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Abstract

A polynomial spline estimator is proposed for the mean function of dense functional data together
with a simultaneous confidence band which is asymptotically correct. In addition, the spline
estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are
asymptotically the same as if all random trajectories are observed entirely and without errors. The
confidence band is also extended to the difference of mean functions of two populations of
functional data. Simulation experiments provide strong evidence that corroborates the asymptotic
theory while computing is efficient. The confidence band procedure is illustrated by analyzing the
near infrared spectroscopy data.
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1. Introduction

In functional data analysis problems, estimation of mean functions is the fundamental first
step; see Cardot (2000); Rice and Wu (2001); Cuevas, Febrero and Frainman (2006); Ferraty
and Vieu (2006); Degras (2011) and Ma, Yang and Carroll (2011) for example. According
to Ramsay and Silverman (2005), functional data consist of a collection of iid realizations
3-1 {n:i(x)};_, of a smooth random function n(x), with unknown mean function £n(x) = m(x)
and covariance function G(x, x") = cov {n(x), n(x")}. Although the domain of n(*) is an
entire interval 2" the recording of each random curve n{X) is only over a finite number A; of
points in 2" and contaminated with measurement errors. Without loss of generality, we take
2=10, 1].

© 2011 Taylor & Francis
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Denote by Yj;the /-th observation of the random curve n{(-) at time point Xj;, 1 </<n 1</
< N Although we refer to variable Xj;as time, it could also be other numerical measures,
such as wavelength in Section 6. In this paper, we examine the equally spaced dense design,
in other words, Xji=IN, 1< /< n, 1< j< Nwith AVgoing to infinity. For the /th subject, /=
1,2, ...,n its sample path {//V, Y7} is the noisy realization of the continuous time stochastic
process n(x) in the sense that Y= n; (/M)+o (IN) e; with errors e j;satisfying

E (£)=0, E(8,~2j)=1, and {n{x), x € [0, 11} are iid copies of the process {n(x), x € [0, 1]}
which is L2, i.e., £ [[o1) nP(X)ax < +0o.

For the standard process {n(x), x € [0, 1]}, let sequences {A:};2, {¥r(x)}, be the
eigenvalues and eigenfunctions of G(x, x) respectively, in which Ay = A, >+ >0,

ey H<e0, (Wil form an orthonormal basis of £2 ([0, 1]) and

G (x, X')=Zk:1/l/dﬁk(x)wk(X'), which implies that [ G(x, X') wx (X") dx" = Ay (X). The
process {nAx), x € [0, 1]} allows the Karhunen-Loéve L2 representation

m(x)=m(X)+Zk=1&k(l)k(X), where the random coefficients €  are uncorrelated with mean 0
and variance 1, and ¢,= \//l_kzj/k. In what follows, we assume that A, = 0, for &> «, where x

is a positive integer or oo, thus G(x; x/)=Z::1¢k(x)¢k(-’C') and the model that we consider is
Yy=m (iIN)+ Y &xde GIN)+o GIN) & ®

Although the sequences {Ac};_;, {#x(-)};_, and the random coefficients & j exist
mathematically, they are unknown or unobservable respectively.

The existing literature focuses on two data types. Yao, Miiller and Wang (2005) studied
sparse longitudinal data for which A i.e. the number of observations for the /th curve, is
bounded and follows a given distribution, in which case Ma, Yang and Carroll (2011)
obtained asymptotically simultaneous confidence band for the mean function of the
functional data, using piecewise constant spline estimation. Li and Hsing (2010a)
established uniform convergence rate for local linear estimation of mean and covariance
function of dense functional data, where minj<, ;> (llogn)t/* as n— oo similar to our
Assumption (A3), but did not provide asymptotic distribution of maximal deviation or
simultaneous confidence band. Degras (2011) built asymptotically correct simultaneous
confidence band for dense functional data using local linear estimator. Bunea, lvanescu and
Wegkamp (2011) proposed asymptotically conservative rather than correct confidence set
for the mean function of Gaussian functional data.

