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Abstract
A polynomial spline estimator is proposed for the mean function of dense functional data together
with a simultaneous confidence band which is asymptotically correct. In addition, the spline
estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are
asymptotically the same as if all random trajectories are observed entirely and without errors. The
confidence band is also extended to the difference of mean functions of two populations of
functional data. Simulation experiments provide strong evidence that corroborates the asymptotic
theory while computing is efficient. The confidence band procedure is illustrated by analyzing the
near infrared spectroscopy data.
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1. Introduction
In functional data analysis problems, estimation of mean functions is the fundamental first
step; see Cardot (2000); Rice and Wu (2001); Cuevas, Febrero and Frainman (2006); Ferraty
and Vieu (2006); Degras (2011) and Ma, Yang and Carroll (2011) for example. According
to Ramsay and Silverman (2005), functional data consist of a collection of iid realizations
3-1  of a smooth random function η(x), with unknown mean function Eη(x) = m(x)
and covariance function G(x, x′) = cov {η(x), η(x′)}. Although the domain of η(·) is an
entire interval  the recording of each random curve ηi(x) is only over a finite number Ni of
points in  and contaminated with measurement errors. Without loss of generality, we take

= [0, 1].
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Denote by Yij the j-th observation of the random curve ηi(·) at time point Xij, 1 ≤ i ≤ n, 1 ≤ j
≤ Ni. Although we refer to variable Xij as time, it could also be other numerical measures,
such as wavelength in Section 6. In this paper, we examine the equally spaced dense design,
in other words, Xij = j/N, 1 ≤ i ≤ n, 1 ≤ j ≤ N with N going to infinity. For the i-th subject, i =
1, 2, …,n, its sample path {j/N, Yij} is the noisy realization of the continuous time stochastic
process ηi(x) in the sense that Yij = ηi (j/N)+σ (j/N) εij, with errors εij satisfying

, and {ηi(x), x ∈ [0, 1]} are iid copies of the process {η(x), x ∈ [0, 1]}
which is L2, i.e., E ∫[0,1] η2(x)dx < +∞.

For the standard process {η(x), x ∈ [0, 1]}, let sequences  be the
eigenvalues and eigenfunctions of G(x, x′) respectively, in which λ1 ≥ λ2 ≥ ⋯ ≥ 0,

 form an orthonormal basis of L2 ([0, 1]) and

, which implies that ∫ G(x, x′) ψk (x′) dx′ = λkψk(x). The
process {ηi(x), x ∈ [0, 1]} allows the Karhunen-Loève L2 representation

, where the random coefficients ξik are uncorrelated with mean 0

and variance 1, and . In what follows, we assume that λk = 0, for k > κ, where κ

is a positive integer or ∞, thus  and the model that we consider is

(1)

Although the sequences  and the random coefficients ξik exist
mathematically, they are unknown or unobservable respectively.

The existing literature focuses on two data types. Yao, Müller and Wang (2005) studied
sparse longitudinal data for which Ni, i.e. the number of observations for the i-th curve, is
bounded and follows a given distribution, in which case Ma, Yang and Carroll (2011)
obtained asymptotically simultaneous confidence band for the mean function of the
functional data, using piecewise constant spline estimation. Li and Hsing (2010a)
established uniform convergence rate for local linear estimation of mean and covariance
function of dense functional data, where min1≤i≤n Ni ≫ (n/logn)1/4 as n → ∞ similar to our
Assumption (A3), but did not provide asymptotic distribution of maximal deviation or
simultaneous confidence band. Degras (2011) built asymptotically correct simultaneous
confidence band for dense functional data using local linear estimator. Bunea, Ivanescu and
Wegkamp (2011) proposed asymptotically conservative rather than correct confidence set
for the mean function of Gaussian functional data.

