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Abstract
With over 60,000 protein structures available in the Protein Data Bank, it is frequently possible
use one of them to obtain starting phase information and to solve new crystal structures. Molecular
replacement1–4 procedures, which search for placements of a starting model within the
crystallographic unit cell that best account for the measured diffraction amplitudes, followed by
automatic chain tracing methods5–8, have allowed the rapid solution of large numbers of protein
structures. Despite extensive work9–14, molecular replacement or the subsequent rebuilding
usually fail with more divergent starting models based on remote homologues with less than 30%
sequence identity. Here we show that this limitation can be substantially reduced by combining
algorithms for protein structure modeling with those developed for crystallographic structure
determination. An approach integrating Rosetta structure modeling with Autobuild chain tracing
yielded high-resolution structures for 8 of 13 X-ray diffraction datasets that could not be solved in
the laboratories of expert crystallographers and that remained unsolved after application of an
extensive array of alternative approaches. We estimate the new method should allow rapid
structure determination without experimental phase information for over half the cases where
current methods fail, given diffraction datasets of better than 3.2Å resolution, four or fewer copies
in the asymmetric unit, and the availability of structures of homologous proteins with >20%
sequence identity.
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The limiting steps in molecular replacement are finding the location of the starting model
and the interpretation of electron density maps, which are carried out using pattern
recognition techniques in real and reciprocal space. The left column of Figure 1 illustrates
the problem of initial model-building starting with distant comparative models (20–30%
sequence identity) that have been correctly placed in the crystallographic unit cell.
Automatic chain tracing methods fail on such maps because they often follow the incorrect
comparative model (red) more closely than the actual structure (yellow); breaks in the
density make it difficult to recover the correct backbone trace. Nevertheless, the maps
contain considerable information about the native structure; for example, portions of the
starting model that are not within density are generally incorrect.

Structure prediction methods such as Rosetta search for the lowest energy conformation of
the polypeptide chain using physically realistic forcefields. Based on previous work showing
that accurate structures could be obtained from even very sparse NMR datasets15 by using
the data to guide structure prediction searches, we reasoned that structure prediction
methods guided by even very noisy density maps might be able to improve a poor molecular
replacement model before applying crystallographic model-building techniques. We
developed an approach in which electron density maps generated from molecular
replacement solutions for each of a series of starting models are used to guide energy
optimization by structure rebuilding, combinatorial sidechain packing, and torsion space
minimization16. New maps are generated using phase information from the energy-
optimized models most consistent with the diffraction data, subjected to automatic chain
tracing, and success is monitored through the free R factor.

Results on blind targets
To investigate the performance of the new method, we obtained 18 crystallographic datasets
that had resisted previous attempts at structure determination. We first tested whether a
comprehensive set of state-of-the-art molecular replacement approaches employing a range
of full-length and trimmed templates and homology models could solve any of these
structures (Supplementary Material). We were able to solve 5 of the structures with both the
new method and the existing methods (Group A in Table 1), leaving 13 challenging datasets
highly resistant (Supplementary Material, Section 1) to structure determination (Group B).
For each of these, we identified homologous proteins of known structure17 and constructed
sequence alignments and starting models9 from the five closest homologues. Starting models
were used to search for up to five candidate molecular replacement solutions based on the
likelihood of the experimental diffraction data2. Electron density maps were computed for
each of these solutions, and used to guide energy minimization by first remodeling the
unaligned regions and regions which poorly fit the density and then optimizing all backbone
and sidechain torsion angles. The likelihood of the experimental diffraction data was
computed for each optimized model2; if top ranked models were similar (see Methods), a
map generated from the highest likelihood model was subjected to automatic chain
rebuilding, density modification and refinement5. If this succeeded in building the majority
of the protein and produced a model with free R factor18 significantly better than random
(Rfree < 0.4), the structure was considered solved; rebuilt models were further analyzed by
the crystallographers who supplied the original data. Using this approach, we were able to
solve eight of the thirteen challenging cases (Table I, group B). In some cases, recognition
of the correct placement of the model in the unit cell was only possible after Rosetta
refinement (Supplementary Figure 2); in others the correct placement was clear but the
density was too poor for chain rebuilding. In two of the cases (#12 and #13), even finding
the correct molecular replacement solution first required energy based refinement12.
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The improvement in electron density produced by density guided energy optimization and
autobuilding are illustrated in Figure 1. The starting molecular replacement models are often
quite inaccurate, and the density generated from these models has breaks within the
backbone of the actual structure (left panels). After model rebuilding and energy guided
structure optimization, backbone breaks are largely closed and both sidechains and
backbone are more correctly modeled (middle panels). Automatic chain rebuilding into the
improved map followed by density modification and reciprocal-space refinement further
improve the model and the density (right panels). For all eight cases, the correlation between
the final refined density and density from the original molecular replacement solutions is
low, increases significantly after energy- and density-based structure optimization, and still
further after automatic chain rebuilding (Supplementary Table 2).

