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Abstract

Sulfite oxidase (SO) plays an important role in sulfite metabolism. To date, the molecular mechanisms of sulfite metabolism
in plants are largely unknown. Previously, a full-length cDNA of the putative sulfite oxidase gene from maize (ZmSO) was
cloned, and its response to SO2/sulfite stress at the transcriptional level was characterized. In this study, the recombinant
ZmSO protein was purified from E.coli. It exhibited sulfite-dependent activity and had strong affinity for the substrate sulfite.
Over-expression (OE) of ZmSO in tobacco plants enhanced their tolerance to sulfite stress. The plants showed much less
damage, less sulfite accumulation, but greater amounts of sulfate. This suggests that tolerance of transgenic plants to sulfite
was enhanced by increasing SO expression levels. Interestingly, H2O2 accumulation levels by histochemical detection and
quantitative determination in the OE plants were much less than those in the wild-type upon sulfite stress. Furthermore,
reductions of catalase levels detected in the OE lines were considerably less than in the wild-type plants. This indicates that
SO may play an important role in protecting CAT from inhibition by excess sulfite. Collectively, these data demonstrate that
transgenic tobacco plants over-expressing ZmSO enhance tolerance to excess sulfite through sulfite oxidation and catalase-
mediated hydrogen peroxide scavenging. This is the first SO gene from monocots to be functionally characterized.
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Introduction

As a molybdenum-containing enzyme, sulfite oxidase (SO; EC

1.8.3.1) catalyzes the oxidation of sulfite to sulfate, and thus plays

important roles in diverse metabolic processes such as sulfur

detoxification and purine catabolism [1,2,3].

SO has been identified from prokaryotes such as Thiobacillus

thioparus [4], Thiobacillus novellus [5,6], and Thiobacillus acidophilus [7],

and from eukaryotes such as humans [8,9], chicken [10], mouse

[11], and Arabidopsis thaliana [12]. The well-known vertebrate SO is

a homodimer and is localized within the mitochondria [8]. It

contains three functional domains: an N-terminal heme domain,

a molybdenum cofactor (MoCo) domain, and a C-terminal

dimerization domain [13]. Several animal sulfite oxidases have

been crystallized and their catalytic mechanisms have been

unraveled [1,13,14]. Deficiency of the enzyme in humans leads

to severe neurological abnormalities and early death [15].

In higher plants, A. thaliana SO (AtSO) was the first identified

and biochemically characterized sulfite oxidase [12,16,17,18].

Compared with animal SO, AtSO lacks the heme domain and

possesses a molybdenum center alone and thus is the simplest Mo-

enzyme [12,16]. AtSO shows sulfite-dependent oxidizing activity

with ferricyanide as an artificial electron acceptor [12]. Recent

biochemical evidence has revealed that AtSO utilizes molecular

oxygen as a natural electron acceptor, ultimately resulting in the

formation of hydrogen peroxide [17,18]. Studies on the physio-

logical roles of plant SO have been lagging behind biochemical

studies. Most reports have been made in recent years. The SO

proteins from A. thaliana and N. benthamiana have been confirmed to

be involved in sulfite/sulfur dioxide detoxification in planta by

genetic approaches [19,20,21]. AtSO is localized in peroxisomes,

but it co-regulates the sulfate assimilation pathway with the

chloroplast-localized enzyme adenosine 59-phosphosulfate reduc-

tase (APR) [22,23].

In spite of the progress made in understanding molecular and

biological function of SO in model plants, the knowledge of

molecular and functional aspects of the SO proteins from higher

plants is still limited. Maize (Zea mays) is an important cereal crop

worldwide that is a staple food to many populations. Environ-

mental pollutants such as sulfur dioxide/sulfite and acid rain

adversely affect maize growth and development by inducing

occurrence of physiological diseases, thus they are becoming

serious problems in several maize-planting regions of Northern

China [24].Unfortunately, molecular mechanisms underlying

sulfite metabolism in plants are largely unknown, let alone in

crop plants. In our recent work, a putative sulfite oxidase gene

from maize (ZmSO) was cloned by RACE-PCR, and its response

to SO2 stress was characterized [25]. However, the biochemical

properties and physiological functions of the putative crop SO

during sulfite stress are still unclear. Here we characterized the
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putative maize SO homolog in transgenic tobacco to investigate

sulfite stress tolerance and possible detoxification mechanisms.