In this paper, we propose polynomial spline confidence band for the mean function based on
dense functional data. In function estimation problems, simultaneous confidence band is an
important tool to address the variability in the mean curve, see Zhao and Wu (2008); Zhou,
Shen and Wolfe (1998) and Zhou and Wu (2010) for related theory and applications. The
fact that simultaneous confidence bands have not been widely used for functional data
analysis is certainly not due to lack of interesting applications, but to the greater technical
difficulty to formulate such bands for functional data and establish their theoretical
properties. In this work, we have established asymptotic correctness of the proposed
confidence band using various properties of spline smoothing. The spline estimator and the
accompanying confidence band are asymptotically the same as if all the n random curves are
recorded over the entire interval, without measurement errors. They are oracally efficient
despite the use of spline smoothing, see Remark 1. This provides partial theoretical
justification for treating functional data as perfectly recorded random curves over the entire
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data range, as in Ferraty and Vieu (2006). Theorem 3 of Hall, Müller and Wang (2006)
stated mean square (rather than the stronger uniform) oracle efficiency for local linear
estimation of eigenfunctions and eigenvalues (rather than the mean function), under
assumptions similar to ours, but provided only an outline of proof. Among the existing
works on functional data analysis, Ma, Yang and Carroll (2011) proposed the simultaneous
confidence band for sparse functional data. However, their result does not enjoy the oracle
efficiency stated in Theorem 2.1, since there are not enough observations for each subject to
obtain an good estimate of the individual trajectories. As a result, it has the slow
nonparametric convergence rate of n−1/3logn, instead of the parametric rate of n−1/2 as this
paper. This essential difference completely separates dense functional data from sparse ones.

The aforementioned confidence band is also extended to the difference of two regression
functions. This is motivated by Li and Yu (2008), which applied functional segment
discriminant analysis to a Tecator data set, see Figure 3. In this data set, each observation
(meat) consists of a 100-channel absorbance spectrum in the wavelength with different fat,
water and protein percent. Li and Yu (2008) used the spectra to predict whether the fat
percentage is greater than 20%. On the flip side, we are interested in building a 100 (1 − α)
% confidence band for the difference between regression functions from the spectra of the
less than 20% fat group and the higher than 20% fat group. If this 100 (1 − α) % confidence
band covers the zero line, one accepts the null hypothesis of no difference between the two
groups, with p-value no greater than α. Test for equality between two groups of curves
based on the adaptive Neyman test and wavelet thresholding techniques were proposed in
Fan and Lin (1998), which did not provide an estimator of the difference of the two mean
functions nor a simultaneous confidence band for such estimator. As a result, their test did
not extend to testing other important hypotheses on the difference of the two mean functions
while our Theorem 2.3 provides a benchmark for all such testing. More recently, Benko,
Häardle and Kneip (2009) developed two-sample bootstrap tests for the equality of
eigenfunctions, eigenvalues and mean functions by using common functional principal
components and bootstrap tests.

The paper is organized as follows. Section 2 states main theoretical results on confidence
bands constructed from polynomial splines. Section 3 provides further insights into the error
structure of spline estimators. The actual steps to implement the confidence bands are
provided in Section 4. A simulation study is presented in Section 5, and an empirical
illustration on how to use the proposed spline confidence band for inference is reported in
Section 6. Technical proofs are collected in the Appendix.

2. Main results
For any Lebesgue measurable function ϕ on [0, 1], denote ‖ϕ‖∞ = supx∈[0,1] |ϕ(x)|. For any ν
∈ (0, 1] and nonnegative integer q, let Cq,ν [0, 1] be the space of functions with ν-Häolder
continuous q-th order derivatives on [0, 1], i.e.

To describe the spline functions, we first introduce a sequence of equally-spaced points

, called interior knots which divide the interval [0, 1] into (Nm + 1) equal subintervals
IJ = [tJ, tJ+1), J = 0, ….,Nm − 1, INm = [tNm, 1]. For any positive integer p, introduce left
boundary knots t1−p, …,t0, and right boundary knots tNm+1, ….,tNm+p,
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in which hm is the distance between neighboring knots. Denote by ℋ(p−2) the space of p-th
order spline space, i.e., p − 2 times continuously differentiable functions on [0, 1] that are
polynomials of degree p − 1 on [tJ, tJ+1], J = 0,…, Nm. Then

, where BJ,p is the J-th B-spline basis of
order p as defined in de Boor (2001).

We propose to estimate the mean function m(x) by

(2)

The technical assumptions we need are as follows:

(A1) The regression function m ∈ Cp−1,1 [0, 1], i.e., m(p−1) ∈ C0,1 [0, 1].

(A2) The standard deviation function σ(x) ∈ C0, μ [0, 1] for some μ ∈ (0, 1].

(A3) As n → ∞, N−1n1/(2p) → 0 and N = O (nθ) for some θ > 1/ (2p); the number of

interior knots Nm satisfies  or

equivalently Nhm → ∞, .

(A4) There exists CG > 0 such that G(x, x) ≥ CG, x ∈ [0, 1], for k ∈ {1, …, κ}, ϕk (x)

∈ C0,μ [0, 1],  for a
sequence  of increasing integers, with limn→∞ κn= κ and the constant μ

∈ (0, 1] as in Assumption (A2). In particular, .

