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Abstract

Background: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are
these features studied together. The present study applies a ‘‘facilitated ecoinformatics’’ approach to jointly screen many
local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests
of potatoes in the high Andes.

Methodology/Principal Findings: We generated a comprehensive list of predictors of weevil damage, including both local
and landscape features deemed important by farmers and researchers. To test their importance, we assembled an
observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for
local features were generated primarily by participating farmers who were trained to maintain records of their management
operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which
explained 40.2–46.4% of the observed variance in infestations. The best model considering both local and landscape
features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but
not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important
predictors were the field’s perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes
planted in close proximity to the field, and the number of insecticide treatments made early in the season.

Conclusions/Significance: Results underscored the need to refine the timing of insecticide applications and to explore
adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of
ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives.
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Introduction

Modern advances in information science, statistics, and

computing power are creating unprecedented opportunities to

advance agricultural science. An underexploited opportunity exists

to address research questions using data routinely generated by

farmers and agricultural consultants through their record-keeping

activities [1–5]. This research approach falls under the umbrella of

ecoinformatics, an emerging field in ecology that is thought to hold

particular promise for integrated pest management (IPM) research

[5]. There is no uniform definition for ‘‘ecoinformatics;’’ but its

scope covers the management, integration and analysis of diverse

streams of data to answer complex questions in ecology. Here, we

apply an ecoinformatics approach to the joint study of local and

landscape factors explaining infestations of a key potato pest in the

Andes, the Andean potato weevil (Premnotrypes spp.).

It is widely recognized that pest impact on an agricultural field is

jointly influenced by the features of that field (i.e. local features)

and by features of the area surrounding it (i.e. landscape features).

Seldom, however, are these local and landscape features studied

jointly (but see [6–8]). Perhaps because they are easier to

manipulate, local-level processes like host-plant resistance and

chemical control are most often studied experimentally. In

contrast, landscape-level processes, like the spillover of natural

enemies from unmanaged areas into agricultural areas, are almost

exclusively studied observationally [9]. The lack of an integrated

approach results in a dearth of knowledge on the relative

importance of local versus landscape-level influences and the

relative payoffs of managing each.

The Andean potato weevils, a complex of tuber-boring

herbivores dominated by the genus Premnotrypes, are the most

important pests of potatoes in the high Andes [10]. They are

native to the Andes, feed only on potatoes, and complete only one

generation per year under traditional (rain-fed) potato agriculture

[10]. Andean potato weevils appear to have reached pest status

only in the past century, in response to the intensification of

Andean farming systems [11]. Despite much searching, no weevil-

resistant potato cultivars and only a few modestly-suppressive
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natural enemies (all of them generalists) have been found to date

[12], [13]. An effective integrated pest management (IPM)

program has been developed for these weevils [14], but adoption

rates are poor due to its high labor requirements (Ortiz, personal

communication).

Under rain-fed agriculture, the Andean potato weevil life cycle

begins with the onset of rains (October–November), when adults

emerge from their overwintering sites in soils of previous-season

potato fields and potato storage facilities, and disperse by walking

to find germinating potato plants [10], [15]. Most weevils disperse

to find newly-planted potato fields. The remaining minority stays

within previous-season fields to feed and reproduce on potato

plants that re-emerge spontaneously (i.e. volunteer potatoes). A

potato field’s proximity to previous-season fields and storage

facilities (overwintering sites) is positively correlated with infesta-

tion, while its proximity to potato fields planted during same

season is negatively correlated with infestation [15]. When

potatoes are reached, female adults lay eggs on the base of the

plants. Upon hatching, neonate larvae dig into the soil and burrow

into tubers where they feed until completing their larval life cycle.

Towards the end of the potato-growing season (April–May),

mature larvae begin to abandon tubers to pupate in the soil.

Larvae that mature before harvest pupate in the soil of potato

fields. The remaining larvae are transferred to and pupate in the

dirt floors of potato storage facilities. Because volunteer potatoes

are harvested and consumed by farmers early in the season

(February–March), larvae within them seldom complete their life

cycle (S. Parsa, personal observation).