Results

Sulfite Oxidase Activity of ZmSO in vitro
In our recent study, the full-length cDNA of ZmSO (accession

number: FJ436404) was obtained by 59- and 39-RACE- PCR. The

putative ZmSO exhibits strong similarity to other plant orthologs.

Using ZmSO full length sequence as a query probe, an in silico

searching has revealed that ZmSO is located on chromosome 1 in

maize genome [25].To ascertain whether the isolated SO ortholog

from maize encodes a functional sulfite oxidase, a hexahistidine-

tagged ZmSO was expressed in bacterial cells and purified using

nickel chelate affinity chromatography (Fig. 1A; left panel). The

purified ZmSO proteins had a molecular mass of 45 kDa as shown

by Western blot experiments using monoclonal antibodies against

the hexahistidine-tag. This mass was in agreement with predic-

tions. (Fig. 1A; right panel).

In biochemical assays, the recombinant ZmSO protein

exhibited a sulfite-dependent activity when ferricyanide was used

as an electron acceptor. The Michaelis constant (Km) value for

sulfite in the ferricyanide assay was determined to be

21.460.32 mM (Fig. 1B). The maximum velocity (Vmax) value for

sulfite was determined to be 42.560.85 mM min21 by extrapo-

lation from Lineweaver-Burk plots (Fig. 1B). Similar kinetic

constants were obtained in several independent assays. For the

recombinant ZmSO protein, the optimal pH for enzyme activity

was found to be ,pH 8.0 (data not shown). These results

indicated that ZmSO has sulfite oxidase activity in vitro.

Construction of ZmSO Transgenic Tobacco Lines
To evaluate the in vivo physiological role of ZmSO, a CaMV 35 S

promoter-driven binary expression construct harboring ZmSO-His6
was developed and transformed into tobacco plants. To this end,

six homozygous transgenic lines over-expressing ZmSO were

developed, two of which (OE-3 and OE-7) were characterized in

more detail. The transcription level of ZmSO was relatively high in

OE-7 compared with that in OE-3 as was revealed by RT-PCR

analysis (Fig. 2A). Consistent with this difference, the protein level

of ZmSO was also relatively higher in OE-7 than in OE-3 when

detected by Western blotting using a His-tag monoclonal antibody

(Fig. 2B, arrowed). Compared with wild-type plants, total SO

activities in the leaf extracts of both OE-3 and OE-7 were

significantly elevated. In both OE lines, the SO activity was 1.5

and 2.5-fold higher than in wild-type plants, respectively

(Fig. 2C).These results further confirm that overexpression of

ZmSO results in increased SO activity in planta.

Responses of ZmSO Expressing Tobacco Plants to Sulfite
Stress
The result above indicates that the transgenic tobacco lines

(OE-3 and OE-7) have different amounts of SO protein and show

differential activities. It was therefore of interest to examine the

response of SO-modified tobacco plants to sulfite stress. Leaf discs

of wild-type and transgenic plants were treated with 5 and 10 mM

Na2SO3, respectively. After 16 h, the wild-type plants showed

significantly higher chlorosis and necrosis than the OE lines (OE-3

and OE-7) in both 5 and 10 mM Na2SO3 treatments. This was

clearly seen upon 10 mM Na2SO3 exposure (Fig. 3A). The results

demonstrate that overexpression of ZmSO in transgenic tobacco

plants significantly enhances tolerance to toxic sulfite.

