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Abstract

Background: Quantitative polymerase chain reactions (qPCR) are used to monitor relative changes in very small amounts of
DNA. One drawback to qPCR is reproducibility: measuring the same sample multiple times can yield data that is so noisy
that important differences can be dismissed. Numerous analytical methods have been employed that can extract the
relative template abundance between samples. However, each method is sensitive to baseline assignment and to the
unique shape profiles of individual reactions, which gives rise to increased variance stemming from the analytical procedure
itself.

Principal Findings: We developed a simple mathematical model that accurately describes the entire PCR reaction profile
using only two reaction variables that depict the maximum capacity of the reaction and feedback inhibition. This model
allows quantification that is more accurate than existing methods and takes advantage of the brighter fluorescence signals
from later cycles. Because the model describes the entire reaction, the influences of baseline adjustment errors, reaction
efficiencies, template abundance, and signal loss per cycle could be formalized. We determined that the common cycle-
threshold method of data analysis introduces unnecessary variance because of inappropriate baseline adjustments, a
dynamic reaction efficiency, and also a reliance on data with a low signal-to-noise ratio.

Significance: Using our model, fits to raw data can be used to determine template abundance with high precision, even
when the data contains baseline and signal loss defects. This improvement reduces the time and cost associated with qPCR
and should be applicable in a variety of academic, clinical, and biotechnological settings.
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Introduction

Since its inception, the polymerase chain reaction has markedly

advanced molecular biology, perhaps more than any other single

technique [1–3]. One common application of PCR is to amplify

specific DNA targets of interest from complex mixtures so that a

determination of the initial abundance can be made. Quantitative

PCR is implemented by monitoring the increase in dsDNA

product as a function of the number of thermal cycles and has

evolved into a large industry that focuses on monitoring and

analyzing product accumulation in real-time, usually with an

increase in a fluorescent signal [4]. Commonly employed

quantification methods include either fitting sigmoidal functions

to the raw data or fitting linear functions to log-transformed data.

The latter is considered more accurate because it displays less

variance and gives reproducible estimates of the reaction

efficiencies [5–12]. What is lacking in the field is a mathematical

model that accurately predicts the accumulation of product

throughout an entire reaction [13]. With a complete model, an

entire qPCR data set can be used for template quantification and

the influences of baseline adjustment and signal quality can be

directly assessed by comparing real and synthetic data.

The polymerase chain reaction is, in theory, an exponential

amplification of template DNA because during each thermal cycle

a template becomes two more [2]. With this premise in mind, the

accumulation of product can be modeled either exponentially

(predicting raw data) or through a log transform, which linearizes

exponential data [10,11,13,14]. A sticking point during these

analyses is that the true reaction efficiency, which is the efficiency

of converting a template into two products during each cycle,

remains elusive because much of the efficient amplification occurs

before the observable data rises above background [12]. This

problem can be partially alleviated by employing methods that

report the accumulation of product at earlier cycles, before the

reaction efficiency has substantially waned [15]. Unfortunately,

increasing signal sensitivity with hyper-sensitive reporters comes at

a substantial cost that frequently outweighs its advantages over less

expensive methods.

Here, we present a simple model that accurately describes PCR

throughout the entire reaction profile. Using this model, we were

able to evaluate the influences of baseline adjustment errors, signal

variations, and reaction efficiency and compare them to real

experimental data. We demonstrate that using log-transforms of

the data for quantification is invalid, despite the fact it is among
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the most accurate methods to date. Additionally, we show that a

determination of target quantity can be accurately obtained by

fitting a simulated model to the complete data set data without the

need to extract an efficiency value, without the need for log

transformation, and without concern for the profile shape or

baseline value. This advancement also allows for quality checks of

adjusted data that are based on an accurate description of the

entire reaction, not just regions arbitrarily deemed important. The

main impact of our approach is that fewer replicates are needed to

obtain reliable estimates of template quantity. Thus, the cost and

time associated with qPCR can be greatly reduced.