Our objective was to jointly screen and compare the explan-

atory value of many local and landscape factors thought to

influence Andean potato weevil populations. This task gave us an

opportunity to systematically unearth and validate much knowl-

edge on this pest reported only in the ‘‘gray’’ literature. We hoped

this analysis would help us propose a shorter set of ‘‘priority’’

variables to be examined more closely by future studies seeking to

refine the Andean potato weevil IPM program. We build upon a

previous study that examined the explanatory importance of

landscape factors [15]. This article builds on the previous analysis

by evaluating the role of local factors, with data partly generated

by farmers using record-keeping forms produced and distributed

by our research team. We call our approach ‘‘facilitated

ecoinformatics,’’ because farmers were included in the generation

of hypotheses and accompanied in field monitoring and record-

keeping activities needed to test them.

Materials and Methods

Ethical considerations
No specific permits were required for the described field study.

Participatory work involved only adults and it was non-

experimental, anonymous and voluntary. Due to high illiteracy

rates, informed consent was obtained verbally. The study was

designed in consultations with faculty at the University of

California in Davis and it was approved by the McKnight

Foundation Collaborative Crop Research Program and by

regional indigenous authorities of the Chopcca Nation. No

participant-identifiable data was recorded. The principles ex-

pressed in the Declaration of Helsinki were followed. The

individual pictured in this manuscript has given written informed

consent (as outlined in the PLoS consent form) to appear in the

published photo.

Study Site
The study was conducted from November 2008 to May 2009 in

four adjacent farming villages in the department of Huancavelica,

in Peru (74u459W, 12u469S). The villages belong to the Chopcca

indigenous nation, characterized by a traditional, subsistence-

based agriculture. Potato (Solanum spp.) provides the main means

of subsistence in the area, but it is complemented by barley

(Hordeum vulgare), oats (Avena sativa), fava beans (Vicia faba), pearl

lupine (Lupinus mutabilis) and minor quantities of other Andean

crops. Fields are cropped once per year, with a cycle that

invariably begins with potato, typically-followed by three years of

non-potato cropping, and three years of fallow. Agriculture is rain-

fed, with a yearly growing season that spans from October to May.

As is typical for other Andean farming systems, the area is

mountainous (3,500 to 4,200 meters), cold (6–12uC mean

temperature) and semi-humid (500–1,000 mm/year rainfall)

[16]. Farmers recognize Andean potato weevils (Fig. 1) and potato

flea beetles (Epitrix spp.) as their most important potato pests. The

dominant weevil species in the area are P. suturicallus and P. piercei.

Both have similar life cycles and behavior [10]; therefore our

analyses do not distinguish between the two. The potato tuber

moths Symmestrischema tangolias and Phthorimaea operculella do not

reach economically-important levels in the area.

Sample of potato fields
The potato fields in this study belonged to 138 farmers

randomly-selected from a roster of 643 total farmers (Fig. 2,

Top). Only the cultivars Yungay (improved, S. tuberosum) and

Larga (landrace, S. chaucha) were considered for the study, because

they were the most abundant in the Chopcca nation and they are

widely distributed in the Peruvian Andes. When a farmer had

fields of both cultivars, one field was randomly-selected for the

study. Data collection was coordinated by four local farmers who

were extensively trained and had collaborated with us as research

associates for more than a planting season. We refer to these

facilitators as ‘‘community knowledge workers.’’ Each knowledge

worker was randomly assigned to assist 20 farmers and was asked

to choose roughly 15 more, both from our list of randomly-selected

Figure 1. Heavy infestations by Andean potato weevils
(Premnotrypes spp.) on improved potato cultivar Yungay (S.
tuberosum). Photo credit: Soroush Parsa.
doi:10.1371/journal.pone.0036533.g001
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farmers. This flexibility allowed us to improve farmer participation

rates. No farmer approached refused to participate in our study.

Response variable
To account for edge effects on weevil distribution [15], fields

were divided into edge and center sections. The outer 3 meters of

the field was considered ‘‘edge,’’ provided it was not adjacent to (1)

a barrier putatively inhibiting weevil immigration (e.g., a wall, a

stream or a ditch .1 m deep) or (2) to another potato field. The

remaining area was considered ‘‘center.’’ We measured edge and

center areas using geographic positioning system (GPS) receivers

(GPSMap 76CSx, Garmin Ltd., Olathe, KS) and geographic

information system (GIS) software (ArcGIS, ESRI, Redlands, CA).

