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ABSTRACr
The structure of two alternatively spliced regions. ED-A and ED-B, of human

fibronectin gene, was determined, in order to show vhether any similarity was
present between the two. Although some interesting features are present in each, no
obvious common structure or sequence homology was found. Functional analysis of
the alternative splicing events was carried out by transient expression in Hela cells.
A hybrid gene was constructed by inserting the ED-B region into the third exon of
the human sl-globin gene. The transfected hybrid gene is expressed and produces,
in Hela cells, two alternatively spliced RNAs, shoving a pattern very similar to that
observed for the endogenous fibronectin gene in fibroblasb. Cotransfection of this
gene with a similar gene containing the ED-A region, shows that no interference is
present between the two alternative splicing processes.

INIRODUCrION
Fibronectin is a high molecular weight glycoprotein present in the

extracellular matrix, as well as in plasma and in other body fluids. It is a dimer
composed of two identical or slightly different molecules, linked by disulfide bridges
(for reviews see 1, 2). Fibronectin monomers have a molecular weight ranging
between 250 and 280 KDaltons and show a remarkable heterogeneity in the amino
acid sequence. Functionally it is possible to distinguish two major types of
fibronectin molecules: cellular fibronectin, which is insoluble and is present in the
extracellular matrix, and is mainly involved in connecting the cell membrane to the
basal lamina, and plasma fibronectin, which is found in soluble form in plasma and
in other body fluids.

All the various fibronectin monomers, despite the sequence variations. derive
from a single gene either by alternative splicing of a common precursor or from
posttranslational modifications of the protein (1, 2). Three sites of alternative
processing have been described up to now both in human and rat: the ED region (3,
4), now called ED-A, the IIICS region (5), and, more recently, the ED-B region
originally described by Hynes et al. (6) and by our group in man (7). The IIICS
region shows a complex splicing pattern, giving rise to five different mRNAs. The ED-
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A and the ED-B regions, showing two possible splicing patterns each, contribute
additional variability, leading to a theoretical number of 20 different messenger

RNAs out of a single precursor. Many of the possible combinations have already been
shown'ivo. The alternatively spliced R.NAs are not equally represented in all the

adult cells, but show different tissue specific distribution (8, 6). and some further
variations have been observed in tumour cells (7) and in foetal tissues(l).

ED-A and ED-B regions, unlike the IIICS one, show a remarkable similarity. In
both cases the alternative splicing causes the insertion of an additional peptide 91
amino acids long in the middle of the protein, without introducing frameshifts. These
extra domains are inserted in a repetitive region consisting of 11 homologous
domains, called type III homologies, and the inserted peptides are type III homologies
themselves. The gene organization is also very similar, and the alternative splicing
involves eion skipping in both cases. ED-A and ED-B exons are both absent in liver
fibronectin mRNA, and both are present in fibroblasts and in cells from several
other tissues, although at very different levels.

Because of the striking similarities between the two systems, it is possible that

similar signal sequences are responsible for the specific splicing patterns in both

regions. Moreover, since tissue specific mRNAs are produced, even starting from a

common precursor, they may derive from the interaction between the precursor

mRNA and cell type specific trans-acting factors; it is possible that one or more

factors are common to both systems. On the other hand, although the tissue specific
splicing patterns of ED-A and ED-B are similar, still there are important differences
and it is possible that the two alternative splicing events are unrelated, each of them
occurring independently of the other.

In this paper we report the gene structure of the ED-A and the ED-B region of
human fibronectin and we show that, although some interesting characteristics are

present in each region, they are not common to both. We also describe the
expression of the ED-B region in transfected Hela cell and show that the information
contained in the sequence is able to accuraly reproduce the same splicing patterns

as occurring in -ivo in fibroblasts. Furthermore we show that no interference is

present between the two systems when ED-A and ED-B genes are transfected together

in Hela cells.