(A5) There are constants C1,C2 ∈ (0,+∞), γ1, γ2 ∈ (1,+∞), β ∈ (0, 1/2) and iid N(0,

1) variables  such that

(3)

(4)

Assumptions (A1)–(A2) are typical for spline smoothing, see Huang and Yang (2004), Xue
and Yang (2006) and Wang and Yang (2009a). Assumption (A3) concerns the number of
observations for each subject, and the number of knots of B-splines. Assumption (A4)
ensures that the principal components have collectively bounded smoothness. Assumption
(A5) provides Gaussian approximation of estimation error process, and is ensured by the
following elementary assumption:

(A5’) There exist η1 > 4, η2 > 4+2θ such that E |ξik|η1+E |εij|η2 < +∞, for 1 ≤ i < ∞,
1 ≤ k ≤ κ, 1 ≤ j < ∞. The number κ of nonzero eigenvalues is finite or κ is
infinite while the variables {ξik}1≤i<∞,1≤k<∞ are iid.
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Degras (2011) makes a restrictive assumption (A.2) on the Hölder continuity of the

stochastic process . It is elementary to construct examples where
our Assumptions (A4) and (A5) are satisfied while assumption (A.2) of Degras (2011) is
not.

The part of Assumption (A4) on ϕk’s holds trivially if κ is finite and all ϕk (x) ∈ C0,μ [0, 1].

Note also that by definition, , in which

 form an orthonormal basis of L2 ([0, 1]), hence, Assumption (A4) is fulfilled for κ =
∞ as long as λk decreases to zero sufficiently fast. Following one Referee’s suggestion, we
provide the following example. One takes λk = ρ2[k/2], k = 1, 2, … for any ρ ∈ (0, 1), with

 the canonical orthonormal Fourier basis of L2 ([0, 1])

In this case, , while for any 
with κn increasing, odd and κn → ∞, and Lipschitz order μ = 1

Denote by ζ (x), x ∈ [0, 1] a standardized Gaussian process such that Eζ (x) ≡ 0, Eζ2 (x) ≡
1, x ∈ [0, 1] with covariance function

and define the 100 × (1 − α)-th percentile of the absolute maxima distribution of ζ (x), ∀x ∈
[0, 1], i.e., P [supx∈[0,1] |ζ (x)| ≤ Q1−α] = 1 − α, ∀α ∈ (0, 1). Denote by z1−α/2 the 100 (1 −
α/2)-th percentile of the standard normal distribution. Define also the following “infeasible
estimator” of function m

(5)

The term “infeasible” refers to the fact that m̄(x) is computed from unknown quantity ηi(x),
x ∈ [0, 1], and it would be the natural estimator of m(x) if all the iid random curves ηi(x), x
∈ [0, 1] were observed, a view taken in Ferraty and Vieu (2006).

We now state our main results in the following theorem.

Theorem 2.1 : Under Assumptions (A1)–(A5), for ∀α ∈ (0, 1), as n → ∞, the “infeasible
estimator” m̄(x) converges at the  rate

while the spline estimator m̂p is asymptotically equivalent to m̄ up to order n1/2, i.e.
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Remark 1 : The significance of Theorem 2.1 lies in the fact that one does not need to
distinguish between the spline estimator m ̂p and the “infeasible estimator” m̄ in (5), which
converges with  rate like a parametric estimator. We therefore have established oracle
efficiency of the nonparametric estimator m̂p.

Corollary 2.2: Under Assumptions (A1)–(A5), as n → ∞, an asymptotic 100 (1 − α) %
correct confidence band for m(x), x ∈ [0, 1] is

while an asymptotic 100 (1 − α) % pointwise confidence interval for m(x), x ∈ [0, 1], is
m̂p(x) ± G(x, x)1/2 z1−α/2n−1/2.

We next describe a two-sample extension of Theorem 2.1. Denote two samples indicated by
d = 1, 2, which satisfy

with covariance functions  respectively. We denote the ratio of
two sample sizes as r̂ = n1/n2 and assume that limn1→∞ r ̂ = r > 0.