We then sampled 20 evenly-distributed plants from each stratum

(i.e., 40 per field) and inspected tubers to score for presence/

absence of larvae, external bruising or emergence holes that are

distinctly characteristic of weevil damage. Our response variable

was the percent of tubers infested in the edge and center of fields,

weight-averaged by their respective areas. Tuber infestation was

scored within 10 days of the field’s intended harvest date.

Explanatory variables
We generated a comprehensive list of explanatory variables

believed to influence Andean potato weevil infestations (Table 1).

Most variables were selected based on (1) a review of the ‘‘gray’’

literature on Andean potato weevils; (2) several unstructured

interviews with local farmers; and (3) a workshop of experts

convened by our research team that brought together agricultural

scientists and NGO practitioners working with Andean agroeco-

systems for more than two decades.

Data on explanatory variables were collected combining farmer

record-keeping and direct field measurements. We designed and

distributed standard record-keeping forms for key management

activities (e.g., pesticide applications, fertilization, weedings) to

each participating farmer. To facilitate compliance with our

record-keeping requirements, knowledge workers visited each

farmer at least twice during the growing season, assisting them as

needed to accurately fill out the forms (Fig. 3). The remaining data

were gathered directly by our knowledge workers, often following

their visits to farmers. Landscape and geographic data were

gathered with GPS receivers and GIS software. We mapped three

features within 100 m of each focal field: current potato fields,

previous-season potato fields and storage units (Fig. 2, Bottom).

Potato fields were expressed as the percentage of the surveyed area

they occupied, whereas storage units were expressed as counts. We

considered the 100-m scale adequate, because weevils only

disperse by walking, they have no effective natural enemies that

disperse long distances, and the area considered often contained

one or more natural streams preventing their dispersal. Accord-

ingly, landscape features separated from focal fields by streams

were omitted (see [15] for details of landscape analysis). Soil data

were obtained through laboratory analyses. For each field, roughly

100 grams of soil was collected from the base of each plant

evaluated for weevil infestations, the samples mixed, and a

consolidated sub-sample submitted to the laboratory (Laboratorios

Analitı́cos del Sur; Arequipa, Peru).

Statistical modeling
Analyses were conducted using JMP 7 statistical software [23].

Percent tubers infested was square-root transformed to meet

assumptions of parametric statistics. We conducted two separate

analyses. First, we conducted a multiple regression analysis to

assess the efficacy of pesticide treatments over time. For this

analysis, we regressed infestations against the number of

treatments applied each month from December until March.

Second, following the information theoretic approach [24], we

set out to identify the subset of explanatory variables that

produced the best multiple regression model of weevil infestations.

The information theoretic approach is thought to be less

vulnerable to finding spurious effects due to over-fitting, and

more informative than methods based on null hypothesis testing

[25]. Multiple models, representing alternative explanations for

the patterns observed, are compared to evaluate which one is best

supported by the data. When many models are similarly-supported

by the data, inferences can be made using all models considered

important. In such cases, parameter estimates are averaged across

models, weighted by the probability that their originating model is

the best in the set. Hence, the relative importance of a parameter is

not based on p-values, but rather on its occurrence in the model(s)

that are best supported by the data.

Figure 2. Landscape in the study area in Huancavelica, Peru.
(Top) Distribution of study fields showing percentage infestation by
Andean potato weevils (Premnotrypes spp.). (Bottom) Representative
study fields showing landscape predictors of percentage infestations by
Andean potato weevils.
doi:10.1371/journal.pone.0036533.g002
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Table 1. Local and landscape features of hypothesized to exert important influences on Andean potato weevil infestations
(Premnotrypes spp.).