Chemicals were from Sigma, Analar and BDH. Restriction enzymes and other

DNA modifying enzymes were from Amersham or Biolabs and were used according to

the maufacturers instructions. All common DNA manipulations were according to

established techniques (9).
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Se.uenif the ED-A and ED-B regioAof the hu fibronectin gene.
M13 recombinant subclone MA10 (7), containing the ED-B region of human

fibronectin gene, vas completely sequenced. The sequence of the ED-A region was
determined from two subclones, constructed by inserting into M13mpl9 the PstI and
the BstEII fragment from the human fibronectin gene, respectively containing the
two introns flanking the ED-A exon, complete with the relative splice junctions. A
nestd set of partial deletions was produced by unidirectional digestion with Ezo III,
followed by S1 treatment and religation (10). A few subclones were also produced by
using convenient restriction sites. The sequence of the subclones so produced was
then determined by the method of Sanger (11). The sequence was almost completely
determined on both strands. Some restriction fragments were also sequenced
according to Maxam and Gilbert (12).
Subcon and transient expressi ills.

Clone Bra 7 was constructed by inserting the ED-B and part of the
neighbouring exons, together with the relative introns, in the third exon of the
human sl-globin gene. The ED-B region was excised from clone MA10 as a 2.8 kb Sac
1-Bam HI fragment and cloned in pSV-ED-alW (13), in the BstEII site. All the ends
were made blunt by treatment with the KIenow fragment of DNA polymerase I. Bra 11
is the same pSV-ED-alfalW carrying the M13 polylinker in the BstEII site. FNED (14) is

0 500

KpnI a
Banil Hind Hind / EcoRI EcoRV Pvull Banil
, Pvull Pvull Stul Stul IIiIII

MA 10

b
Hincli

Psti Stul EcoRY BnEII
PstIll EcoRV Pstl

TCH 1
TCH 2

Figure 1. Genomic organization of (a)ED-B and (b)ED-A regions of the human
fibronectin gene. The M13mpl8 subclones used for the sequencing are indicated by
the thin lines.
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Figure 2. Nucleotide sequence of the ED-B and ED-A regions of the human
fibronectin gene. The GT and AG nucleotides at the junctions are underlined. In the
ED-A sequence the two converging arrows indicate a 16 nucleotide palindromic
sequence; two Alu-type repetitive sequences are also underlined.

a similar construct containing the huma ED-A region cloned in tho samo sito of the
sI-globin gone. pB5'SV (15). an expression vector containing the human beta globin
gene. was usually cotransfected with the other clones.

Double stranded plasmid DNA was introduced into Hela cells by calcium
phosphate coprocipitation as previously described (16). The cells were harvested
after two days and the RNA was extracted from the transfected cells. Northern blots
were then hybridised to probes specific for s-globin RNA, fibronectin RNA and ED-B
exon, radioactively labeled by nick-translation (17). or by primer extension on
single strand M13 recombinant DNA followed by digestion to recover the insert.
Clones M13 FN and M13 ED are M13 subclonOs produced during the sequencing of the
ED-B region and cover from the left end to the Stu I site and between positions 1399-
1683 (see fig. I and 2).
Anayis of the selic gatterns by oligonucleotide orobes

The accuracy of the splicing was verified by hybridizing the RNA produced in
transfected cells to a set of oligonucleotides complementary to the cDNA expected on

the basis of the sequence of the ends of the ED-B and the flanking exons in the
genomic clone. The oligonucleotides were designed as I8mers covering nine
nucleotides on each side of the splice junction; oligonucleotides n. 1 and 3
respectively reveal the removal of the two introns upstream and downstream from
the ED-B exon; oligo n. 2 corresponds to the removal of both introns together and so

only hybridize to RNA lacking the ED-B exon. The oligonucleotides were labeled with
gamma-ATP in presence of T4-polinucleotide kinase and hybridized to northern
blots. Washing at room temperature gave no hybridization either to unspliced or to

otherwise spliced RNAs. More stringent wash at 50 C (5 below Tm) removed every
additional background.

RESULTS
Seguence of ED-B reg

The map of recombinant clone MAIO. containing the ED-B region of
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fibronectin gene, is shown in fig. la. It contains the coding sequence corresponding
to nucleotides 3610-3780 of fibronectin mRNA and the ED-B exon. together with the
corresponding introns.