Comparison to current MR methods
For each of the eight challenging cases solved with the new method we also applied a
battery of existing methods (Table 1, group B and Supplementary Material, Section 1)
including simulated annealing in Cartesian and torsion space in PHENIX and CNS14, DEN
refinement13 in CNS, and using PHENIX Autobuild6 and ARP-WARP5 for model-building.
In two cases (#12 and #13) Rosetta structure modeling was required to even place the
template model, so existing methods clearly were not sufficient to obtain a correct structure.
In the remaining 6 cases, final Rfree values were far lower using our new approach than with
any other method tested (Table 1, Figure 2A). While conventional simulated annealing in
both Cartesian and torsion space had little effect, the recently developed deformable elastic
network19 (DEN) refinement protocol did improve three of the structures slightly, yielding
free R values of 0.45–0.46 for these targets. Combination of DEN refinement with the
method described here could lead to still more powerful approaches.

Dependence of energy- and density-guided model improvement on starting
model quality

To benchmark the sequence and structural divergence where the different methods break
down, we studied two different protein families for which a total of 59 different template
structures covering a broad range of sequence and structural similarity were available
(Supplementary Tables 3–5). Each template was correctly placed in the unit cell, and then
improved with either Rosetta energy- and density-based optimization, Cartesian- and
torsion-space simulated annealing, or DEN refinement. For each resulting model, the
correlation with the density of the deposited structure was evaluated. Automatic chain
rebuilding beginning with the superimposed starting models was successful for 18 of the 59
cases, consistent with the observation that molecular replacement often fails with templates
sharing less than 30% sequence identity with the target sequence. Torsion-space simulated
annealing in CNS prior to autobuilding allowed solution of two additional structures, DEN
refinement, three additional structures, and Rosetta energy based structure optimization,
fourteen additional structures (Supplementary Figure 2; Supplementary Tables 3–5). We
found the radius of convergence of the new method can be further extended by guiding
energy based structure optimization by the Patterson correlation20 rather than electron
density (see Supplementary Material). This allowed structure improvement and
identification of the correct molecular replacement solution in two additional cases
(Supplementary Figure 2, compare green to orange bar); for one of these the improvements
were sufficient for autobuilding to effectively solve the structure.

Over the combined set of eighteen blind cases and the 59 benchmark cases, Rosetta
refinement yielded a model with density correlation as good or better than any of the control
methods for all but six structures. The dependence of success on sequence recovery over the
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combined set is illustrated in Figure 2B. The improvement in performance is particularly
striking below 22% sequence identity, where the quality of the starting homology models
becomes too low for the control methods in almost all cases. With the new method the
success rate in the 15–28% sequence identity range, generally considered very challenging
for molecular replacement, is over 50%.

Origins of failures
One possible origin of failure is that a homology model is simply too distant to provide
useful structural information. Figure 2C illustrates the dependence of model-building on the
quality of initial electron density. Conventional chain rebuilding requires a map in which the
connectivity is largely correct (leftmost panel), whereas the new method can tolerate breaks
in the chain more than other methods (panels 2–4), as long as there is sufficient information
in the electron density map, combined with the Rosetta energy function, to guide structure
optimization. The map on the far right contains too little information to guide energy based
structure optimization and hence the new approach fails. In the five blind cases that have not
yet been solved the comparative models may have been too low in quality, or there may
have been complications in the X-ray diffraction datasets themselves.