To monitor in planta changes in the levels of ZmSO substrate

and product, sulfite and sulfate contents from treated and control

leaf discs were determined. In the wild-type plants, total sulfite

content in the leaf discs increased by 78% for 5 mM Na2SO3

exposure and 147% for 10 mM Na2SO3 exposure, respectively.

By contrast, sulfite levels in both OE lines only increased by 16

and 43% for 5 mM Na2SO3 exposure and 38 and 86% for

10 mM Na2SO3 exposure, respectively (Fig. 3B). For changes in

the sulfate concentration, increases of 31 and 47% for

5 mM Na2SO3 exposure and 54 and 78% for 10 mM Na2SO3

exposure were detected in both OE lines, respectively. By contrast,

the sulfate levels in wild-type plants resulted in increases of 15%

for 5 mM Na2SO3 exposure and 24% for 10 mM Na2SO3

exposure, respectively (Fig. 3C).These results clearly indicate that

OE lines with increased SO activity showed higher tolerance

during sulfite stress due to their enhanced capacity to detoxify

sulfite.

H2O2 Accumulation in ZmSO Transgenic Plants During
Sulfite Stress
The phytotoxicity from sulfite may be associated with pro-

duction of reactive oxygen species (ROS), which cause oxidative

damage to proteins, DNA, and lipids in plant cells [26].In

addition, the recombinant Arabidopsis SO protein expressed

bacterially has been identified as a novel producer of H2O2 in

biochemical assays [17]. This may be indicative of H2O2

Figure 1. Expression, purification and kinetic analysis of
recombinant maize sulfite oxidase. (A) Purification of histidine-
tagged maize SO. The histidine-tagged ZmSO (with a predicted
molecular mass of 45 kDa) was overexpressed in bacterial cells induced
by isopropyl-b-D-thiogalactopyranosid (lane 2, indicated by white
arrowhead). The overexpressed protein was purified using metal
chelate affinity chromatography (lane 3). The overexpressed and
purified SO proteins were confirmed by Western blot with an anti-
histidine monoclonal antibody (lane 4 and lane 5; signals marked by an
arrowhead). The molecular mass markers (kDa, lane 1) are shown on the
left. (B) Steady-state kinetics of recombinant ZmSO with sulfite. Double-
reciprocal presentation (Lineweaver-Burk plot) of enzyme rate was
conducted using varying concentrations of sulfite (2.5, 5, 10, 25, 50, 100,
200, and 400 mM) and constant 400 mM ferricyanide. The reaction was
initiated with 1.0 mg of purified recombinant ZmSO.
doi:10.1371/journal.pone.0037383.g001

Role of Maize Sulfite Oxidase in Sulfite Toxicity
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accumulation during SO-dependent sulfite detoxification in wild-

type and OE plants. Histochemical detection of H2O2 accumu-

lation was performed with 3, 39-diaminobenzidine (DAB) staining

in sulfite-treated and control leaf discs from wild-type and OE

plants. No significant differences in DAB staining intensity were

observed between wild-type and OE lines after 16 h of distilled

water-treated controls. When the discs were treated with sulfite,

a significant increase was observed in DAB staining intensity

(Fig. 4A). Surprisingly, the wild-type showed much higher DAB

staining intensity than the OE lines (Fig. 4A). Quantitative

determination of H2O2 accumulation further demonstrated that

the wild-type increased by 3.6-fold in DAB staining intensity,

while the OE lines only increased by less than 1-fold (90% for

OE-3 and 26% for OE-7; Fig. 4B). These results further

demonstrate that sulfite can induce ROS production, thus leads

to oxidative stress. However, H2O2 accumulation in ZmSO

transgenic lines is much less than in wild-type plants; indicating

that ZmSO OE lines may have more efficient H2O2 scavenging

than wild-type plants.