In this paper, we propose polynomial spline confidence band for the mean function based on
dense functional data. In function estimation problems, simultaneous confidence band is an
important tool to address the variability in the mean curve, see Zhao and Wu (2008); Zhou,
Shen and Wolfe (1998) and Zhou and Wu (2010) for related theory and applications. The
fact that simultaneous confidence bands have not been widely used for functional data
analysis is certainly not due to lack of interesting applications, but to the greater technical
difficulty to formulate such bands for functional data and establish their theoretical
properties. In this work, we have established asymptotic correctness of the proposed
confidence band using various properties of spline smoothing. The spline estimator and the
accompanying confidence band are asymptotically the same as if all the 7random curves are
recorded over the entire interval, without measurement errors. They are oracally efficient
despite the use of spline smoothing, see Remark 1. This provides partial theoretical
justification for treating functional data as perfectly recorded random curves over the entire
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data range, as in Ferraty and Vieu (2006). Theorem 3 of Hall, Mdiller and Wang (2006)
stated mean square (rather than the stronger uniform) oracle efficiency for local linear
estimation of eigenfunctions and eigenvalues (rather than the mean function), under
assumptions similar to ours, but provided only an outline of proof. Among the existing
works on functional data analysis, Ma, Yang and Carroll (2011) proposed the simultaneous
confidence band for sparse functional data. However, their result does not enjoy the oracle
efficiency stated in Theorem 2.1, since there are not enough observations for each subject to
obtain an good estimate of the individual trajectories. As a result, it has the slow
nonparametric convergence rate of 77~ 3logn, instead of the parametric rate of 7712 as this
paper. This essential difference completely separates dense functional data from sparse ones.

The aforementioned confidence band is also extended to the difference of two regression
functions. This is motivated by Li and Yu (2008), which applied functional segment
discriminant analysis to a Tecator data set, see Figure 3. In this data set, each observation
(meat) consists of a 100-channel absorbance spectrum in the wavelength with different fat,
water and protein percent. Li and Yu (2008) used the spectra to predict whether the fat
percentage is greater than 20%. On the flip side, we are interested in building a 100 (1 - a)
% confidence band for the difference between regression functions from the spectra of the
less than 20% fat group and the higher than 20% fat group. If this 100 (1 — a.) % confidence
band covers the zero line, one accepts the null hypothesis of no difference between the two
groups, with p-value no greater than a.. Test for equality between two groups of curves
based on the adaptive Neyman test and wavelet thresholding techniques were proposed in
Fan and Lin (1998), which did not provide an estimator of the difference of the two mean
functions nor a simultaneous confidence band for such estimator. As a result, their test did
not extend to testing other important hypotheses on the difference of the two mean functions
while our Theorem 2.3 provides a benchmark for all such testing. More recently, Benko,
Héardle and Kneip (2009) developed two-sample bootstrap tests for the equality of
eigenfunctions, eigenvalues and mean functions by using common functional principal
components and bootstrap tests.

The paper is organized as follows. Section 2 states main theoretical results on confidence
bands constructed from polynomial splines. Section 3 provides further insights into the error
structure of spline estimators. The actual steps to implement the confidence bands are
provided in Section 4. A simulation study is presented in Section 5, and an empirical
illustration on how to use the proposed spline confidence band for inference is reported in
Section 6. Technical proofs are collected in the Appendix.

2. Main results

For any Lebesgue measurable function ¢ on [0, 1], denote lipllco = SUpxe[o,17 [$()]. For any v
€ (0, 1] and nonnegative integer g, let C%" [0, 1] be the space of functions with v-Haolder
continuous g-th order derivatives on [0, 1], i.e.

[62(1) = $9s)| }
———<+00 .

t#5,1,5€[0,1] |t — s

c?v [0, 1]= {¢:|I¢Ilq,v=

To describe the spline functions, we first introduce a sequence of equally-spaced points

{t,}jv:"l', called interior knots which divide the interval [0, 1] into (A + 1) equal subintervals

1=t taa), /=0, .....Np =1, In,, = [{n,, 1]. For any positive integer p, introduce left
boundary knots £, ...,%, and right boundary Knots fy;+1, -+ {n,+

J Nonparametr Stat. Author manuscript; available in PMC 2013 June 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Caoetal.