Results

A simple PCR model that describes the entire reaction
We derived a PCR equation that describes the product

accumulation throughout an entire qPCR data set using three

variable terms: the amount of template present after the previous

cycle (prev), the maximum capacity of the reaction (max), and the

apparent affinity of accumulated reaction inhibitors (Kd) (Infor-
mation S1). As with the mass action kinetic model that describes

exponential PCR phases with two parameters [13], our model is

recursive in that product accumulation is dependent on the

amount of template present after the previous cycle (prev).

yield~prev 1z
max{prevð Þ

max

� �
{

prev

Kdzprevð Þ

� �� �
ð6Þ

The amplification efficiency (in parentheses) in each cycle

varies. It changes from a value of two (100 % efficient) to a value of

one (0 % efficient) as the PCR develops. Unlike other PCR

models, this equation enables accurate modeling of entire data sets

and is unaffected by cycle number, curve shape, or plateau height.

Applying equation 6 to fit experimental data using nonlinear

regression allows for determination of unique max and Kd values for

a wide variety of reactions (Figure 1).

PCR is non-exponential and Log transforms of qPCR are
non-linear

Armed with an equation that accurately describes PCR, we

were able to evaluate a very common method of qPCR analysis

that relies on log-transformation of the data. In comparative ‘‘cycle

threshold’’ analysis (Ct), regions of log transforms of the data are fit

to straight lines and the slopes and intercepts from these fits are

then used to calculate reaction efficiencies and quantification

cycles (Cq). With the assumption that the reactions are purely

exponential and that there is a constant efficiency, back-

calculations are made from the differences in Cq that report the

relative differences in starting abundance. We simulated perfect

PCR data using equation 6 and evaluated it using cycle threshold

analysis. The simulated data was transformed into log form and we

analyzed the slopes and derivatives (Figure 2). Two points

became abundantly clear: first, because the efficiency changed for

each cycle, the log transforms are not truly linear, even though

they visually appear so during early cycles. Second, once the

product has accumulated to the point that the data leaves the

apparent baseline, the reaction can be undergoing dramatic losses

to its efficiency. Thus, calculating apparent reaction efficiency

from data in this region always leads to an underestimation of the

average efficiency in cycles preceding that window, a point that

was previously predicted using sigmoidal analysis methods [16].

Moreover, using a straight line to fit threshold data points to

estimate the starting amount is extremely sensitive to mis-adjusted

baselines. This phenomenon has been also observed previously

[10]. Below, we describe one major cause of such error and an

appropriate correction. In summary, cycle threshold analysis

suffers mainly from the fact that the efficiency always changes and

that all of the calculations are based on a few data points near the

baseline that have the weakest signal-to-noise ratio.

Quantification of template abundance using regression
To determine the relative amounts of template DNAs in a

sample set, we employed an empirical calculation of template

abundance in early cycles that allowed data modeled with the

extracted max and Kd terms to become superimposable with

experimental data (detailed in Materials and Methods). To

accurately determine max and Kd for each reaction, experimental

data was first fitted to equation 6 with fitting weight given to the

brighter signals. These values were then used in a spreadsheet to

model synthetic data using the same PCR equation. The

differences between the modeled and experimental data for each

observation was then calculated, squared, and summed. For the

modeled data, the template amounts in an early cycle spreadsheet

cell governed all subsequent values. Thus, by computationally

searching for a template ‘‘seed’’ amount present after a cycle that

minimized the differences between the modeled and experimental

data, we obtained an accurate determination of the amount that

was present in our real data at any point along the profile, even in

the baseline region where the real signal was unobservable above

background (Figure 3). In effect, by altering the amount of

template present after an arbitrary early cycle, the position of the

modeled curve was adjusted to fit on top of the experimental data.

Once aligned, the template abundances in each cycle were

available from the modeled spreadsheet data.

The cycle selected for regression analysis does not significantly

alter the resulting quantification because all reactions for a particular

target scale fractionally in relation to their relative abundances with

unique max and Kd values governing the efficiencies in each PCR

cycle. However, by selecting a cycle from the baseline region, before

the detectable appearance of the product, a more intuitive

relationship between data sets is obtained because the influence of

max and Kd is still minimal. To illustrate these points, we calculated

relative abundance for a set of six independently-mixed qPCR

reactions that amplified the same target from the same cDNA

(Figure 4). Seed values in cycles 4, 9, 14, and 19 that gave rise to the

best fit to the experimental data were then used to calculate

abundance relative to the mean (Figure 4B). We did not include the

first two data points in our calculations because they were observed

to vary substantially from the baseline. Additionally, the starting

material was not able to be exponentially amplified because only one

strand of the target DNA was present in our cDNA mixtures and the

first cycle or two would be needed to convert that DNA into suitable

double-stranded templates.