Variable category Variable description Mean ± SD or mode

Chemical control Carbofuran at planting (yes/no) no = 106/138

Insecticide treatments December 0.5160.61

Insecticide treatments January 1.1260.74

Insecticide treatments February 0.3460.52

Insecticide treatments March 0.0260.15

Cultural Ash application at plantinga (yes/no) no = 134/138

Chemical fertilization at plantingb (g/plant) 8.1367.03

Day of first potato hillingc (days after Oct 1st) 104.1068.57

Harvest dayd (days after Oct 1st) 201.3469.50

Height of first potato hillingc (cm) 18.3063.79

Height of row at harvestc (cm) 29.0265.17

Manure fertilization at plantingb (g/plant) 75.87621.80

Number of hillingsc 2 = 131/138

Perimeter/area ratioe (m21) 0.2660.10

Planting dayf (days after Oct 1st) 48.9668.39

Plants/5 meters rowg 14.8161.74

Rotation 2006h (potato/other) other = 114/138

Rotation 2007h (potato/other) other = 136/138

Row distanceg (cm) 95.35611.72

Weed removali (yes/no) yes = 75/138

Geographic Elevationj (m) 37476148.40

Field slopek (cm) 23.04610.79

Host related Potato cultivarl (Yungay/Larga) Yungay = 87/138

Soil Claym (%) 21.0865.71

Loamm(%) 34.0168.01

Sandm (%) 44.9169.62

Km (ppm) 331.586201.75

Pm (ppm) 28.22621.94

Organic matterm(%) 5.8762.38

pHm 4.9760.98

Landscape Neighboring current potato (%)n 8.7969.71

Neighboring previous potato (%)o 4.0864.32

Neighboring storage unitsp 1.0161.01

aFarmers apply a layer of ash directly below the potato seed at the time of planting; this practice is intended to kill potato weevils.
bFertilization can influence crop defenses against herbivores [17].
cMany agronomists recommend hilling the plants (piling dirt up around the stem of the plant) higher to lengthen the distance weevil larvae must travel to find tubers.
dEarly harvest shortens the exposure of tubers to neonate larvae [18].
eLarger fields have lower perimeter to area ratios and have been suggested to have lower infestations [19].
fEarly emerging plants may experience greater infestations [20].
gPlanting density may influence the abundance of many insect pests [21].
hPlanting potatoes following a potato planting should lead to very high infestations [19], but implementing a single host free period should eliminate this risk. Rotation
2007 indicates if potatoes were sown in the field the previous season while Rotation 2006 indicates if potatoes were sown there two seasons before the study.
iThe study hypothesized that weeds may serve as refuges for adult weevils before potato plants emerge.
jWeevils are poorly adapted to elevations above 3,700 meters [18].
kThe study hypothesized that greater soil erosion in steeper slopes may increase tuber exposure to weevils.
lModern cultivars like Yungay may be more susceptible to insect pests [22].
mThe study was interested in exploring any soil influences on weevil infestations without any strong a priori expectations.
nA measure of potato fields sown the within 100 m of the focal potato field; these current fields dilute the effect of immigrating weevils [15].
oA measure of potato fields harvested the previous season that lie within 100 m of the focal potato field; these previous fields may be sources of overwintering weevils
that immigrate into focal fields [14], [15].
pPotato storage units are facilities adjacent to farmer houses and are known to concentrate high densities of overwintering weevils that may immigrate into focal fields
[14–15].
doi:10.1371/journal.pone.0036533.t001
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To be conservative in our initial selection of variables, we first

developed the least parsimonious model that was best supported

by the data, as assessed by Akaike’s information criterion (AIC)

[24]. Variables were added to this initial model one at the time in

the order dictated by their influence on the AIC (variables that

reduced the AIC the most were entered first). We continued

adding variables even when their addition penalized (or increased)

the AIC, as long as the resulting model had an AIC value no more

than 2.0 larger than the lowest AIC values reached in previous

steps. We chose this threshold because models within 2.0 AIC

values are thought to be similarly supported by the data [24]. Our

analysis included four categorical variables to control statistically

for possible observer effects associated with our four knowledge

workers. Interaction terms were omitted because including them

would have made the analyses too computationally intensive, and

we lacked specific hypotheses linking them to weevil infestations.

We then evaluated models resulting from all possible additive

combinations of the selected variables. This process identified 51

models that were within 2 AIC values of the best, indicating

substantial model selection uncertainty [24]. Under these circum-

stances, the information theoretic approach advocates model

averaging. Accordingly, three steps were followed to average

estimates across the 51 models. First, we computed each model’s

Akaike weight (wi), which is interpreted as the relative probability

that a given model is the best in the set. Second, we computed the

weight for each parameter (wp), which is interpreted as the

probability that the parameter is included in the best model in the

set, and is obtained by summing Akaike weights across all models

where the parameter occurs. Hence, the parameter weight is a

measure of the relative importance of a parameter. Finally, we

weight-averaged parameter estimates. To do so, we multiplied the

estimates of each model where a parameter occurred by the

corresponding Akaike weights for the model; the resulting

products were summed; and the sum divided by the parameter

weight. This computation yields a ‘‘natural’’ average of the

parameter estimate, because it considers only those models where

the parameter occurs. However, multi-model predictions also need

to take into account the evidence from models where the

parameter does not occur. Accordingly, a second average for the

parameter estimate was derived for predictions, by multiplying the

‘‘natural’’ average by the corresponding parameter weight.