Origins of success
Key to the success of the approach described here is the integration of structure prediction
and crystallographic chain tracing and refinement methods. Simulated annealing guided by
molecular force fields and diffraction data has played an important role in crystallographic
refinement14,21. Structure prediction methods such as Rosetta can be even more powerful
when combined with crystallographic data because the forcefields incorporate additional
contributions such as solvation energy and hydrogen bonding, and the sampling algorithms
can build non-modeled portions of the molecule and cover a larger region of conformational
space than simulated annealing. The increased accuracy of the Rosetta forcefields and
efficacy of the sampling algorithms make substantial improvement of homology-based
models possible even in the absence of crystallographic data22. The difference between
Rosetta sampling and simulated annealing sampling, both using crystallographic data, is
illustrated in Figure 3. Beginning with the homology model placed by molecular
replacement in the unit cell for blind case #6, we generated 100 models by simulated
annealing at two starting temperatures, and 100 models with Rosetta energy- and density-
guided optimization followed by refinement. The 2mFo-DFc23 electron density maps
generated using phases from over 50% of the Rosetta models had correlations 0.36 or better
to the final refined map, while fewer than 5% of models from simulated annealing had
correlations this high. Our approach likely outperforms even extreme simulated annealing
because the physical chemistry and protein structural information which guide sampling
eliminate the vast majority of non-physical conformations.

Approaches to molecular replacement combining the power of crystallographic map
interpretation and structure prediction methodology are likely to become increasingly useful
in the next few years. First, the number of already-determined structures will continue
increasing, making it increasingly likely that there will be a structure with the required
>20% sequence identity: the chance there is a structure with a sequence identity of 20% or
greater is more than twice that of finding a structure with at least 30% sequence identity24.
Second, as more work focuses on proteins that cannot be expressed in E. coli, the currently
preferred methods for experimental phase determination based on selenomethionine
replacement may be more difficult to apply. Finally as protein structure modeling algorithms
improve, better initial models should further increase the radius of convergence of the
approach.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of improvement in electron density and model quality. First row: Table 1 #6 (2.0
Å resolution); second row: Table 1 #7 (2.1 Å resolution); third row: Table 1 #12 (1.7 Å
resolution). Left column: correct initial molecular replacement solution (not necessarily
identifiable at this stage) using starting model and corresponding density. Middle column:
energy optimized model and corresponding density. Right column: model and density
following automatic building using the energy optimized model as the source of phase
information. The final deposited structure is shown in yellow in each panel; the initial
model, energy optimized model, and model after chain rebuilding are in red, green, and blue
respectively. The sigma-A weighted 2mFo-DFc density contoured at 1.5σ is shown in gray.
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Figure 2.
Method comparison. (A) Histogram of Rfree values after autobuilding for the seven difficult
blind cases solved using the new approach (Table 1, set B). For most existing approaches,
none of the cases yielded Rfree values under 50%; DEN was able to reduce Rfree to 45–49%
for three of the structures. For all seven cases, Rosetta energy and density guided structure
optimization led to Rfree values under 40%. (B) Dependence of success on sequence
identity. The fraction of cases solved (Rfree after Autobuilding < 40%) is shown as a
function of template sequence identity over the 18 blind cases and 59 benchmark cases. The
new method is a clear improvement below 28% sequence identity. (C) Dependence of
structure determination success on initial map quality. Sigma-A weighted 2mFo-DFc density
maps (contoured at 1.5σ) computed from benchmark set templates with divergence from the
native structure increasing from left to right are shown in grey; the solved crystal structure is
shown in yellow. The correlation with the native density is shown above each panel. The
solid green bar indicates structures the new approach was able to solve (Rfree<0.4); the red
bar those that torsion-space refinement or DEN refinement is able to solve, and the purple
bar those that can be solved directly using the template.
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Figure 3.
Comparison of the effectiveness of model diversification using Rosetta and simulated
annealing. For blind case #6, 100 models were generated using either simulated annealing
with a start temperature of 5000 K, simulated annealing with a start temperature of 50000 K,
or Rosetta energy-and density-guided optimization. The correlation between 2mFo-DFc
density maps computed from each structure and the final refined density was then computed;
the starting model has a correlation of 0.29 and the distributions of the refined models are
shown in the figure. Rosetta models have correlations better than the initial model much
more often than simulated annealing.
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