We calculated a standard deviation from the average of 7.7%

for the whole set of six reactions, which, considering the fact that

these mixes were highly viscous and each sample was mixed

independently, is quite small for qPCR analysis. Importantly, each

individual reaction exhibited only small variations in the

calculated amounts when different cycles were used for the

regression analysis (for example, in Figure 2B, dotted lines

connect the calculated amounts from the two outliers). The

average standard deviation in each sample as a function of the

cycle chosen for quantification was ,0.9%, approximately the

limit of our pipetting accuracy. Therefore, the seed cycle chosen

for the quantification does not matter to any appreciable degree.

When we evaluated the ability of PCR equation 6 to fit a variety of

experimental data, we observed that the values of max and Kd were
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independent of the amount of baseline region that was included in

the fitting procedure used to obtain them. Appreciable fitting error

(R2,0.95) was only introduced when the entire baseline and

approximately a third of the above-baseline amplification profile

was omitted (not shown). Small baseline adjustment errors

substantially affect conventional cycle-threshold analysis and can

give rise to impossible efficiency terms (Information S2, Fig-
ure S1). Our analysis using global fitting is practically unaffected by

baseline errors or signal loss (Information S3, Figure S2).

Therefore, in principle, any arbitrarily chosen cycle in the baseline

can be used to calculate abundance. Relative abundance can be

determined between samples as long as the same cycle is chosen for

seeding during each analysis.

Quantification using global fitting is not affected by
reaction efficiency or target abundance

Common methods to compare relative input abundance rely on

an accurate estimation of reaction efficiency. In our model, the

reaction efficiency changes during each cycle and it is not

necessary to extract it because its influence becomes incorporated

in the values of max and Kd. To evaluate this notion, we

computationally forced the efficiency to lower values by altering

equation 6 such that it contained numbers less than one as the first

term in the efficiency component (so the sum could not be 2 in any

cycle). When the resulting equations were fit to real data, there

were noticeable deviations in the fits and reductions in the R value

were apparent when this term was 0.98 or less (fitting failed when

the value dropped below 0.3, not shown). Each forced reduction in

the efficiency term was met with changes to both max and Kd in the

resulting best fit, with dramatically increasing Kd values when the

term dropped below 0.9. Thus, the choice of one as the first term

in the efficiency component of equation 6 is optimal for describing

real data.

As an additional test of the influence of reaction efficiency on

quantification by our method, we deliberately altered PCR

reaction efficiencies of the same target mixture. Literature reports

of increased PCR yield when a thermostable inorganic pyrophos-

phatase (IPPase) was included in the reactions inspired us to test

this enzyme in a qPCR series to see if we could drive the reaction

forward by degrading the pyrophosphate, one of the two products

of the chain reaction [17,18]. Unexpectedly, the addition of
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Figure 1. Comparing PCR equations. In panel A, product formation (green circles) is modeled to accumulate with a perfect, constant efficiency of
100% (blue diamonds) using equation 4 (Information S1). The simulated data was fit using non-linear regression using the same function (black
line). Panel B, simulated data of a purely reagent-limited reaction is shown using equation 5 with a maximum product yield of 56106 (also fit to its
function). Panel C, simulated data is shown using the PCR equation 6 with a max value of 56106 and a Kd value of 56105. The efficiency terms at each
cycle were extracted and plotted as blue diamonds. Panel D shows examples of real qPCR data fitted to equation 6 from amplifications using cDNA
libraries generated from total E. coli RNA as templates. The resulting fitting values were: rpsO, max = 25.148, Kd = 1.6798, R2 = 0.99996; gapA, max
= 19.56, Kd = 1.5753, R2 = 0.99998; lacZ, max = 16.29, Kd = 1.141, R2 = 0.99996.
doi:10.1371/journal.pone.0037640.g001
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IPPase reduced the apparent reaction yield (Figure 5A). This

reduction in apparent yield was also observed when different

targets were amplified (not shown). We do not know the cause of

the reduction, but it is possible that this version of IPPase

(purchased from a commercial source) either directly inhibited the

reaction or the preparation contained an inhibitory ingredient that

was not listed as a buffer component. Alternatively, the release of

free phosphate could have impeded the reaction, lowered the

binding affinity of the fluorescent reporter, or reduced the

fluorescence efficiency. Nonetheless, the addition of the IPPase

induced noticeable perturbations to apparent reaction efficiencies

that were reflected as changes to both max and Kd. Importantly, the

resulting changes to the profile shapes did not appreciably

influence the accuracy of the quantification by our regression

method, but did reduce the accuracy of quantification using the

common cycle-threshold (Ct) method and mass action method

(Figure 5A, inset, and not shown) [10,13].