For both groups, let m̂1p(x) and m̂2p(x) be the order p spline estimates of mean functions
m1(x) and m2(x) by (2). Also denote by ζ12 (x), x ∈ [0, 1] a standardized Gaussian process

such that Eζ12 (x) ≡ 0, , x ∈ [0, 1] with covariance function

Denote by Q12,1−α the (1 − α)-th quantile of the absolute maxima deviation of ζ12 (x), x ∈
[0, 1] as above. We mimic the two sample t-test and state the following theorem whose
proof is analogous to that of Theorem 2.1.

Theorem 2.3 : If Assumptions (A1)–(A5) are modified for each group accordingly, then for
any α ∈ (0, 1), as n1 → ∞, r̂ → r > 0,

Theorems 2.3 yields uniform asymptotic confidence band for m1(x)−m2(x), x ∈ [0, 1].

Corollary 2.4: If Assumptions (A1)–(A5) are modified for each group accordingly, as n1 →
∞, r̂ → r > 0, a 100 × (1 − α) % asymptotically correct confidence band for m1(x)−m2(x), x

∈ [0, 1] is , ∀α ∈ (0, 1).
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If the confidence band in Corollary 2.2 is used to test hypothesis

for some given function m0(x), as one referee pointed out, the asymptotic power of the test
is α under H0, 1 under H1 due to Theorem 2.1. The same can be said for testing hypothesis
about m1(x) − m2(x) using the confidence band in Corollary 2.4.

3. Error Decomposition For the Spline Estimators
In this section, we break the estimation error m ̂p(x) − m(x) into three terms. We begin by
discussing the representation of the spline estimator m̂p(x) in (2).

The definition of m̂p(x) in (2) means that

with coefficients {β̂1−p,p, …, β̂Nm,p }T solving the following least squares problem

(6)

Applying elementary algebra, one obtains

(7)

where Y = (Ȳ.1,…, Ȳ.N)T, , and the design matrix X is

Projecting via (7) the relationship in model (1) onto the linear subspace of RNm+p spanned
by (BJ,p (j/N)}1≤j≤N,1−p≤J≤Nm, we obtain the following crucial decomposition in the space
ℋ(p−2) of spline functions:

(8)

where

(9)

The vectors {β̃1−p, …,β̃Nm}T, {ã1−p, …, ãNm}T and {τ̃k,1−p, …,τ̃k,Nm}T in (9) are solutions
to (6) with Yij replaced by m(j/N), σ (j/N) εij and ξikϕk (j/N) respectively.
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Alternatively,

in which m = (m(1/N),…m(N/N))T is the signal vector,

 is the noise vector and ϕk = (ϕk

(1/N),…, ϕk (N/N))T are the eigenfunction vectors, and .

We cite next an important result from de Boor (2001), p. 149.

Theorem 3.1 : There is an absolute constant Cp−1,μ > 0 such that for every ϕ ∈ Cp−1,μ [0, 1]
for some μ ∈ (0, 1], there exists a function g ∈ ℋ(p−1) [0, 1] for which

.

The next three propositions concern m ̃p(x), ẽp(x) and ζ̃p(x) given in (8).

Proposition 3.2: Under Assumptions (A1) and (A3), as n → ∞

(10)

Proposition 3.3: Under Assumptions (A2)–(A4), as n → ∞

(11)

Proposition 3.4: Under Assumptions (A2)–(A4), as n → ∞

(12)

also for any α ∈ (0, 1)

(13)

Equations (10), (11) and (12) yield the asymptotic efficiency of the spline estimator m̂p, i.e.
supx∈[0,1] n1/2 |m̄(x) − m̂p(x)| = oP (1). The Appendix contains proofs for the above three
propositions, which together with (8), imply Theorem 2.1.

4. Implementation
This section describes procedures to implement the confidence band in Corollary 2.2.

Given any data set  from model (1), the spline estimator m̂p (x) is obtained
from (7), the number of interior knots in estimating m(x) is taken to be Nm = [cn1/(2p)log
(n)], in which [a] denotes the integer part of a. Our experiences show that the choice of
constant c = 0.2, 0.3, 0.5, 1, 2 seems quite adequate, and that is what we recommend. When
constructing the confidence bands, one needs to estimate the unknown functions G(·, ·) and
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the quantile Q1−α and then plug in these estimators: the same approach is taken in Ma, Yang
and Carroll (2011) and Wang and Yang (2009a).

The pilot estimator Ĝp (x, x′) of covariance function G(x, x′) is

with  and the tensor product

spline space  in which NG =
[n1/(2p)log(log(n))].

In order to estimate Q1−α, one first does the eigenfunction decomposition of Ĝp (x, x′), i.e.