The DNA sequence of the area vas determined and is shown in fig, 2, in which
also the protein sequence derived from the translation of the exon is reported. The
central exon is alternatively spliced(7) and codes for a 91 amino acid peptide. The
insertion of this additional exon in the fibronectin mRNA does not cause frameshifts
after the junction and only results in a 91 amino acid longer protein, with no other
variations downstream. The amino acid sequence codes for a typical type III domain.
The four intron-exon junctions involved in the alternative splicing of the ED-B exon
are all contained in the sequenced region. Their sequence is eentilly within the
limits of the usual consensus sequences, all of them obeying the GT-AG rule. A few
unusual features are present in the 5' splice junction in front of the ED, where the
typical CAG is substituted by a less common TAG and an unusually long
polypyrimidine tract was found, in which no adenine is present between position -43
and -12 of the junction.As a consequence no consensus for branch sites was found in
this area.
Sequence of the ED-A region

The sequence of the ED-A region was completely determined and is shown in
fig. 2. The genomic organization (16) is essentially the same as for ED-B, with the
extra type III homology coded by a single exon. Two introns of similar length
separate the ED-A exon from the neighbouring ones; each of them includes an Alu-
type repeat, underlined in the figure. The intron-exon junctions are in agreement
with the consensus sequences for eucariotic junctions. A palindromic sequence is
present in the right intron, between position 1634 and 1649 (underlined in fig. 2).
Two regions of internal homology are present in the ED-A exon. The first is shown in
fig. 3a. and consists of two direct repeats between nucleotides 1364 and 1413 in the ED
exon and of nucleotides 2982 and 3032, that is across the 3' junction of the
downstream intron. This same junction is also strongly homologous to the
corresponding ED-A junction, as shown in fig. 3b. Here 14 nucleotides out of 13 are
identical and the neighbouring area is also conserved. The two areas of homology
can be combined through the formation of stem-loop sructures. One of the possible
conformations is shown in fig 3c. The formation of this or analog stems could
connect the two regions of homology, thus creating an RNA sequence very similar to
that of the downstream junction.
Exaression of ED-B rei in Hela

We cloned the genomic fragment containing the ED-B region in the expresion
vector pSV-alW (13) (fig. 4), thus constructing a hybrid gene in which the
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Eiiwure 3. Analysis of the sequences of the ED-B and the ED-A regions of the human
fibronectin gene. Upper and lower case characters respectively represent exon and
intron sequences. (a) Two areas of the ED-A region, showing a high degree of
homology, are compared. The dashes represent insertions introduced to maximiz the
homology. (b) The splice junction of the four introns are aligned and compared
between them and to the consensus splice sequences for eucariotic genes. The area
limited by the two arrovs is where all the mapped branch sites are located. The
posible branch sites are underlined. (c) A sem-loop secondary structure that could
connect two areas of sequence homology. Both perfect bas pairs(-) and GU pairs ()
are indicated. The dots represnt the homology between the two areas after the
formation of the stem. Additional complementary bases, not represented as secondary
structure, are underlined.
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FigufA 4. Schematic representation of the Bra7 clone, containing the fibronectin
ED-B region (open boxes) inserted into the human al-globin gene (closed boxes).
Hatched boxes indicate non coding sequences of the a-globin gene.

fibronectin gone fragment is cloned in the third exon of the human al-globin gone
(Bra 7). This clone was introduced in Hola cells, by calcium phosphat
coprecipitation. Transient expresion of the clone gave rise to two different RNAs.
which have been characterized by hybridization to M13 derived probes. specific for
the fibronectin exon upstream from the ED-B and for the ED-B itself (M13 ED), as

shown in fig. 5a and b. Both bands hybridize to the M13 FN probe, but only the upper

one hybridizs to the ED-specific probe. Hybridization to the s-globin cDNA probe
gives the same pattern as with the M13 FN probe. The accuracy of the splicing
patterns was checked by hybridizing the northern to oligonuclootides 2 and 3,
complementary to the RNA sequence produced by the splicing of the intron
downstream from the ED-B. or the two introns flaning the ED-B. As shown in figS.
oligonucleotide 2 only hybridizes to the lower band, whereas the oligo n. 3 only
hybridizes to the upper one. Another oligonuclootide, specific for the removal of the
intron upstream from the ED-B, gives the same pattern as the oligonucleotide 3. Sl
analysis was alo partially carried out and is in agreement with the splicing patterns