A final test of the analysis method was performed to assess the

influence of target abundance on the resulting quantification. When

serial dilutions of test samples are made (as is common for qPCR

interrogations), all competing/influential factors are concomitantly

diluted as well, which does not reflect an experimental situation.

Real-world sample analysis rarely requires the 100,000-fold

dynamic range that is accomplished by the typical application of 5

10-fold dilutions, which themselves amplify pipetting variance.

Additionally, we showed earlier that the baseline length before the

visible profile does not influence the calculation. Therefore, we

sought to analyze data from real samples that had a cDNA amount

changing while the rest of the cDNA library remained essentially

constant.

During a previous investigation, we observed a dramatic

decrease in the amount of mRNA encoding glyceraldehyde

phosphate dehydrogenase in E. coli (encoded by gapA), in some

cases to levels that were less than a twentieth of the normal amount

present in a control. Because this change in message abundance

was representative of what can be encountered in an analysis of

transcript abundance, we analyzed a single, non-averaged qPCR

data set of 12 reactions from 12 cDNA libraries and compared the

resulting template abundances using either the Ct method or the

global-fitting, regression method (Figure 5B). The output data

are similar in scale, but the values from the cycle-threshold method

are noisier in comparison the regression method. Also, unlike the

regression method, the noise observed using the Ct method

became more exaggerated in the comparison of samples that had

large displacements in their amplification profiles. This phenom-

enon stems from the use of a power operation to determine relative

abundances using Cq values of log-transformed data, which

exponentially amplifies error.

In most cases, the regression method presented here should not

change the conclusions stemming from other popular analysis

methods, but it will reduce the scatter in data sets and reduce the

number of required measurements. Overall, our successful

modeling of a PCR reaction allows for the fitting of unmodified

amplification profiles using two terms that represent processes

having the most influence on reaction efficiency at each cycle. It is

worth reiterating that this modeling revealed that PCR reactions

do not stop solely from reagent depletion, which is a common

assumption. This approach removes an enigmatic ‘‘black box’’

from qPCR analysis that should aid in teaching and training, it

allows accurate quantification that takes advantage of all data in
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Figure 2. Simulated PCR and cycle threshold analysis. In panel A, PCR product formation was modeled according to equation 6 with max
= 56106 and Kd = 56105. Four data points are highlighted that depict the region when the signal reached 1% of the final maximum observed. The
data was transformed into log2 and the same 4 points were fit using linear regression. The slope and intercept from that fit were used to construct a
straight line that was overlaid onto the log2 plot (panel B, diamonds). Note that the line does not predict the true progression of product at earlier
cycles. Also, the earlier a reliable signal can be observed, the more accurate the estimation of the trend is. Panel C, the derivative of the log2 data. A
value of 1 means that the efficiency was 100 % and the product doubled during that cycle. The region fitted for the cycle threshold analysis is marked
in red and each value is lower than all preceding cycles.
doi:10.1371/journal.pone.0037640.g002
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an amplification profile, and it is insensitive to errors in baseline

assignment, dynamic signal quality, and reaction efficiency.

Discussion

Noise in experimental data can be reduced by increasing the

number of measurements because noise does not scale linearly

with true signal. For example, to reduce random noise by half, the

number of measurements needs to be squared [19]. Unfortunately,

for investigators using qPCR to quantify DNA, this relationship

means that if a two-fold reduction in error bars is required in a

particular project, the number of measurements will need to

increase from a typical number of 3 to 9 for each sample, thus

squaring the cost and dedicated time as well. We describe a

method that reduces the measurement noise so that differences

between samples can be determined with fewer measurements.

Existing qPCR analysis methods can produce high data

variance, which complicates the measurement of many targets

from a large collection of cDNA libraries. We traced a major

contributor of the variance to a contribution of improper

automated baseline assignment and a very slight loss of

fluorescence efficiency each time a measurement was made. In

the raw data, the effect is nearly imperceptible, but in the log

transforms used for the fitting during Ct analysis, the effect is

dramatic and heavily distorts the early data points in the

amplification profile. We mathematically calculated an appropri-

ate correction and adjusted our data prior to Ct analysis, which

reduced such variance (Information S3).