Changes in Catalase Activity and Cat gene Expression in
ZmSO OE Transgenic Plants During Sulfite Stress
The differential H2O2 accumulation in the wild-type and OE

lines may be caused by different catalase (CAT)-dependent H2O2

scavenging capability in peroxisomes. To check this hypothesis,

CAT activities were examined in intact leaves from wild-type and

OE lines during sulfite stress. After 16 h of 5 mM sulfite exposure,

the wild-type displayed a 65% reduction in CAT activity whereas

the two OE lines only showed reductions of 38% and 16% in CAT

activity, respectively (Fig. 5A). These results demonstrated that

CAT activities in the OE lines are reduced much less than in the

wild-type. This indicates that higher levels of SO may play a role

in protecting CAT from inhibition by excess sulfite. In return, high

residual CAT activity can scavenge H2O2 accumulation efficiently

in OE transgenic lines. As a result, high levels of SO and CAT

contribute to less leaf damage in the OE lines during sulfite stress.

To further look at the changes in CAT gene expression levels

during sulfite stress, transcripts of Cat1 (accession number:

U93244) and Cat2 (accession number: U07627) from tobacco

were monitored in the wild-type and OE leaves by qRT-PCR.

After 16 h, the abundance of Cat1 and Cat2 transcripts displayed

differential patterns between the wild-type and OE lines.

Compared with controls, the transcript levels of Cat1 were sharply

down-regulated in the wild-type, whereas they were partially

reduced in the OE lines. The wild-type showed an 80% reduction,

while the two OE lines exhibited 45 and 20% reductions,

respectively (Fig. 5B). By contrast, the transcription levels of Cat2

were slightly up-regulated in the OE-7 line (10% increase). The

OE-3 line showed small down-regulation of Cat2 (20% reduction),

but Cat2 was still significantly down-regulated in the wild-type

(50% reduction, Fig. 5C). The results further indicate that ZmSO

plays a positive role in CAT gene transcription changes induced by

toxic levels of sulfite.

Discussion

In this study, we investigated biochemical properties and

physiological roles of sulfite oxidase from maize using several

complementary approaches. Our genetic evidence has strongly

Figure 2. Expression levels and activity of ZmSO in SO-modified tobacco plants. (A) Transcription levels of the ZmSO-His6 in wild-type
tobacco plants and six homozygous over-expression (OE) lines (named OE-1, OE-3, OE-4, OE-7, OE-9, and OE-10). ZmSO transcripts detected by semi-
quantitative RT-PCR were present in the OE lines, but not in the wild-type plants. Moreover, the ZmSO transcript level was highest in OE-7 among the
six over-expression lines. (B) Western blot analysis of wild-type and OE lines (OE-3 and OE-7). Proteins (20 mg per lane) were fractionated by 12.5%
SDS-PAGE and immunobloted with histidine tag-specific antibody. The protein level of ZmSO-His6 was also relatively higher in OE-7 than that in OE-3.
(C) Total SO activity in leaf extracts from wild-type and OE lines measured by kinetic assays. The total SO activity was significantly higher in the leaf
extracts of OE-3 and OE-7 than in wild-type plants. Kinetics of SO activity was assayed using the ferricyanide reduction technique. The steady-state
kinetics of ferricyanide reduction was followed spectrophotometrically at 420 nm using 10 g of protein extract.
doi:10.1371/journal.pone.0037383.g002
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demonstrated that ZmSO is involved in sulfite detoxification and

its over-expression may play a positive role in protecting

peroxisomal CAT from inhibition by sulfite. To the best of our

knowledge, this is the first sulfite oxidase gene from monocot

plants to be functionally characterized.