indicated (data not shown). The splicing patterns of the RNAs produced in the

transfection experiment are so equivalent to the corresponding fibronectin mRNAs.
Moreover, the relative amounts of the two RNAs are very similar to that found in
fibroblasts. In fact the two forms are not equally represented, but the ED- is by far
the predominant one, the ED+ form representing about 5% of the RNA produced.
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Figure 5. Northern blots of total RNA prepared from transfected Hela cells were
hybridized to M13 probes covering the ED-B region. The arrows indicate the position
of 28S and 18S RNAs. Clone M13 FN maps from the left end to the Stu I site and clone
M13 EDbetween positions 1399-1683 (see fig 1 and 2). Alternatively oligonucleotides
specific for the ED- RNA (2) and ED. RNA (3) were used. Hela cells were transfected
with clone Bra 7 (ED-B/u-globin hybrid), clone Br 11 (a control clone in which only
the mplg polylinker was inserted in the same site of&-globin gene; this hybridizes to
the Ml3FN probe which also contains the polylnker sequence). Lanes marked FNED
in panels d and e derive from the cotransfection of both Bra7 (ED-B) and FNED(ED-A)
clones.

In order to explore whether there are any common factors between the ED-A
and the ED-B systems, that can become limiting in excess of RNA substrate we
transfected at the same time the ED-B clone and a similar one (FNED) containing the
ED-A region (14). The RNA from the transfected cells was hybridized to probes
specific of the ED-B region, as shown in fig. 5d-e. The presence of the ED-A precursor
RNA induces no variations in the expression patterns of ED-B, thus showing that no
interference between the two proceses is appreciable in our sstem. ED-A
expresion patterns are also identical to the previously obtained ones with the ED-A
containing clone (data not shown).

DISCUSSION
Alternative splicing of the precursor RNA, originally thought to be limited to a

few genes, was subsequently demonstrated in a large number of genes and is now
considered a widespread system of producing polipeptide variants from a single gene.
In some cans alternaive splicing happens in the non coding region of mRNAs, and
the possible biological significance of the process is not clearly understood. In other
cases, like calcitonin (18), immunoglobulin (19) and others, it results in the
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production of functionally different proteins produced by different tissues. or by the

same tissue in different stages. Alternative splicing of the fibronectin gene

transcript produces many possible protein variants and there is evidence that at least
the two ED eions show tissue specific expression (8. 6). Moreover monoclonal

antibodies directed against the ED-A domain react with cellular, but not with plasma
fibronectin (20, 21), thus indicating that at least the ED-A region is specific to

cellular fibronectin. The expression of ED-B exon varies in transformed fibroblasts,
where the ratio of ED-B+/ED-B- RNA is higher than in the non transformed

counterparts (7).

ED-A and ED-B alternative splicing show striking similarities. Both the extra

domains are expresed in fibroblasts, but there is no evidence of their presence in

the liver, the main source of plasma fibronectin. In both cases alternative splicing
results in the skipping of an exon coding for a type III homology. It is worth noting
that the skipped type III homologies, unlike most of the others which are coded by
two exons, are coded by a single exon. A third type III homology is encoded as a

single exon in rat, but no alternative splicing has been observed in that area (6).
A construct containing the ED-A area of fibronectin gene fused to the a-globin

gene, when transfected in Hela cells undergoes alternative splicing and generaes
two procesed RNAs in equal amounts (16). A similar experimentwas carried out with

an analogous construct made with the corresponding ED-B area. The transfection of

this hybrid gene (fig. 5a) also gives rise to two mRNAs, but the relative amounts ae

very different, with a ratio of about 1:20 between ED-B and ED-B- forms. The ratio
between the two RNAs produced in this experiment resembles the situation found ia

in fibroblasts, where the endogenous fibronectin gene produces a Very similar
splicing pattern. The accuracy of the splicing was checked by hybridization to

oligonucleotides covering the cDNA junctions, and found to be correct in both RNAs
(fig. 5c). Since the ED-A alternative splicing in Helawas also similar to the fibroblast
pattern, transfected Hela cells should be considered a good model system for studying
fibronectin alternaive splicing. In both the ED-A and ED-B cases all the information
to produce accurate alternative splicing is contained in a gene fragment of about 3