We also evaluated a useful software program from another

group that automates the baseline adjustment to maximize the

linearity of the log transformed data [10]. During those

corrections, we noticed that the calculated efficiency terms were

sometimes greater than 100%, which is impossible by our current

understanding of PCR. We then questioned whether arbitrarily

adding or subtracting values to experimental data because it

created a desired linear trend in log-transformed data was

appropriate. Without a model to accurately evaluate the influence

of baseline adjustments, we had to rely on a decrease in variance

between repeated samples as the only measure to show that we

had taken steps in the right direction.

It was unexpected that a predictive behavior model has not

been used previously for qPCR analysis that reflects the step-wise

accumulation of product throughout the entire reaction. The

various kinetic events that underlie the amplification step have

been rigorously evaluated mathematically [5,20]; however, such

modeling fails to capture the increases in signals that arise from

completed amplifications that are at equilibrium. Also, there are so

many dynamic parameters in a complete kinetic analysis of PCR

that fitting real data is intractable. A mass action exponential

model was employed by others that predicts the data early in an

amplification profile and yields an accuracy comparable to the Ct

method [10,13]. However, this method is similarly influenced by

well-to-well variations in the profile shapes that stem from a

collection of uncontrollable variables including optical precision,

reaction volume, and a dynamic efficiency term.

Because PCR reaction profiles resemble sigmoids, several

groups have developed various sigmoidal models in an attempt

to extract efficiency and threshold values that can then be used for

calculating relative abundance, despite the fact that there is no

obvious sigmoidal process underlying the increase in signal

[6,9,21]. As with any mathematical modeling, adding more

variables to improve data fits is not necessarily warranted, and

sigmoidal fitting methods are not as reproducible as log-transform

threshold analysis when baselines are properly adjusted [10]. A

fifth parameter in sigmoid analysis was implemented to account

for asymmetry around the sigmoidal inflection point [9]. In our

analyses, we see different inflection points in data for the same

template in different wells of the same experiment, so the physical

relationship between an infection point and the amount of

template is not clear. We suspect the difficulties in fitting qPCR

profiles with sigmoids arise because the transitions into and out of

the dynamic region of the data are differentially influenced by the

max and Kd terms. The asymmetry around the inflection point

indicated to us that there are at least two processes governing the

cessation of a PCR reaction.

The implementation of reagent depletion as a modulator of

efficiency made intuitive sense for a closed system. At first glance,

one might expect that the max term should remain essentially

constant between different samples when using the same master

mix. However, this value is also influenced by the signal strength in
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each well, so differences in machine calibration, optical alignment,

and reaction volumes can each influence the apparent yield in

different measurements of the same target. It was the addition of

the feedback-inhibition term that permitted highly accurate fitting.

We are surprised that the entire mass action event could be

described with a single ‘‘inhibitor’’ and a single apparent Kd value,

especially considering that two dominant products, dsDNA and

pyrophosphate, accumulate at different scales. For each mole of

dsDNA produced in a typical qPCR experiment, there are

approximately 200 moles of pyrophosphate liberated. Despite this,

adding additional terms to the efficiency component of the

equation did not improve the fitting accuracy to any degree that

influenced the final quantification because experimental data is

described very well with equation 6.

The lack of dependence on the length of the baseline is an

important conclusion because it suggests that as long as a few

baseline cycles are available for accurate global fitting, the timing

of the appearance of the amplification profile (stemming from the

abundance of the initial template) does not affect the calculations.

Initial target abundance should only be a consideration in cases

where there is a trace amount of target and competing side-

reactions markedly influence the data. Therefore, comparisons of

the melt-curves and product uniformity are still important to

ensure that the correct dsDNA is being monitored and standard

data quality guidelines should still be employed [14].

Remaining hurdles in accurate quantification now stem from

true statistical variations in the amount of template added, from

poorly-calibrated machines, and also from liquid handling.

Commercial qPCR mixtures of enzyme, reporter, dNTPS, buffer,

salts, and stabilizer substantially reduce sample-to-sample varia-

tion and allow reproducibility over long time scales. In our hands,

accurately distributing the mixes containing primers to each

sample well is challenging and variable because the mixtures are

viscous and have high affinity for the plastic pipette tips and wells.