Page 4

Hh-p= --=t=0<n<---<t, <=1, =---=t, |

t,= Jhy,0<J < Ny+1 hy=1/(Npy+1),

J

in which /1, is the distance between neighboring knots. Denote by # (?-2) the space of p-th
order spline space, i.e., p— 2 times continuously differentiable functions on [0, 1] that are
polynomials of degree p—1on [£; tx1], J=0,..., Ny Then

AN b, B, (0.b,, € 2,5 [0,1])

J=1

order pas defined in de Boor (2001).

, where B is the Jth B-spline basis of

We propose to estimate the mean function m(x) by

ip(0= argmin " S (¥ - gG/N)P, @

g(est P2

The technical assumptions we need are as follows:
(Al)  The regression function m€ O°11[0, 1], ie, mPD € 110, 1].
(A2)  The standard deviation function o(x) € C% " [0, 1] for somep € (0, 1].

(A3) Asn— oo, N 172D — 0 and N= O (rP) for some © > 1/ (2p); the number of
interior knots Ny, satisfies NN;,! — oo, N;;’n'? - 0, N"'2N}/*logn — 0 or
equivalently Nf, —> 0, kbn'/? — 0, N~'/21,*1ogn — 0.

(A4) There exists Cs> 0 such that G(x, X) = Cg, X€ [0, 1], for k€ {1, ..., x}, ¢4 (X)
€ COr0,1], 2., Itillo<oo and asn— oo, Wy D" litullo=o (1) for a
sequence {,},_, of increasing integers, withlim._.o %= x and the constant .
€ (0, 1] as in Assumption (AZ2). In particular, ZZZKM l¢ello=0 (1),

(A5)  There are constants Cy,C, € (0,4+09), y1, v2 € (1,+00), B € (0, 1/2) and iid MO,

. . N
1) variablesi\Ziceil\ jo1- ZijeVizy j= such that

t t
max P [max > Eu— . Zugd>Cirfl<Con™, @)
1<k<k 1<t<n i=1 i=1
max max e>Ciaf Y <Con™2.
{1<j<Nl<t<n|Z Z Ziiel>C1 } 2 @

Assumptions (A1)-(A2) are typical for spline smoothing, see Huang and Yang (2004), Xue
and Yang (2006) and Wang and Yang (2009a). Assumption (A3) concerns the number of
observations for each subject, and the number of knots of B-splines. Assumption (A4)
ensures that the principal components have collectively bounded smoothness. Assumption
(A5) provides Gaussian approximation of estimation error process, and is ensured by the
following elementary assumption:

(AS’) There existny > 4, np > 4+20 such that E€ jf"+E |e ji"? < +0o, for 1 < /< o,
1< k<x,1<j< 00, The numberx of nonzero eigenvalues is finite orx is
infinite while the variables {& jx}1<j<co 1<k<oco are ifd.
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Degras (2011) makes a restrictive assumption (A.2) on the Holder continuity of the

stochastic process U(X)=m(x)+Z 1o SKK(X), It is elementary to construct examples where
our Assumptions (A4) and (A5) are satisfied while assumption (A.2) of Degras (2011) is
not.

The part of Assumption (A4) on ¢,’s holds trivially if x is finite and all ¢4 (x) € CO* [0, 1].

Note also that by definition, ¢i= VA, I8kllee= VALIklleos Iillo = VAL, in which
{y}ro, form an orthonormal basis of L2 ([0, 1]), hence, Assumption (A4) is fulfilled for x =
00 as long as A, decreases to zero sufficiently fast. Following one Referee’s suggestion, we
provide the following example. One takes A, = p2l42] k=1,2, ... forany p € (0, 1), with

{y}r-, the canonical orthonormal Fourier basis of L2 ([0, 1])

Y1 (x) = 1L yorer (x) = V2cos (krx)
Yor (x) = V2sin (knx), k=1,2,...,x € [0, 1].