Kb, out of more than 70 Kb; this excludes the importance of long range interactions

in the pre-mRNA in influencing alternative splicing. Moreover, there is no

connection with fibronectin gene transcription initiation and/or termination

processes. How this information is coded in the sequence is yet unknown. It is

suggestive that both ED-A and ED-B. unlike the other type III homologies, are encoded

by a single exon, but this may not be related to the alternative splicing mechanism

since a third type III homology in rat, coded by a single exon does not seem to be

alternatively spliced (6).
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Sequence analysis of the two regions showed some unusual features in each of
them. The 3' splice junction upstream from the ED-B has an unusually long
polypyrimidine strech, between positions -67 and -11 of the junction, in which only
one adenosine is found in position -44. As a consequence in the area between -15 and
-37, in which all the mapped branch sites are found in other genes (23), there is no
adenosine, and it is difficult to find a typical branch site, even allowing for
mismacthes with the already highly degenerated consensus. However this junction
is used in vivo. at least in some cases, so a functional branch site must be presnt,
either in a different position, or in the usual position, but using a different
nucleotide for the formation of the lariat structure. It is known that atypical branch
sites can work (24) and that also other nucleotides can substitute for the adenosine in
artificial genes (22), but in general this leads to a lower splicing activity.

The most interesting structural feature in the ED-A area is a direct repeat
involving the ED-A exon and the downstream 3' splice junction, reported in fig. 4. A
relatively large region (80 bp), may be aligned only by allowing for a few insrtions.
An even larger region of homolog can be produced by the formation of the stem-
loop wcondary structure showed in fig. 3c. This structure could be related to the
evolution of the gene or to other functions, but it is noteworthy that recently Mardon
et al. (14) reported that a deletion in this same area (nuc. 1343-1430). induced an
alteration of the splicing patern, resulting in the ED-A exon being always treated as
an intron, instead of being present in about half of the procoesd RNAs, as expected.
Moreover the reinsertion of this fragment in the opposite orientation did not restore
the activity (14). thus showing that the effect is sequence specific. Both the deletion
and the inversion of this fragment result in the loss of the structure shown in fig. 3c.

The sequences of the ED-A and ED-B regions were compared to establish
whether any analogy existed between them. No extensive sequence homology or
other structural similarity was found, apart from the general intron-exon
organiation. Also the features previously discused are specific to each sequence
and are not present in the correspondent areas of the other, so if equivalent signal
sequences exist, they must be functionally, but not structurally equivalent.

Since the alternative splicing patterns are tissue specific, they may derive
from the interaction between the precursor RNA and cell specific factors. The
similarities between ED-A and ED-B suggest that one or more cellular factors
involved in the control of the splicing process may be in common to both. Clone Bra 7
was transfected in Hela cells, together with BNED (14). a similar clone containig the
ED-A region inserted in the a-globin gone, to test whether the presence of the ED-A
construct could affect the alternative splicing of the ED-B region. The transfected
hybrid gone was transcribed and spliced exactly in the same way both in presence
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and in absence of the ED-A construct, thus indicating that no important limiting
factor necessary to the alternative splicing is shared by the two systems (see fig. 5d-
e). Also the ratio between the two ED-A forms was not affected by the cotransfection
(data not shown).

The results of both the sequence data analysis and the transfection
experiments thus show that, although the ED-A and the ED-B regions are very similar
in gene organization, no further analogy is apparent between the two systems. In
particular. although the tissue specific distribution of the splicing patterns is
similar, it is unlikely that the alternative splicing depends on common factors, unless
these are present in such high concentration that their availability is not limited,
even in presence of the high amounts of specific RNA produced in transient
expression experiments.
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