To assess the importance of jointly modeling local and

landscape variables, we followed the procedure above to derive

two additional models: (1) the best model with only local predictors

and (2) the best model with only landscape predictors. Then, we

computed Akaike weights for the three to estimate their relative

support.

We tested for spatial autocorrelation in model residuals with the

ncf package [26] for R 2.9.1 (www.r-project.org) using the

correlog() function to assess autocorrelation via Moran’s I index

[27]. We tested for autocorrelation with a 1,000 permutation test

for fields up to 3 kilometers apart at intervals of 250 meters. No

evidence for spatial autocorrelation of residuals was detected.

Unless otherwise stated, mean values are presented with their

standard deviation.

Results

Observations and descriptive statistics
For each potato field, we evaluated an average of 6546241

tubers. Infestations averaged 25.1620.9% on field ‘‘edges’’ and

16.1617.4% on field ‘‘centers,’’ yielding a weight-averaged

infestation of 18.3618.1%. Fields were small, averaging

424.66282.4 m2. Farmers who applied carbofuran at planting

did so at roughly 25 kg of active ingredient per hectare. After plant

emergence insecticide treatments varied little, generally consisting

of applications of methamidophos with a manual backpack sprayer

at roughly 534 ml (320 g) of active ingredient per hectare.

Summary statistics for the explanatory variables are presented in

Table 1.

Insecticide efficacy model
The insecticide treatment model revealed a temporal decay in

the efficacy of treatments, with treatments made after January

having no significant effect on potato weevil infestation (Fig. 4)

Development of global (least parsimonious) model
The forward stepwise development of the global model, using

AIC as the criterion for variable selection, is shown in Figure 5.

Because the value of the AIC has no direct interpretation (i.e. it is a

Figure 3. Community knowledge worker assisting farmers with
record-keeping activities associated with their potato harvest.
The individual pictured in this manuscript has given written informed
consent (as outlined in the PLoS consent form) to appear in the
published photo. Photo credit: Soroush Parsa.
doi:10.1371/journal.pone.0036533.g003

Figure 4. Temporal decay in the efficacy of insecticide
treatments against Andean potato weevils (Premnotrypes
spp.), as applied by farmers. The x-axis shows the parameter
estimate 6 SEM associated with the effect of a single insecticide
application on the proportion of tubers infested with weevils (sqrt-
transformed). The y-axis shows the month of the insecticide treatment.
doi:10.1371/journal.pone.0036533.g004
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comparative measure of model adequacy), our ‘‘starting point’’

was the AIC associated with using the mean to predict infestations,

and we evaluated changes in this AIC as we added each

explanatory variable. The best model derived from this method

included 13 variables (2 of them control variables) and reduced the

AIC by 53.3. From this point we added four more explanatory

variables, which collectively penalized the best AIC by less than

2.0. Hence, the resulting global model included 15 possibly-

important explanatory variables and 2 control variables (17 total

variables) that collectively reduced the AIC by 52.0. We

considered the remaining variables ‘‘unimportant’’ given the

dataset.

Model averaging
The combinations of 17 variables generated 131,071 total

models. The top 51 models (i.e. within 2.0 AIC from the model

with the lowest AIC) explained 40.2–46.4% of the variance in our

dataset. Within this subset of well-supported models, none had a

high probability of being the single ‘‘best’’ (0.036.wi.0.013);

thus, all 51 models were similarly well-supported by the data.

Results from averaging estimates across all 51 models are

presented in table 2. All 51 models included three landscape

variables (i.e., perimeter to area ratio, current potato fields, storage

units), two local variables (i.e., insecticides December and

January), and the controls for observer effects, as evident by their

parameter weights of 1. The least commonly-included variables

were chemical fertilizer and soil organic matter %, whose

parameter weights were 0.23 and 0.21 respectively. The relative

impact of each explanatory variable on weevil infestations is

projected in Figure 6.

Relative support for local, landscape, and joint models
The best models considering the influence of local and

landscape factors in isolation had no probability of outperforming

the model considering them jointly (Table 3).