, to obtain the estimated eigenvalues λ̂k and
eigenfunctions ψ̂k. Next, one chooses the number κ of eigenfunctions by using the
following standard and efficient criterion, i.e.

 are the first T estimated positive

eigenvalues. Finally, one simulates 
are i.i.d standard normal variables with 1 ≤ k ≤ κ and b = 1, …, bM, where bM is a preset
large integer, the default of which is 1000. One takes the maximal absolute value for each
copy of ζ̂b (x) and estimates Q1−α by the empirical quantile Q̂1−α of these maximum values.
One then uses the following confidence band

(14)

for the mean function. One estimates Q12,1−α analogous to Q̂1−α and computes

(15)

as confidence band for m1(x) − m2(x). Although beyond the scope of this paper, as one
referee pointed out, the confidence band in (14) is expected to enjoy the same asymptotic
coverage as if true values of Q1−α and G(x, x) were used instead, due to the consistency of
Ĝp (x, x) estimating G(x, x). The same holds for the band in (15).

5. Simulation
To demonstrate the practical performance of our theoretical results, we perform a set of
simulation studies. Data are generated from model

(16)

where ξik ~ N(0, 1), k = 1, 2, εij ~ N(0, 1), for 1 ≤ i ≤ n, 1 ≤ j ≤ N, m(x) = 10+sin {2π (x −
1/2)}, ϕ1(x) = −2 cos {π (x − 1/2)} and ϕ2(x) = sin {π (x − 1/2)}. This setting implies λ1 =
2 and λ2 = 0.5. The noise levels are set to be σ = 0.5 and 0.3. The number of subjects n is
taken to be 60, 100, 200, 300 and 500, and under each sample size the number of
observations per curve is assumed to be N = [n0.25log2(n)]. This simulated process has a
similar design as one of the simulation models in Yao, Müller and Wang (2005), except that
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each subject is densely observed. We consider both linear and cubic spline estimators, and
use confidence levels 1 − α = 0.95 and 0.99 for our simultaneous confidence bands. The
constant c in the definition of Nm in Section 4 is taken to be 0.2, 0.3, 0.5, 1 and 2. Each
simulation is repeated 500 times.

Figures 1 and 2 show the estimated mean functions and their 95% confidence bands for the
true curve m(·) in Model (16) with σ = 0.3 and n = 100, 200, 300, 500 respectively. As
expected when n increases, the confidence band becomes narrower and the linear and cubic
spline estimators are closer to the true curve.

Tables 1 and 2 show the empirical frequency that the true curve m(·) is covered by the linear
and cubic spline confidence bands (14) at 100 points {1/100, …, 99/100, 1} respectively. At
all noise levels, the coverage percentages for the confidence band are close to the nominal
confidence levels 0.95 and 0.99 for linear splines with c = 0.5, 1 (Table 1), and cubic splines
with c = 0.3, 0.5 (Table 2) but decline slightly for c = 2 and markedly for c = 0.2. The
coverage percentages thus depend on the choice of Nm, and the dependency becomes
stronger when sample sizes decrease. For large sample sizes n = 300, 500, the effect of the
choice of Nm on the coverage percentages is negligible. Although our theory indicates no
optimal choice of c, we recommend using c = 0.5 for data analysis as its performance in
simulation for both linear and cubic splines is either optimal or near optimal.

Following the suggestion of one referee and the Associate Editor, we compare by simulation
the proposed spline confidence band to the least squares Bonferroni and least squares
bootstrap bands in Bunea, Ivanescu and Wegkamp (2011) (BIW). Table 3 presents the
empirical frequency that the true curve m(·) for model (16) is covered by these bands at
{1/100, …, 99/100, 1} respectively as Table 1. The coverage frequency of the BIW
Bonferroni band is much higher than the nominal level making it too conservative. The
coverage frequency of the BIW bootstrap band is consistently lower than the nominal level
by at least 10%, thus not recommended for practical use.

Following the suggestion of one referee and the Associate Editor, we also compare the
widths of the three bands. For each replication, we calculate the ratios of widths of the two
BIW bands against the spline band at {1/100, …, 99/100, 1} and then average these 100
ratios. Table 4 shows the five number summary of these 500 averaged ratios for σ = 0.3 and
p = 4. The BIW Bonferroni band is much wider than cubic spline band, making it
undesirable. While the BIW bootstrap band is narrower, we have mentioned previously that
its coverage frequency is too low to be useful in practice. Simulation for other cases (e.g. p =
2, σ = 0.5) leads to the same conclusion.

