophobic surface as the snails could not

climb a vertical surface but could hang on an inverted one. To

assess the shear attachment strength of snails they were subjected

to centrifugal forces by attaching them to a flat, horizontal plate

that was spun at ever increasing rates until they slid off. Variance

between runs on a single surface with a single snail was found to be

as large as between different snails on that surface, so data from

multiple snails was pooled. This is in line with previous work on

the tribology of snails, which showed weak correlation between

size and pull off force for terrestrial snails [14].

The coating that proved effective in confining snails to a defined

track (Hirec 1440) required the smallest sliding force to remove a

snail (Fig. 1d). Snails crawled off all surfaces if allowed a few

minutes; no powder was observable on the snail’s foot afterwards.

The normal adhesive failure mode of the snails was in the mucus

layer, which explains why most surfaces have similar removal

forces in both this and a pull off experiment and why rough

surfaces, with a thicker average mucus layer, require slightly less

force [14]. Failure can also occur between the mucus and the

surface as long as full contact between surface and mucus has not

been achieved. This appears to occur on some of the super-

hydrophobic surfaces. The reduction in adhesive strength will be

related to the fraction of the surface under the mucus that is air

instead of solid. Visual inspection of the mucus left on the surfaces

after colouring them with silver nitrate solution (1%w/w) revealed

slime marks slightly larger than the snail foot on most surfaces. On

the snail repellent surfaces predominantly ring shaped patterns

were observed, suggesting that the edges of the snails’ feet attached

well, but their centres did not.

To characterise the wettability of the various surfaces on which

snail adhesion was tested, we measured the advancing and

receding contact angles of water, an oil (hexadecane), and an

anionic surfactant (sodium dodecylsulfate) at various concentra-

tions. No correlation was observed between the acceleration

required to detach a snail in the centrifuge test and the advancing

contact angle of any of the liquids. The oil fully wet the snail

resistant surface. The differences between advancing and receding

contact angle behaviour with surfactant concentration was the

most revealing. Whilst advancing contact angle reduced progres-

sively by around 20u–30u as surfactant concentration increased up

to 100%, the receding contact angle dropped sharply to less than

20u on all surfaces except PTFE. However, the Hirec 1440

surface, which was able to prevent snails climbing, was able to

maintain a high receding contact angle up to around 1 mM (1/8th

critical micelle concentration) before switching to a wetting state

(Fig. 2). At this concentration the snail resistant Hirec 1440 had a

higher receding contact angle than PTFE, but this switched at

higher concentrations, indicating that some penetration into the

roughness had occurred. Two of the other superhydrophobic

surfaces, 1604 V and WX2100, which significantly reduced the

acceleration needed to detach snails, also maintained higher

receding contact angles at low surfactant concentrations, although

they became wetted at lower surfactant concentration than Hirec

1440. Typically the receding angle on a superhydrophobic surface

with surfactant was lower than that on an equivalent flat surface

above a critical surfactant concentration. The composition of snail

mucus has been studied [4,15] and we hypothesize that the

amphiphilic nature of the mucus is an important aspect of the

adhesion on some surfaces.

The force needed to shed a liquid droplet from a surface is

related to the unbalanced Young force integrated along the three-

phase contact line. This results in a force that depends on the

length of the three phase contact line, p, and the difference

between the cosines of the advancing, hA, and receding, hR,

contact angles, i.e. Force , pcLV(coshR-coshA), where cLV is the

liquid-vapour interfacial tension [16]. The high advancing contact

angles typical of superhydrophobic surfaces reduce the extent of

the three-phase contact line for a deposited droplet. However, the

surface will only be slippery if the receding contact is also high so

that contact angle hysteresis is low. In contrast, a non-super-

Figure 2. Plot of receding contact angles of sodium dodecylsulfate (SDS) solutions on different surfaces.
doi:10.1371/journal.pone.0036983.g002
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hydrophobic surface with a longer three-phase contact line and a

lower advancing contact angle can be switched into a slippy

surface by reducing the contact angle hysteresis as shown by ’t

Mannetje et al. using an electrowetting approach [17]. The

determining role of the receding contact angle in liquid-based

adhesion also extends to the work needed to pull a liquid from a

surface, which has been reported to be determined by

cLV(1+coshR) [13,18]. For a snail on a superhydrophobic surface

this suggests that achieving liquid-mediated adhesion requires it to

be able to reduce the receding contact angle of its mucus and to

maintain a high level of contact angle hysteresis; these require-

ments can be met using surfactants. In particular, the ratio of net

force pcLV(coshR-coshA) for a normal hydrophobic horizontal

surface with advancing and receding contact angles of hA = 120u
and, due to surfactant, hR = 0u, and a snail resistant horizontal

superhydrophobic surface with hA = 150u and hR = 120uas seen in

fig. 2, is around 4. This is consistent with the results of the sliding

removal test using centrifugal forces (Fig. 1d); although the

perimeter of the foot of an 8 g snail is too short (80 mm) for the

snail to adhere solely using this force.