Discussion

Our objective was to identify a key set of variables explaining

Andean potato weevil infestations in farmers’ fields. We started by

generating a comprehensive list of variables, including both local

and landscape factors deemed important by farmers and

researchers. The explanatory importance of these variables was

screened statistically using an information theoretic approach,

affording a simultaneous evaluation and contrast of local and

landscape factors explaining weevil infestations.

Our results support the importance of studying local and

landscape processes jointly. The best models considering either

landscape or local factors in isolation had no probability of

outperforming the best joint model. Although still rare, the

number of pest management studies considering local and

landscape factors jointly is increasing (e.g., [6–8]). To our

knowledge, however, our study is the first to use crop management

records as a source of local-level data.

Our findings confirm the suspected influence of some factors,

fail to support the suspected influence of others, and also reveal

altogether unsuspected patterns that deserve further investigation.

At the local level, our results support (1) the efficacy of foliar

Figure 5. Forward stepwise development of the global (least
parsimonious) statistical model explaining Andean potato
weevil infestations. The x-axis shows the progressive addition of
explanatory variables in order of their contributions to lowering AIC.
The y-axis shows cumulative reductions in AIC from the AIC associated
with using only the mean to estimate infestations. The first dashed line
shows the point where the addition of variables started to penalize the
AIC, whereas the second dashed line shows the point where this
penalty started to exceed two AIC values. The global model included all
variables before the second dashed line.
doi:10.1371/journal.pone.0036533.g005

Table 2. Parameter estimates weight-averaged across the 51
‘‘best’’ models predicting Andean potato weevil infestations
(square root of proportion infested tubers).

95% CI

Variable Estimate SEM Lower Upper vp

Intercept 1.774 0.936 20.061 3.608 1

Observer effect 1 20.043 0.019 20.081 20.005 1

Observer effect 2 20.070 0.016 20.102 20.038 1

Perimeter/area ratio 0.519 0.150 0.225 0.814 1

Neighboring storage units 0.044 0.015 0.015 0.073 1

Neighboring current potato 20.004 0.002 20.007 20.001 1

Insecticide treatments January 20.053 0.021 20.094 20.013 1

Insecticide treatments
December

20.054 0.025 20.103 20.004 1

Neighboring previous potato 0.007 0.004 0.000 0.014 0.91

Soil clay 0.005 0.003 0.000 0.010 0.91

Elevation (sqrt transformed) 20.031 0.013 20.057 20.005 0.83

Number of hillings 0.127 0.076 20.022 0.275 0.71

Rotation 2007 [Not potato] 20.096 0.062 20.216 0.025 0.71

Rotation 2006 [Not potato] 0.030 0.020 20.008 0.069 0.49

Height of first potato hilling 20.006 0.004 20.014 0.002 0.43

Height of row at harvest 20.005 0.003 20.012 0.001 0.42

Chemical fertilization at
planting

20.002 0.002 20.006 0.002 0.23

Soil organic matter 20.012 0.008 20.026 0.003 0.21

Notes: Estimates are followed by their standard errors, their 95% confidence
intervals and their Akaike parameter weights (vp). Given a set of similarly-
adequate predictive models, parameter weights estimate the probability that
the parameter is included in the best model in the set.
doi:10.1371/journal.pone.0036533.t002
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insecticide treatments before - but not after - February, (2) the

efficacy of implementing a single potato-free rotation period, and

the trends of decreasing infestations with increasing (3) elevation,

(4) field perimeter-to-area ratio and (5) hilling height. At the

landscape level, our results support the suspected influence of (6)

storage units and (7) previous-season potato fields as sources of

weevil infestation. Given what is already known about Andean

potato weevils, confirming these patterns is unsurprising, but it

provides confidence in our results. More importantly, however,

estimating these factors simultaneously for the first time affords a

contrast of their predicted influences on weevil infestations. For

example, multi-model estimates predict that, on average, our

farmers may offset the risk of infestation from a neighboring

storage with a single pesticide treatment before February (Fig. 6).

Unsupported factors included manure fertilization, planting

day, planting density, row distance, weeding, slope, potato

cultivar, and many soil factors. Most of these variables had been

included in our study without strong a priori expectations. Lack of

support for factors of reported importance, including several

tactics farmers target at weevils, is harder to interpret conclusively.