In this case, Y, I#clle=1+> "~ o (V2+ V2)=1+2V2p (1 - p)™' <0 while for any {x,}*,
with x, increasing, odd and x, — oo, and Lipschitz order p = 1

Kn (k,—1)/2 oY) o _
b 0 bdlloa=hm D" 0 (V2k V2hw) < 2V2mhp )~ 0 k=2 N2t (1 = ) =0 (h)=0 (1).

Denote by C (X), X € [0, 1] a standardized Gaussian process such that £G (x) =0, £2 (x) =
1, x € [0, 1] with covariance function

El (%) ¢ (X)=G (x,X){G (x, x) G (x', X))} /%, x, ¥ €[0,1]

and define the 100 x (1 — a)-th percentile of the absolute maxima distribution of € (x), Vx €
[0, 1], i.e., P[supxepo,17 IC (W) < @1-a] =1 - @, Va € (0, 1). Denote by 214/, the 100 (1 -
a/2)-th percentile of the standard normal distribution. Define also the following “infeasible
estimator” of function m

m=i)=n"Y"" ni(x), x € [0,1]. ©)

The term “infeasible” refers to the fact that /71x) is computed from unknown quantity n{x),
X € [0, 1], and it would be the natural estimator of /7(x) if all the iid random curves n{x), x
€ [0, 1] were observed, a view taken in Ferraty and Vieu (2006).

We now state our main results in the following theorem.

Theorem 2.1 : Under Assumptions (A1)-(A5), forVa € (0, 1), as n— oo, the “infeasible
estimator” m(x) converges at the Vn rate

P {sup o yn'/? i(x) = m(0)| G (x, 1) < 010} > 1 -0,
P {n'2 m(x) = m(0] G (x, 072 < z1app} > 1 - @, Vx € [0, 1,

while the spline estimator my, is asymptotically equivalent to m up to order m2 je.

J Nonparametr Stat. Author manuscript; available in PMC 2013 June 01.
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Sup (0.1 1'% Im(x) — mp(x)|=0,(1).

Remark 1 : The significance of Theorem 2.1 lies in the fact that one does not need to
distinguish between the spline estimator /77, and the “infeasible estimator” /77in (5), which

converges with Vn rate like a parametric estimator. We therefore have established oracle
efficiency of the nonparametric estimator /mp.

Corollary 2.2: Under Assumptions (A1)-(A5), as n— oo, an asymptotic 100 (1 — o) %
correct confidence band for m(x), x € [0, 1] /s

m,p(x) + G (x,0)2Q)_on™ ', Va € (0, 1)

while an asymptotic 100 (1 — o) % pointwise confidence interval for m(x), x € [0, 1], is
MAhX) = Gx, )2 2_q o112,

We next describe a two-sample extension of Theorem 2.1. Denote two samples indicated by
a=1, 2, which satisfy

Yaij=my (j/N)+Zkilfdik¢dk (j/N)+0q (jIN) e4ij, 1 £i<nyg,1 < j<N

Kd
with covariance functions Ga(x. X')=Z 1o Pa(¥)ar(x’) respectively. We denote the ratio of
two sample sizes as 7= /m/rm, and assume that limp; —c0 7= 7> 0.

For both groups, let /7 ,(x) and 11, ,(x) be the order p spline estimates of mean functions
my(x) and mu(X) by (2). Also denote by C1» (X), x € [0, 1] a standardized Gaussian process

such that £C1» (X) =0, E§,22 (x) = 1, x€ [0, 1] with covariance function

G (x, xX')+rG; (x, x")
(G (x, )+1Gy (x, D)} {G (x, ¥)+1Gy (x, X))}

El1 (%) {12 (X)= x,x €[0,1].

Denote by Q2 1-4 the (1 — a)-th quantile of the absolute maxima deviation of C15 (X), X€
[0, 1] as above. We mimic the two sample t-test and state the following theorem whose
proof is analogous to that of Theorem 2.1.