To examine the performance of the two-sample test based on spline confidence band, Table
5 reports the empirical power and type I error for the proposed two-sample test. The data
were generated from (16) with σ = 0.5 and m1(x) = 10+sin {2π (x − 1/2)}+δ (x), n = n1 for
the first group, and m2(x) = 10 + sin {2π (x − 1/2)}, n = n2 for the another group. The
remaining parameters, ξik, εij, ϕ1(x) and ϕ2(x) were set to the same values for each group as
in (16). In order to mimic the real data in Section 6, we set N = 50, 100 and 200 when n1 =
160, 80 and 40 and n2 = 320, 160 and 80 accordingly. The studied hypotheses are:

Table 5 shows the empirical frequencies of rejecting H0 in this simulation study with
nominal test level equal to 0.05 and 0.01. If δ(x) ≠ 0, these empirical powers should be close
to 1, and for δ(x) ≡ 0, the nominal levels. Each set of simulations consists of 500 Monte
Carlo runs. Asymptotic standard errors (as the number of Monte Carlo iterations tends to
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infinity) are reported in the last row of the table. Results are listed only for cubic spline
confidence bands, as those of the linear spline are similar. Overall, the two-sample test
performs well, even with a rather small difference (δ(x) = 0.7 sin(x)), providing a reasonable
empirical power. Moreover, the differences between nominal levels and empirical type I
error do diminish as the sample size increases.

6. Empirical Example
In this section, we revisit the Tecator data mentioned in Section 1, which can be downloaded
at http://lib.stat.cmu.edu/datasets/tecator. In this data set, there are measurements on n = 240
meat samples, where for each sample a N = 100 channel near-infrared spectrum of
absorbance measurements was recorded, and contents of moisture (water), fat and protein
were also obtained. The Feed Analyzer worked in the wavelength range from 850 nm to
1050 nm. Figure 3 shows the scatter plot of this data set. The spectral data can be naturally
considered as functional data, and we will perform a two-sample test to see whether
absorbance from the spectrum differs significantly due to difference in fat content.

This data set has been used for comparing four classification methods (Li and Yu, 2008),
building a regression model to predict the fat content from the spectrum (Li and Hsing,
2010b). Following Li and Yu (2008), we separate samples according to their fat contents
being less than 20% or not. The right panel of Figure 3 shows 10 samples from each group.
Here, hypothesis of interest is:

where m1(x) and m2(x) are the regression functions of absorbance on spectrum, for samples
with fat content less than 20% and great than or equal to 20% respectively. Among 240
samples, there are n1 = 155 with fat content less than 20%, the rest n2 = 85 no less than 20%.
The numbers of interior knots in (2) are computed as in Section 3 with c = 0.5 and are N1m =
4 and N2m = 3 for cubic spline fit and N1m = 8 and N2m = 6 for linear spline fit. Figure 4
depicts the linear and cubic spline confidence bands according to (15) at confidence levels
0.99 (upper and lower dashed lines) and 0.999995 (upper and lower dotted lines), with the
center dashed-dotted line representing the spline estimator m̂1(x)− m̂2(x) and a solid line
representing zero. Since even the 99.9995% confidence band does not contain the zero line
entirely, the difference of low fat and high fat populations' absorbance was extremely
significant. In fact, Figure 4 clearly indicates that the less the fat contained, the higher the
absorbance is.
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APPENDIX
In this appendix, we use C to denote a generic positive constant unless otherwise stated.

A.1. Preliminaries
For any vector ζ = (ζ1, …, ζs) ∈ Rs, denote the norm ‖ζ‖r = (|ζ1|r + ⋯ + |ζs|r)1/r, 1 ≤ r < +∞,
‖ζ‖∞ = max (|ζ1|, …, |ζs|). For any s × s symmetric matrix A, we define λmin (A) and λmax
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(A) as its smallest and largest eigenvalues, and its Lr norm as . In

particular, ‖A‖2 = λmax (A), and if A is also nonsingular, .

For functions ϕ, φ ∈ L2[0, 1], one denotes the theoretical and empirical inner products as

. The corresponding norms are

.

We state a strong approximation result, which is used in the proof of Lemma A.6.