This property also makes thorough pre-mixing of the input

template difficult and so most mixing likely occurs during the first

few cycles from thermal convection, which may also influence the

measurement of apparent starting amount. Being appropriately

trained in handling such liquids is crucial, and the importance of

ensuring that consistent (rather than accurate) volumes are

delivered to each well cannot be overemphasized. However,

multiple measurements of the same sample can now have a greater

impact on reducing scatter in abundance calculations because

each individual determination can be made more accurately.

Materials and Methods

Quantitative PCR
Complementary DNA libraries were generated from E. coli total

RNA using a commercial kit (Bio-Rad iScript cDNA synthesis kit).

Commercial qPCR master mixtures were from various sources

(Bio-Rad: IQ SYBRH Green Supermix or SsoFast EvaGreenH
Supermix; Applied Biosystems SYBR GreenH PCR master mix).

Quantitative PCR was performed on several machines (Applied

Biosystems 7500 FastH, Bio-Rad iCyclerH, Bio-Rad IQH, and Bio-

Rad MiniOpticonH). All reactions were run with 40 cycles and the

target PCR products ranged from 90 to 120 base pairs.
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Biolabs) added as 1 mL of a 20 mL reaction. The remaining volume was
matched using the same storage buffer lacking enzyme. Fitting of the
resulting amplification profiles with the PCR equation 6 (lines) yielded
max and Kd values that were used to calculate relative abundance in
cycle 14 (arrow). The same data was also analyzed using the Ct method
for comparison (inset). Panel B, a series of cDNA libraries were used as
templates for qPCR that had been generated from an experiment in
which the gapA mRNA levels changed drastically over time (series A and
B). For clarity, only the data fitting curves are shown for series B in
which the template abundance changed more than 20-fold. Both
regression (circles) and Ct (squares) analyses were performed on the

same data and the relative abundance plotted as a function of time
(inset). Note that the resulting values described the same relative
changes and trends, but that the regression method yielded smoother
data.
doi:10.1371/journal.pone.0037640.g005
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Data analysis
Cycle-threshold analysis was performed using either on-board

software or exported and analyzed with or without additional

baseline adjustments using the LinRegPCR software [10]. Sloping

baseline adjustments and signal-loss-corrections were made using

Microsoft Excel (Information S2). Global fitting to obtain max

and Kd was performed using Kaleidagraph (Synergy Software).

The fitting was recursive (each ordinate value depended on the

previous ordinate, not on the abscissa), so two adjacent columns of

data were used, one containing the raw values from cycles 3

through 39, and the adjacent containing the data to be fitted with

cycles 4 through 40. A final column contained the weights for each

data point based on the relative intensities of the fluorescence.

Kaleidagraph interprets a value of one as having the most weight

and larger values having less weight. Therefore, weights were

scaled linearly to match the relative brightness of each measure-

ment compared to the maximum brightness observed in the

reaction, which was usually the last data point. Weights were

calculated using:

weight~
1

abs
data

brightest

� �
0
BB@

1
CCA ð1Þ

Where the weight applied to a given data point was the absolute

value (abs) of the current data point divided by the largest data

point (brightest). Because we sought max and Kd values that

described the shape of the amplification profile as accurately as

possible, weighting was implemented to lessen the impact of long

or drifting baselines and weak signals. Fitting was accomplished by

plotting the raw data versus the cycle number and activating non-

linear regression using the PCR formula with weighting included.

For each cycle, Kaleidagraph fitting required a table function to

use a data column containing the template abundance from the

previous cycle to calculate of the amount of product yield

expected. Therefore, the following formula was used:

y~table m0,c0,c1ð Þ| 1z
m1{table m0,c0,c1ð Þð Þ

m1

� ��
{

table m0,c0,c1ð Þ
m2ztable m0,c0,c1ð Þð Þ

�
; m1~10; m2~1;

ð2Þ

Where m0 is the cycle number, m1 is max, and m2 is Kd. The data

was present in columns c0, c1, c2, and c3 contained the cycle

number, the previous signal, the current signal, and the weights

respectively. The plot was generated using columns c0 and c2. The

initial guesses for the non-linear fitting (10 and 1 in this case) were

approximated to be on the same scale as the raw data.