For example, our study failed to support the efficacy of carbofuran

and ash treatments at planting, as well as the efficacy of foliar

insecticide treatments after January. We suspect these practices are

in fact ineffective. Previous observational evidence suggested that

the systemic effect of carbofuran treatments at planting is lost too

early in the season to be effective against the progressively-

immigrating Andean potato weevils [28]. By contrast, because

most weevils colonize fields before February [29], treatments in

March or April should not be expected to be efficacious. A field

experiment one of us conducted to test the validity of ash

treatments also failed to demonstrate impacts on weevil infesta-

tions (R. Ccanto, unpublished data). These observations point to

the need to address local gaps in Andean potato weevil knowledge.

Despite being one of the most widely-used preventive tactics

against Andean potato weevils, we found no link between early

harvest and infestations. Early harvest is thought to prevent

infestations by late-hatching weevils and to intercept the develop-

ment of those already within tubers before significant damage is

incurred. In a post-hoc analysis, we considered the possibility that

farmers with greater expected infestations were harvesting earlier.

Figure 6. Standardized predicted impacts of explanatory
variables on Andean potato infestations. The model is initially
set to predict infestations for a field with no pesticide applications and
with mean (for continuous variables) or most common (for ordinal and
categorical variables) values for all other explanatory variables. For
continuous explanatory variables, bars reflect predicted changes in
infestations in response to a one standard deviation increase in the
explanatory variable. For ordinal explanatory variables, the bars reflect
predicted changes in infestations in response to a single unit increase in
the explanatory variable; except for the number of hillings, for which
only a decrease could maintain predictions within observed bounds.To
obtain multi-model predictions, parameter estimates were multiplied
by their corresponding parameter weights. Hence, predicted effects are
‘‘attenuated’’ for explanatory variables with parameter weights smaller
than 1.
doi:10.1371/journal.pone.0036533.g006

Table 3. Parameter estimates 6 SEM for the best models predicting Andean weevil infestations based on local factors only (i.e.
Best local), landscape factors only (i.e. Best landscape) or both local and landscape factors together (i.e. Best combined).

Best combined Best local Best landscape

DAIC relative to best combined 0 +16.03 +18.18

wi 1.00 0.00 0.00

Perimeter/area ratio 0.50160.149** 0.54860.158**

Neighboring storage units 0.04060.014** 0.04860.015**

Neighboring current potato 20.00460.002** 20.00660.002**

Insecticide treatments January 20.05460.020** 20.06660.021**

Insecticide treatments December 20.05160.025* 20.06660.026**

Neighboring previous potato 0.00860.004*

Clay 0.00660.003* 0.00660.003*

Elevation (sqrt transformed) 20.02860.013*

Number of hillings 0.10760.066 0.12660.068

Rotation 2007 [Not potato] 20.08360.060 20.13460.063*

Rotation 2006 [Not potato] 0.03260.019

Height of first potato hilling 20.00760.004 20.00760.004

Organic matter 20.01260.006

Notes: Lower AIC values suggest better model performance. The Akaike weight, wi, is interpreted as the relative probability that a given model is the best in the set. The
models included control variables for observer effects (not presented in the table).
*P#0.05.
**P#0.01.
doi:10.1371/journal.pone.0036533.t003
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We thought this was possible, because farmers were observed to

sample some of their potatoes several days before harvest to assess

their maturity, and presumably also infestation levels. This could

allow farmers to adjust their harvest date based on the level of

infestation that they observed in their early samples of tubers.

Indeed, we found that farmers with greater expected infestations,

as estimated by our model, harvested earlier ([harvest da-

te] = 207.4+215.97*[expected infestations]; d.f. = 136, P = 0.01).

The previous analysis highlights the special care that must be

taken when interpreting observational studies in pest management.

Many management tactics are best used adaptively, i.e., in

response to pest population densities observed during routine

sampling. For example, if pest populations are adequately

monitored and pesticides applied when needed, one might expect

to find a positive association between the pest densities and the

number of pesticide treatments. This adaptive behavior can

eliminate what otherwise might be a negative association between

the use of an effective pesticide and pest densities. We would not

want to conclude from such a correlation that pesticide

applications were ineffective. This particular problem did not

apply to insecticide treatments in our study, because farmers were not

applying pesticides adaptively (adult weevils are not monitored).