ZmSO has High Affinity Towards Sulfite
As expected, the recombinant ZmSO protein exhibited a sulfite-

dependent SO activity when ferricyanide was employed as the

electron acceptor (Fig. 1). No activity was found with cytochrome c

as the electron acceptor (data not shown). Since the heme domain

is missing within the protein, this may indicate that the natural

electron acceptor in vivo is oxygen. This observation was also found

in the SO from the model plant Arabidopsis and the bacterial

D. radiodurans due to the absence of heme binding domains in the

proteins [12,27]. The Km for sulfite in the ferricyanide assay was

determined to be 21.4 mM, which is much lower than the Km
values for Arabidopsis (33.8 mM) [12], rat (33.0 mM) [14], or

Nicotiana tabacum SO (51.4 mM), but in the same range of the values

for human [28] and chicken [13] SO (17 and 19.1 mM,

respectively). This suggests that ZmSO has higher affinity towards

sulfite than Arabidopsis and tobacco SO proteins, whereas slightly

lower affinity than those of human and chicken. The crystal

structure of Arabidopsis SO has revealed that Arg374 is an

important conserved residue for sulfite-binding [16]. Further

studies will be interesting to identify the active site responsible for

substrate binding and catalytic activity in the monocot ZmSO by

site-directed mutagenesis.

Figure 3. Responses of wild-type and ZmSO over-expression tobacco plants to toxic levels of sulfite. (A) Toxic effect of Na2SO3 (5 and
10 mM) on leaf discs from 8-week old wild-type and OE lines. After 16 h treatment, Leaf discs of wild-type plants showed higher chlorosis and
damage than OE lines (OE-3 and OE-7). (B) Sulfite concentration in Na2SO3 treated leaves from wild-type and OE plants. (C) Sulfate concentration in
Na2SO3 treated leaves from wild-type and OE plants. In both (B) and (C), leaf discs were separately sampled and washed three times with distilled
water after exposure of the plants to 0, 5 and 10 mM Na2SO3 for 16 h. The leaves were then used for sulfite and sulfate contents analysis. Data are the
means of three replicates (6SE). Means denoted by the same letter did not significantly differ at P,0.05. The data are from one of three different
experiments that yielded essentially identical results.
doi:10.1371/journal.pone.0037383.g003
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SO Protects Plants Against Sulfite Toxicity Predominantly
via Sulfite Oxidation
Under normal conditions, the OE transgenic lines displayed no

obvious phenotypic differences in appearance, flowering, and seed

production compared with the wild-type plants when grown in soil

(data not shown). When exposed to high concentrations of sulfite

(5 and 10 mM Na2SO3), leaf discs of OE plants displayed less

damage than wild-type plants (Fig. 3A). Sulfite and sulfate content

determination revealed that smaller increases in the total sulfite

and greater increases in sulfate were observed in both OE lines

compared to wild-type plants regardless of 5 or 10 mM sulfite

exposure (Fig. 3B,C). In other words, greater amounts of sulfite

were transformed to nontoxic sulfate in the OE lines due to the

increased SO activity levels. This is in good agreement with

previous results from transgenic Arabidopsis with SO over-

expression under SO2/sulfite exposure [19,20].

In addition to the SO-dependent sulfite oxidation pathway in

peroxisomes, a sulfite reduction pathway in chloroplasts can not

be neglected. A recent study in Arabidopsis has showed that

transcript and activity levels of sulfite reductase (SiR), a chloro-

plast-localized enzyme, which can convert sulfites into sulfides,

were induced by sulfite, but its regulation was connected to SO

activity levels during SO2/sulfite exposure [19]. This reinforces

the view that SO-dependent sulfite oxidation is still the

predominant pathway during sulfite detoxification in plants.

Further work is needed to dissect the SO-dependent sulfite

detoxification network using microarray analysis in SO-modified

plants.

SO may Play a Positive Role in Protecting CAT from
Inhibition by Excess Sulfite
The recombinant Arabidopsis SO has been identified to be a novel

producer of H2O2 as observed by in vitro biochemical assays [17].

Consistent with this phenomenon, H2O2 accumulation between

wild-type and OE lines was observed during sulfite stress by

histochemical staining and quantitative determination (Fig. 4A, B).