The max and Kd values from this weighted fit were then exported

to an Excel spreadsheet. A ‘‘seed’’ cell contained an initial guess of

the amount of signal that was present in the cycle immediately

preceding the model window. A column of simulated data was

then generated by having the first cell reference the seed cell and

applying PCR equation 6 using the values of max and Kd from the

weighted fitting for that particular reaction. Each subsequent cell

in the column used the same max and Kd, but referred the amount

present in the cell above it as prev. An example of the formula used

for this progression is:

~G2| 1z
$B$16{G2ð Þ

$B$16

� �
{ G2

$B$17zG2ð Þ

� �� �
ð3Þ

Where $B$16 was the cell containing max, $B$17 was the cell

containing Kd, and G2 was the cell above the current. When

needed, subsequent columns of simulated data were generated that

incorporated baseline drift or signal loss by referring to these

‘‘perfect’’ values. Real data was placed in a column and the

difference between the simulated and real data was calculated and

squared as an additional column. Finally, an output cell was

created that contained the sum of the squared difference values.

Using the included Solver GRG non-linear method in Excel, the

value of the seed cell was drifted in order to minimize the sum-of-

squares in the output column. When very small seed values were

needed (for example when early cycles were being used for the

quantification) both the convergence and constraint precision were

adjusted to include more zeroes after the decimal. However,

choosing a cycle near the beginning of the above-baseline signal

did not require any adjustment for a solution to be found.

The Excel Solver reports the seed value, in arbitrary fluorescence

units, that gave rise to the simulated data in the model being

superimposed on the experimental data. These seed values were

then used to calculate relative abundances between samples

(schematized in Figure 3). In preliminary work, we evaluated

floating all three terms (seed, max, and Kd) simultaneously along with

other terms that influence reaction efficiency and data quality. We

concluded that using a weighted fit to obtain max and Kd yielded

terms that more accurately described the shape, and using non-

weighted fitting for determining seed amounts yielded more

reproducible data (not shown). Thus, we adhere to a two-stage

fitting procedure.

Supporting Information

Information S1 Deriving a PCR equation. A model for

PCR product accumulation as a function of the maximum possible

yield and the inhibitory influence of reaction products outlined.

(DOC)

Information S2 Baseline adjustment. The influence of

incorrect baseline assignment on qPCR reaction data and the

resulting quantification is detailed using simulated and real data

for comparison.

(DOC)

Information S3 Signal Loss. An analysis of signal loss and its

influence on both synthetic and real data is presented along with a

derived correction for repeated, first-order decay.

(DOC)

Figure S1 Baseline errors and their influence during
data analysis. Panel A shows the log2 transforms of simulated

perfect qPCR data (circles) that were altered by adding either a

small amount to each point (0.1 % of the maximum signal, ‘‘too

high’’, triangles) or that were raised above the baseline slightly and

then lost signal every time a measurement was made (‘‘too low’’,

squares). Note that the sample undergoing signal loss loses log

transform data when the raw values become negative. Panel B, the

derivative of the log data is plotted to illustrate that these small

baseline errors dramatically influence the apparent reaction

efficiencies. In panels C and D, experimental data is analyzed

before and after a correction for signal loss. Unlike the uncorrected

data, the log transform of the adjusted data exhibits a nearly-linear

trend as the raw data leaves the baseline. Importantly, the

derivative indicates that the apparent efficiencies of the corrected

data trend towards the theoretical maximum, unlike the

uncorrected data.

(EPS)
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Figure S2 Identifying and correcting signal loss. Panel A,

simulated data of a perfect reaction was modified such that 1% of

the fluorescence signal was lost during each measurement

(squares). The damaged data was then corrected using equation

8 (circles). Fits of the PCR equation 6 yielded max and Kd values

from the corrected data that were identical to those used to

generate the the raw data (50 and 0.5 respectively). The max and

Kd values of the damaged data were each reduced (26.445 and

0.45519 respectively). The residuals of the fit to the damaged data

are shown below. Panel B, experimental data before (circles) and

after (triangles) manual correction for a linear sloping baseline.

The inset shows the baseline region on a different scale to highlight

the small signal loss in the raw data. The max and Kd values for the

uncorrected data were 25.419 and 1.2116 with an R2 of 0.99905.

These values were 25.675, 1.2114, and 0.99918 for the corrected

data. The residuals for the uncorrected (squares) and corrected

data (circles) are displayed below. These residuals are typical of the

fits to real data and indicate that either the model is incomplete or

the raw data are not perfect despite attempted corrections.

(EPS)
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