However, we failed to see a correlation between infestations and

harvest date presumably because farmers were adjusting their harvest

date based on monitoring tuber infestations. Accordingly, observa-

tional studies in pest management demand cautious interpretation,

and they are most powerful when coupled with manipulative

experiments conclusively-testing variables of interest [5].

This study revealed two unsuspected results we believe deserve

empirical attention. At the landscape level, we demonstrated that

infestations are negatively correlated with the abundance of

neighboring potato fields. The implications of this finding have

been thoroughly discussed in a previous article [15]. At the local

level, our results suggest that manipulating the hilling of potato

plants may contribute to improving weevil management. There

was a 0.84 probability that at least one variable relevant to hilling

was included in the best model predicting weevil infestations

(Table 2), and the effect size of the number of hillings was one of

the largest (Table 2; Fig. 6). Our observations cannot elucidate

exact mechanisms, but some possibilities may be explored with

manipulative experiments. First, higher hilling could lengthen the

distance neonate larvae need to migrate to find tubers, potentially

decreasing infestations by physical isolation or by increasing

exposure to mortality factors such as soil-dwelling natural enemies.

Second, the height of the hilling also determines the depth of the

furrow, which could inhibit the immigration of the (flightless) adult

weevils, especially when heavy rains fill furrows with water. Later

in the season, hilling could have a negative effect, because it could

protect weevil eggs from mortality factors such as desiccation or

consumption by generalist predators. This could explain why

farmers who only hilled once (always early in the season)

experienced lower infestations than farmers who hilled a second

time (Fig. 6). If this is the case, a management tactic that targets

eggs or neonate larvae before the second hilling, for example an

application of entomopathogenic nematodes [30], could produce

good results.

Ecoinformatics approaches may be particularly helpful during

the exploratory phase of pest management research, when a key

goal is to screen a large number of potentially important variables.

We describe our approach as ‘‘facilitated ecoinformatics,’’ because

farmers were included in the generation of hypotheses and

accompanied in the field monitoring and record-keeping activities

needed to test them. This methodological novelty adds to the

literature advocating the use of local knowledge in ecological

research [31]. A similar approach to research and extension, based

on structured field monitoring, record-keeping, and benchmark-

ing, has been implemented successfully to enhance productivity in

facilitated learning collaboratives (e.g., [32], [33]). Based on our

experience, we suspect ecoinformatics approaches can synergize

these programs to streamline learning and development in

agriculture.

A greater reliance on ecoinformatics in agriculture is well

justified by its unique ability to generate large datasets that capture

the true spatial and temporal scale of commercial agriculture [5].

As illustrated above, however, ecoinformatics datasets are obser-

vational, and therefore are poorly suited to elicit definitive causal

inferences. In addition, ecoinformatics datasets may be particu-

larly subject to observer error, potentially introduced by farmer

participation in data collection. Important advances in statistical

science are improving our ability to deal with these challenges [5].

We believe, however, that ecoinformatics approaches will prove

most useful when used as a tool that complements traditional

experimentation, rather than in competition with experimenta-

tion, to facilitate advances in agricultural science.
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8. Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008) Effect of within-

field and landscape factors on insect damage in winter oilseed rape. Agric

Ecosyst Environ 123: 233–238.

9. Bianchi F, Booij C, Tscharntke T (2006) Sustainable pest regulation in

agricultural landscapes: a review on landscape composition, biodiversity and

natural pest control. Proc R Soc Lond B 273: 1715–1727.

10. Alcazar J, Cisneros F (1999) Taxonomy and bionomics of the Andean potato

weevil complex: Premnotrypes spp. and related genera. In: Arthur C, Ferguson P,

Smith B, eds. Impact on a Changing World, Program Report 1997–98. Lima,

Peru: International Potato Center. pp 141–151.

Andean Potato Weevil Ecoinformatics

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36533



11. Parsa S (2010) Native Herbivore Becomes Key Pest After Dismantlement of a

Traditional Farming System. Am Entomol 56: 242–251.
12. Alcazar J, Cisneros F (1997) Integrated Management for Andean Potato Weevils

in Pilot Units. In: Hardy B, Smith B, eds. Program Report 1995–96. Lima, Peru:

International Potato Center, Lima, Peru. pp 169–176.
13. Kaya HK, Alcazar J, Parsa S, Kroschel J (2009) Microbial control of the Andean

potato weevil complex. Fruit Veg Cereal Sci Biotech 3(1): 39–45.
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