Theoretically, greater amounts of H2O2 should be produced in the

OE lines than in the wild-type during sulfite detoxification, but

much less H2O2 accumulation was observed in the OE lines

(Fig. 4). CAT is essential for the removal of H2O2 produced in the

peroxisomes [29]. The activity levels of CAT in both wild-type and

OE lines were down-regulated by sulfite stress, but much less

reductions of CAT levels were detected in the OE lines than in the

wild-type plants (Fig. 5). Therefore, less H2O2 accumulation in the

OE lines may attribute to more residual CAT-dependent H2O2

scavenging during sulfite stress.

Hansch et al (2007) proposed that SO could play a role in

protecting catalase from sulfite damage [30]. However, no direct

genetic evidence was available to support this view. In this study,

we provided genetic evidence that SO plays a positive role in

protecting CAT from inhibition by excess sulfite using the SO-

OE tobacco plants. Further genetic work is needed to validate

the interaction between SO and CAT at the molecular level

using suitable SO-knockout lines during sulfite stress in planta.

In summary, these data clearly demonstrate that the monocot

ZmSO can detoxify excess sulfite through sulfite oxidation and

protect peroxisomal CAT from inhibition during sulfite de-

Figure 4. H2O2 accumulation in leaf discs of wild-type and ZmSO over-expressing plants in response to sulfite exposure. (A) H2O2

production in leaf discs of wild-type and OE plants treated with 5 mM Na2SO3 was visualized by staining with 3, 39-diaminobenzidine (DAB). The leaf
discs were treated for 16 h, and were subsequently stained with DAB as described in the experimental procedures. (B) Relative total H2O2 production
was quantified in leaf discs from two independent experiments. Error bars indicate SE (n = 10). The lower case letters (a, b, c, d) indicate P,0.05 for
the differences within treatment between ecotypes.
doi:10.1371/journal.pone.0037383.g004
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toxification in plants.This study will facilitate our understanding of

the biological roles of SO in higher plants and accelerate genetic

improvement of crop plants that have tolerance to environmental

pollutants (SO2 and acid rain, etc).

Materials and Methods

Plant Materials and Growth Conditions
Tobacco plants (Nicotiana tabacum cv. Xanthi) were grown as

aseptic shoot cultures on 1/2 MS medium for gene transforma-

tion, and transgenic plants were grown in a growth room at

Figure 5. Effects of sulfite on catalase activity and gene expression in wild-type and ZmSO over-expression tobacco plants. (A) Effect
of sulfite on total catalase (CAT) activity in wild-type and OE lines (OE-3 and OE-7). Leaf samples from wild-type and OE plants were harvested after
16 h of 5 mM Na2SO3 treatment and total CAT activities were analyzed. Values are means 6 SE (n = 6). Means denoted by the same letter did not
significantly differ at P,0.05. (B) Effect of sulfite on transcription levels of Cat1 in wild-type and OE lines (OE-3 and OE-7). (C) Effect of sulfite on
transcription levels of Cat2 in wild-type and OE lines (OE-3 and OE-7). In both assays, leaf samples from wild-type and OE plants were harvested after
16 h of 5 mM Na2SO3 treatment and transcriptional expression of Cat1 and Cat2 was detected by qRT-PCR.
doi:10.1371/journal.pone.0037383.g005
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approximately 26uC, a photoperiod of 16 h/8 h (day/night) and

light intensity of 200 mmol m22 s21.