Lemma A.1: [Theorem 2.6.7 of Csőrgő and Révész (1981)] Suppose that ξi, 1 ≤ i < ∞ are

iid with E(ξ1) = 0,  and H(x) > 0 (x ≥ 0) is an increasing continuous function such
that x−2−γH(x) is increasing for some γ > 0 and x−1logH(x) is decreasing with EH (|ξ1|) <
∞. Then there exist constants C1, C2, a > 0 which depend only on the distribution of ξ1 and
a sequence of Brownian motions , such that for any  satisfying H−1 (n) < xn

< C1 (nlogn)1/2 and 

The next lemma is a special case of Theorem 13.4.3, Page 404 of DeVore and Lorentz
(1993). Let p be a positive integer, a matrix A = (aij) is said to have bandwidth p if aij = 0
when |i − j| ≥ p, and p is the smallest integer with this property.

Lemma A.2: If a matrix A with bandwidth p has an inverse A−1 and d = ‖A‖2‖A−1‖2 is the
condition number of A, then ‖A−1‖∞ ≤ 2c0 (1 − η)−1, with c0 = ν−2p‖A−1‖2, η = ((d2 − 1)/(d2

+ 1))1/(4p).

One writes , where the theoretical and empirical

inner product matrices of  are denoted as

(A.1)

We establish next that the theoretical inner product matrix Vp defined in (A.1) has an
inverse with bounded L∞ norm.

Lemma A.3: For any positive integer p, there exists a constant Mp > 0 depending only on p,

such that , where hm = (Nm + 1)−1.

Proof. According to Lemma A.1 in Wang and Yang (2009b), Vp is invertible since it is a
symmetric matrix with all eigenvalues positive, i.e.

, where cp and Cp are positive real numbers.
The compact support of B-spline basis makes Vp of bandwidth p, hence one can apply
Lemma A.2. Since dp = λmax (Vp) /λmin (Vp) ≤ Cp/cp, hence
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If p = 1, then , the lemma holds with Mp = 1. If p > 1, let

, then ‖u1−p‖2 = ‖u0‖2 = 1. Also lemma A.1 in Wang
and Yang (2009b) implies that

hence  where rp is an absolute constant

depending only on p. Thus . Applying
Lemma A.2 and putting the above bounds together, one obtains

The lemma is proved.

For any function ϕ ∈ C [0, 1], denote the vector ϕ = (ϕ (1/N), …, ϕ (N/N))T and function

Lemma A.4: Under Assumption (A3), for Vp and V̂p defined in (A.1), ‖Vp − V̂p‖∞ = O

(N−1) and . There exists cϕ,p ∈ (0,∞) such that when n is large enough, ‖ϕ̃‖∞≤
cϕ,p ‖ϕ‖∞ for any ϕ ∈ C [0, 1]. Furthermore, if ϕ ∈ Cp−1,μ [0, 1] for some μ ∈ (0, 1], then for
C̃p−1,μ = (cϕ,p + 1)Cp−1,μ

(A.2)

Proof. We first show that ‖Vp−V̂p‖∞ = O (N−1). In the case of p = 1, define for any 0 ≤ J ≤
Nm, the number of design points j/N in the J-th interval IJ as NJ, then

Clearly max0≤J≤Nm |NJ − Nhm| ≤ 1 and hence
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For p > 1, de Boor (2001), Page 96, B-spline property ensures that there exists a constant
C1,p > 0 such that

while there exists a constant C2,p > 0 such that max1−p≤J,J′≤Nm NJ,J′≤C2,pNhm where NJ,J′ =
#{j : 1 ≤ j ≤ N,BJ,p (j/N)BJ′,p (j/N) > 0}. Hence

According to Lemma A.3, for any (Nm + p) vector γ, . Hence, ‖Vpγ‖∞ ≥
hm ‖γ‖∞ : By Assumption (A3), N−1 = o (hm) so if n is large enough, for any γ, one has

Hence .

To prove the last statement of the lemma, note that for any x ∈ [0, 1] at most (p + 1) of the
numbers B1−p,p (x), …, BNm,p (x) are between 0 and 1, others being 0, so

in which IN = (1, …, 1)T. Clearly |XTINN−1|≤Chm for some C > 0, hence |ϕ̃(x)|≤ 2 (p + 1)C
‖ϕ‖∞ = cϕ,p ‖ϕ‖∞. Now if ϕ ∈ Cp−1,μ [0, 1] for some μ ∈ (0, 1], let g ∈ ℋ(p−1) [0, 1] be such

that  according to Theorem 3.1, then g̃ ≡ g as g ∈ ℋ(p−1)

[0, 1] hence

proving (A.2).
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Lemma A.5: Under Assumption (A5), for  and n ≥ 1

(A.3)

(A.4)

where . Also

(A.5)

Proof. The proof of (A.4) is trivial. Assumption (A5) entails that F̄n+t,k < C2 (n + t)−γ1, k =

1, …, κ, t = 0, 1, …, ∞, in which . Taking
expectation, one has

which proves (A.3) if one divides the above inequalities by n. The fact that Z̄,k,ξ ~ N (0, 1/n)
entails that E |Z̄.k,ξ| = n−1/2 (2/π)1/2 and thus max1≤k≤κE|ξ̄.,k|≤ n−1/2 (2/π)1/2 + C0nβ−1.