Theorem 2.3 : /f Assumptions (A1)—(A5) are modified for each group accordingly, then for
anya € (0,1),asm —> 0o, 7— r>0,

12~ o~
”1/ |(m1), — iz, — my+my) ()]

{(G1+1Gy) (x, x)}'/?

P {Supxe[o,l] < Q12,1_(,} - 1-a
Theorems 2.3 yields uniform asymptotic confidence band for m(X)—-nmn(X), x € [0, 1].

Corollary 2.4: If Assumptions (A1)—(A5) are modified for each group accordingly, as m —
oo, F— r>0, 2100 x (1 — a) % asymptotically correct confidence band for m(X)—mn(X), x

€ [0, 1] is (i1, — 2p) () £ 1] * Q12,1-0(G147G2) (x, 0}'/%, Va € (0, 1).
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If the confidence band in Corollary 2.2 is used to test hypothesis

Hy:m(x)=mo(x),¥x € [0, 1] & H,:m(x) # mg (x), for some x € [0, 1],

for some given function /my(x), as one referee pointed out, the asymptotic power of the test
is a under Hp, 1 under H; due to Theorem 2.1. The same can be said for testing hypothesis
about m(X) — my(x) using the confidence band in Corollary 2.4.

3. Error Decomposition For the Spline Estimators

In this section, we break the estimation error /7,(x) — /m(x) into three terms. We begin by
discussing the representation of the spline estimator mp(x) in (2).

The definition of /71,(x) in (2) means that

i (x) = ZZ’”I_ﬁpBM(x),

with coefficients {ﬁl_pyp, E’Nm,p }7 solving the following least squares problem

n N N,y 2
(Bioppe- By, )= argmin ZZ{Y]— > BB, ( j/N)} NG

Bi-ppseBy,, ,JERV™P =T 21 J=1-p

Applying elementary algebra, one obtains

iy ()=(B1-pp (..., B, (0} (XTX)"XTY @

where Y =(¥4,..., ¥ A)T, ?F”_IZ,.ZIYL‘/" 1 < j <N and the design matrix X is

By_p,,(1/N) --- B, (1/N)
X= .

Bi_pp(N/N) --- B, (N/N)

N X (Nm+p)

Projecting via (7) the relationship in model (1) onto the linear subspace of RNVP spanned
by (B;p IN)}1<j<n1-p<.x N,y We Obtain the following crucial decomposition in the space
#P=2) of spline functions:
mp(x)zf’hp(x)"'ép(x)"'gjp(x)’ 8)
where
Nm -~ ~ Nm ~
p(x) =) " B,B,@.E&®=) " a,B, .

. P - B )
£, szzlfkw(x)’fk’P(’C)ZZ:, 7B, (x).

The vectors {B1-p, ....BN}T, {81-p, ... AN}T and {Th1-p - Thn, T IN (9) are solutions
to (6) with Yj;replaced by m(jIN), o (IN) ejiand € kb4 (I ) respectively.

J Nonparametr Stat. Author manuscript; available in PMC 2013 June 01.
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Alternatively,

iy (¥ =(Bi_py (..., By, , (9} (XTX) X"m
-1
&y (x) ={By_pp(¥),.... B, , (0} (X"X) XTe
&, =Z,(Biyy@.....B, () (X'X) XTg1<k<x

in which m = (m(1/N),...m(MN))" is the signal vector,

e=(c(1/N)e,...,o (N/N)E.N)T7EJ:n_lZi:lglj’ 1 < j <N s the noise vector and ¢4 = (¢4
(UN), ..., dx (MN))T are the eigenfunction vectors, and E.kzﬂ_lzi:]‘fik’ l<k=<k

We cite next an important result from de Boor (2001), p. 149.

Theorem 3.1 : There is an absolute constant Cp-1 , > 0 such that for every ¢ € O” Lo, 1]
for some . € (0, 1], there exists a function g € # (o-1) [0, 1] for which

llg = Plloo < Cpmrull? Dl Hat?™"
The next three propositions concern /77,(x), é4{x) and Cp(x) given in (8).