Expression, Purification and Kinetic Analysis of
Recombinant ZmSO
The ZmSO cDNA was amplified as a KpnI/XhoI (underlined)

fragment by PCR using primers SO-F1:59-AGAGGTAC-

CATGCCCGGGCTCACGGC-39 and SO-R1:59-ACA

CTCGAGTCACAGCTTAGATCTTTC-39. The fragment was

cloned into the vector pET-30a (Novagen, USA), resulting in the

bacterial expression construct pET-ZmSO. The expression

construct was transformed into E. coli BL21 (DE3) pLysS cells

and would produce a recombinant ZmSO containing a 66histidine

tag at its N-terminus. The cells harboring pET-ZmSO were

induced with 0.1 mM isopropylthio-b-galactoside (IPTG). The

over-expressed ZmSO was purified using nickel chelate affinity

purification kit according to the supplier’s instructions (Sangon

Co., Shanghai, China). The resulting peak elution fractions were

characterized by 12.5% SDS-PAGE and Western blotting using

the anti-histidine monoclonal antibody (Bio Basic Inc, Canada).

The protein concentration was determined as described by

Bradford [31]. Kinetic measurements of SO activity were

determined as mentioned above using a saturating concentration

of ferricyanide (400 mM) and various concentrations of sulfite

between 2.5 and 400 mM [12]. The Km and Vmax values were

estimated from the Lineweaver-Burk plots by plotting reaction

rates versus increasing concentrations of substrate. The assays

were each repeated at least three times, and the kinetic constants

were all determined using the data of three independent assays.

Construction of Plant Expression Vectors and
Development of Transgenic Tobacco Lines
The full-length ZmSO cDNA was amplified and introduced into

the pART7 plasmid using primers SO-F2:59-AGAGAATT-

CATGCCCGGGCTCACGGCAC-39 containing EcoRI restric-

tion site (underlined) and SO-R2:59-ACAGGATCCT-

CAGTGGTGGTGG TGGTGGTGCAGCTTAGATCTTT-

CAAC containing BamHI restriction site (underlined). The

reverse primer used for this amplification contained the coding

sequence for the 66histidine peptide tag. This gave rise to the

fusion gene ZmSO-His6, which was subsequently inserted down-

stream of the 35 S promoter in the plasmid vector pART7. The

resulting expression cassette containing the 35 S promoter and

ZmSO-His6 was cut and inserted into the binary vector pART27

[32], producing the transformation construct pART27-35S::

ZmSO-His6. The binary construct was then introduced into

Agrobacterium tumefaciens strain LBA4404 for tobacco transforma-

tion.

Leaf discs of N. tabacum cv Xanthi were used for gene

transformation via A. tumefaciens. The regenerated explants were

cultivated and transplanted to fresh MS medium with correspond-

ing antibiotic resistance every 2 weeks. Excised shoots were then

transferred to the hormone-free MS medium supplemented with

50 mg l21 kanamycin for root induction [33]. These kanamycin-

resistant plantlets were confirmed by PCR with primers SO-F3:59-

TGCCCGGGCTCACGGCAC-39 and SO-R3:59-

CAGTGGTGGTGGTGGTGGTGC-39 (the reverse primer

SO-R3 only contains coding sequence of the 66histidine peptide

tag) for ZmSO transgenic tobacco. The PCR-positive plantlets were

transplanted into soil for growing in the growth room. The

transgenic tobacco progenies were selected using 1/2 MS plate

containing 50 mg l21 kanamycin and maintained growth to set

seeds in soil until T2 generation. Six independent homozygous

ZmSO over-expression (OE) transgenic lines (named OE-1, OE-3,

OE-4, OE-7, OE-9, and OE-10) were developed. The expression

of the transgene in the six lines was evaluated by semi-quantitative

RT-PCR with SO-F3 and SO-R3.The cDNA contents of different

reverse transcription reactions were normalized by amplifying

Actin transcripts using a pair of primers Actin-F: 59-

GGCAGCTCGTAGC TCTTCTC-39 and Actin-R: 59-AA-

CAGGGAGAAGATGACCC A-39, which produces an 874-bp

product. Based on the results of the semi-quantitative RT-PCR

experiments, two representative OE lines (OE-3 and OE-7) were

selected for further use. The expression levels of ZmSO protein in

the two lines were investigated using Western blot analysis with the

anti-histidine monoclonal antibody.