The yield stress of garden snail mucus has been measured at

100–240 Pa [19]. This can be compared with the acceleration

required to remove the snails. Using a mass of 8 g and a foot area

of 800 mm2, an acceleration of 1 g would exert a stress of 98.1 Pa

on the mucus. This shows that for the snail resistant Hirec surface

the mucus is not shear thinned throughout during snail removal,

although local yield at the contact points is likely. For normal

surfaces the adhesion of snails up to around 4 g indicates that

other mechanisms, such as suction, play a role; at least when the

snail is stationary as the snails’ mucus alone could only hold them

against a little under 2.5 g.

Surfactants adsorb at liquid-solid and liquid-air interfaces, but

are known to have a relatively weak effect on both the surface

tension and advancing contact angle [20]. Only a small number of

reports have been published on the effects of surfactants on the

wetting of superhydrophobic surfaces [21–25]. The wetting of

superhydrophobic surfaces by surfactants is not simple in that the

addition of surfactant usually causes a transition from a bridging

Cassie-Baxter type of wetting with sliding droplets to bridges that

sit deeper into the surface, but do not fully penetrate it as they

would in a Wenzel state [10]. With surfactants the stronger effect

on receding contact angle on superhydrophobic surfaces, com-

pared to advancing contact angle, is due to the creation of soap

film bridges across the peaks of the roughness as the meniscus

retracts [24], thus generating strong adhesion.

The size of gap that can be bridged by a soap film increases with

surfactant concentration and so the transition to a low receding

contact angle, and hence high wet adhesion, depends on a

combination of the surface, the topography and the surfactant. As

mucus is metabolically expensive to generate it seems likely that

the supply will be low to limit its loss into the pores of the substrate.

The balance between these requirements can be met by snail

mucus using a weak bio-surfactant to achieve high advancing

contact angles with low receding contact angles and hence a high

adhesion and resistance to sliding. In our experiments, receding

contact angles of a 1 mM solution of sodium dodecyl sulphate (1/

8th of the critical micelle concentration) were strikingly higher on

the surface that snails could not climb and were low on those that

they could. Outside a small range the differences between the

surfaces became small. This suggests that the surface agent that

snails use has a similar effect to this concentration of SDS.

The adhesive locomotive of land snails is remarkably effective

across a vast range of surfaces, including modern micro- and nano-

structured superhydrophobic ones, which shed droplets of water

with ease. The key to their adhesive ability seems to be a precise

control of the receding contact angle to increase contact angle

hysteresis, using a weak surfactant. Understanding these new

findings about the nature of adhesion in a biological system is

important for understanding snail and other gastropod adhesive

locomotion, for understanding properties of superhydrophobic

surfaces, and for the design of adhesive and anti-adhesive surfaces

of all types.

Materials and Methods

Cornu aspersum (O.F. Müller 1774) (helix aspersa), from Blades

Biologicals UK, and (Cepaea nemoralis) were used; snails of mass

from 7.0 to 8.5 g were selected. For titania films Titanium

isopropoxide (97% Aldrich), diethylene glycol (99% Aldrich) and

ethanol (95% Fisher) were mixed in a volume ratio of

8.51:2.4:33.64, this was stirred for 1 h then a water and ethanol

mix 0.45:40 was prepared and added before stirring for a further

1 h and diluting to 25% in ethanol, glass substrates were dip

coated then heated to 480uC at 2 C min21 and maintained at that

temperature for 2 h. Sieved sand (100–250 mm) was attached to

surfaces using contact adhesive (No Nonsense, UK). To add a

hydrocarbon finish samples were immersed in 1% octyltriethox-

ysilane (Aldrich deposition grade 98%) in toluene (99.5% Aldrich)

for 24 h. To add a fluorocarbon finish, 20% v/v Extreme Wash

in, Grangers UK was applied for 10 minutes, rinsed and then

heated to 50 C for 24 h. Hirec 1440 (AT&T, Japan), Flutec LE12

(F2, UK) and Cytonix US 1601 and 1604 V were applied by brush

and allowed to air dry for 1 day. Cytonix WX2100 was applied by

aerosol. Advancing and receding angles were extracted from films

(Krüss DSA10) of 5 mL drops on the surface being increased and

decreased in volume at 40 mL min21. Deionised water, hexade-

cane (.99% Aldrich) and sodium dodecyl sulfate (.99% Aldrich)

in deionised water were used. Snails were placed into a covered

glass tank and offered lettuce on the top of two differently coated

inverted plastic plant pots 121 mm high. They were photographed

after 30 min. and 10 h. The snail centrifuge was a modified spin

coated, angular velocity was measured using an optical tachy-

graph, position and detachment time from video recordings.

Supporting Information

Video S1 Snails traversing a path bounded by a snail
resistant superhydrophobic coating.

(MOV)
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