Lemma A.6: Assumption (A5) holds under Assumption (A5’).

Proof. Under Assumption (A5’), E |ξik|η1 < +∞, η1 > 4, E |εij |η2 < +∞, η2 > 4+2θ, so there
exists some β ∈ (0, 1/2) such that η1 > 2/β, η2 > (2 + θ) /β.

Now let H(x) = xη1, then Lemma A.1 entails that there exists constants C1k, C2k, ak which

depend on the distribution of ξik, such that for  and iid
N(0, 1) variables Zik,ξ such that

Since η1 > 2/β, γ1 = η1β − 1 > 1. If the number κ of k is finite, so there are common

constants C1,C2 > 0 such that  which
entails (3) since κ is finite. If κ is infinite but all the ξik's are iid, then C1k, C2k, ak are the
same for all k, so the above is again true.
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Likewise, under Assumption (A5’), if one lets H(x) = xη2, Lemma A.1 entails that there
exists constants C1, C2, a which depend on the distribution of ξij, such that for

 and iid N(0, 1) variables Zij,ε such that

now η2β > 2+θ implies that there is γ2 > 1 such that η2β −1 > γ2 +θ and (4) follows.

Proof of Proposition 3.2. Applying (A.2), . Since Assumption (A3)

implies that , equation (10) is proved.

Proof of Proposition 3.3.

Denote by Z̃p,ε (x) = {B1−p,p (x), …, BNm,p (x)} (XTX)−1XT Z, where Z = (σ (1/N) Z̄.1,ε,
…, σ (N/N) Z̄.N,ξ)T. By (A.4), one has ‖Z − e‖∞ = Oa.s.(nβ−1), while

Also for any fixed x ∈ [0, 1], one has

Note next that the random vector -dimensional normal with

covariance matrix , bounded above by

bounding the tail probabilities of entries of  and applying Borel-Cantelli Lemma
leads to

Hence,  and

Thus (11) holds according to Assumption (A3).

Proof of Proposition 3.4.

We denote ζ̃k(x) = Z ̄.k,ξϕk (x), k = 1, …, κ and define
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It is clear that ζ̃ (x) is a Gaussian process with mean 0, variance 1 and covariance Eζ̃ (x) ζ̃
(x′) = G(x, x)−1/2 G(x, x′)−1/2 G(x, x′), for any x, x′ ∈ [0, 1]. Thus ζ̃ (x), x ∈ [0, 1] has the
same distribution as ζ (x), x ∈ [0, 1].

Using Lemma A.4, one obtains that

(A.6)

Applying the above (A.6), (A.5) and Assumptions (A3), (A4), one has

hence

(A.7)

In addition, (A.3) and Assumptions (A3), (A4) entail that

hence

(A.8)

Note that

hence

according to (A.7) and (A.8), which leads to both (12) and (13).
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Figure 1.
Plots of the linear spline estimator (2) for simulated data (dashed-dotted line) and 95%
confidence bands (14) (upper and lower dashed lines) (14) for m(x) (solid lines). In all
panels, σ = 0.3.
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Figure 2.
Plots of the cubic spline estimator (2) for simulated data (dashed-dotted line) and 95%
confidence bands (14) (upper and lower dashed lines) (14) for m(x) (solid lines). In all
panels, σ = 0.3.
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Figure 3.
Left: Plot of Tecator data. Right: Sample curves for the Tecator data. Each class has 10
sample curves. Dashed lines represent spectra with fact > 20% and solid lines represent
spectra with fact < 20%.
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Figure 4.
Plots of the fitted linear and cubic spline regressions of m1(x)−m2(x) for the Tecator data
(dashed-dotted line), 99% confidence bands (15) (upper and lower dashed lines), 99.9995%
confidence bands (15) (upper and lower dotted lines) and the zero line (solid line).
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