Treatment of Sulfite for Tobacco Leaf Discs
The fifth fully expanded leaves from 8-week-old wild-type and

transgenic plants were used for sulfite stress assay. Leaf discs

(15 mm W) were placed in Petri dishes (150 mm W) on a filter

paper moistened with either 5 mM or 10 mM Na2SO3 solution

(3 ml) for the specified times under constant illumination

(200 mmol m22 s21), and then were photographed and rinsed

with de-ionized water for sulfite and sulfate content determination

and enzyme activity analyses.

Histochemical Detection and Quantitative Determination
of H2O2 Production
The histochemical detection of H2O2 from sulfite-treated leaf

discs with 3, 39- diaminobenzidine (DAB) was performed

according to the method of Rea et al. [34]. After staining, the

leaf discs were rinsed in 80% (v/v) ethanol for 10 min at 70uC,
mounted in lactic acid:phenol:water (1:1:1, v/v/v), and photo-

graphed directly using a SONY digital camera (SONY DSC-

F828). H2O2 content was assayed according to the method of

Ferguson et al. [35].

Catalase Activity and gene Expression
Frozen leaf samples (0.5 g) were crushed into powder in liquid

N2. Crude proteins were extracted and used for the determination

of catalase (CAT) activity [36]. CAT gene expression in sulfite-

treated tobacco plants was conducted by quantitative real-time

PCR (qRT-PCR). Gene sequences from tobacco were obtained as

described by Pasqualini et al. [37]. Gene-specific primers for

tobacco are: NtActin Act-F: 59-GTGCTGAGCG

TTTCCGTTGT-39 and Act-R: 59-CTGCAGCTTCCA

TTCCA ATCA-39; NtCat1 Cat1-F: 59-ACAAGTACCGTCCGT-

CAAGTGC-39 and Cat1-R: 59-TCAATGTGAATGTGTGG

ACACC-39; NtCat2 Cat2-F: 59-TGTGGTGTCAAGTG-

CATGTCG-39 and Cat2-R: 59-TGG GTACTGTTCAGCAT-

GACG-39. Criteria for designing primers were a primer size

between 20 and 25, an optimal Tm at 60 uC, and a product size

ranging from 180 bp to 250 bp. Amplification of Actin (accession

numbers: AF15640) was used as internal control for tobacco and

qRT-PCR assays were performed on an IQ5 light cycler (Bio-Rad)

using SYBR Premix ExTaq II (Takara, Japan) with gene-specific

primers above. For the entire qRT-PCR assay, three technical

replicates were performed for each experiment and the expression

of each gene was investigated in three biological replicates.

Western Blot Analysis
Twenty micrograms of protein were electrophoretically sepa-

rated on 12.5% SDS-PAGE and transferred onto a nitrocellulose

membrane. The membranes were blocked and thereafter blotted

with a commercial His-tag monoclonal antibody for 3 h at
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a 1:2000 dilution. After extensive washing, the bound primary

antibody was detected with a horseradish peroxidase-conjugated

goat anti-mouse IgG secondary antibody using the 3, 39-

diaminobenzidine (DAB) development kit according to the

manufacturer’s protocol (Bio Basic Inc, Canada).

Biochemical Assays of SO Activity
SO activity was determined by the reduction of ferricyanide at

420 nm in a reaction mixture containing 10 mg soluble protein,

0.395 mM ferricyanide, and 0.4 mM sodium sulfite in 2 ml of

20 mM Tris-HCl buffer (pH 8.0). The reaction mixture without

sodium sulfite served as a control, and one unit of SO activity was

defined as the conversion of 1 mmol sulfite into sulfate min21

[12,21].

Determination of Sulfite and Sulfate Contents
Sulfite and sulfate contents from sulfite-treated leaf discs were

measured using an ion exchange chromatography system as

described previously [17,21]. For each experiment, three replicates

were conducted for each test sample and the experiment was

repeated three times.
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