Proposition 3.2: Under Assumptions (A1) and (A3), as n— 0o

SUP eq0.1 11 Ity (x) — m(x)|=o (1). (10)

Proposition 3.3: Under Assumptions (A2)-(A4), as n— oo

Sup.ero11 ' 18p(x)|=0, (1). (11)

Proposition 3.4: Under Assumptions (A2)—-(A4), as n— oo
sup.eo) 7'/ [€,(0) = @) = m ()| =0, (1) (12)
also for any a € (0, 1)
P {Supxe[O,l] n'/? |5p (X)| G(x,x)"? < Ql—a} - 1-a. (13)
Equations (10), (11) and (12) yield the asymptotic efficiency of the spline estimator /7, i.e.

supxeo,1] /M2 1m(x) = my(X)| = 0p (1). The Appendix contains proofs for the above three
propositions, which together with (8), imply Theorem 2.1.

4. Implementation

This section describes procedures to implement the confidence band in Corollary 2.2.

Given any data set (J/N, Yi,-),”;’i,i:l from model (1), the spline estimator /7, () is obtained
from (7), the number of interior knots in estimating /m(x) is taken to be N, = [cr/Plog
(n)], in which [4] denotes the integer part of a. Our experiences show that the choice of
constant ¢=0.2, 0.3, 0.5, 1, 2 seems quite adequate, and that is what we recommend. When
constructing the confidence bands, one needs to estimate the unknown functions G(, ) and

J Nonparametr Stat. Author manuscript; available in PMC 2013 June 01.
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the quantile Q;-4 and then plug in these estimators: the same approach is taken in Ma, Yang
and Carroll (2011) and Wang and Yang (2009a).

The pilot estimator G, (x, x") of covariance function G(x, x') is

G- in S e N, N
p—g<‘f‘)r€z‘ifrglp{12),zzj¢j,{ i —gGIN, / INY,

with Cy=n"" Zizl{YZy = mp(j/N)HYy —mp(j'/N)}, 1 < j # j* < N and the tensor product

(r-22_;\ o
spline space A _{Z“/:l,pb‘”' B./.p (0 B./Cp(s)7 bj,/' SEZRACES [0, 17} in which NG:
[7/#Plog(log(r)].

In order to estimate Q;—, one first does the eigenfunction decomposition of ép (x, X)), i.e.

—1 N o= . ., - . BENOWE A . . ~
N ), GrUIN, J INWGiIN)=2ai(J' IN), 10 obtain the estimated eigenvalues X 4 and
eigenfunctions 4 Next, one chooses the number x of eigenfunctions by using the
following standard and efficient criterion, i.e.

k=argmin _ Zl ’/l\//ZT ’/l\/»>0.95 where {/lk}T : ; i
1<I<T k=1"* L=k ’ k=1are the first 7estimated positive

eigenvalues. Finally, one simulates {o(*)=Gp(x, x)_l/zzk:lzk,b(f’k(x), where ¢= \/ﬂrkl/fk» Zyp
are i.i.d standard normal variables with 1 < k< x and 6=1, ..., by, where by, is a preset
large integer, the default of which is 1000. One takes the maximal absolute value for each
copy of €, (x) and estimates Q;_, by the empirical quantile Q;_, of these maximum values.
One then uses the following confidence band

my(x) £ 172G, (x, 1) Q1—a, x € [0, 1], (14)
for the mean function. One estimates Q2 1-, analogous to 01—, and computes
(my, —map) (x) + nIl/zélZl—a {(61p+762p) (x, x)}l/z, (15)
as confidence band for m(X) — my(x). Although beyond the scope of this paper, as one
referee pointed out, the confidence band in (14) is expected to enjoy the same asymptotic

coverage as if true values of Q;-o and G(x, X) were used instead, due to the consistency of
Gp (X, x) estimating G(x, x). The same holds for the band in (15).

5. Simulation

To demonstrate the practical performance of our theoretical results, we perform a set of
simulation studies. Data are generated from model

2
Yy=m (iINy+ Y adn (jINy+oeg, 1 < j<N,1<i<n, (16)

where €~ MO, 1), k=1,2,e;;~ MO, 1), forL <7< n 1< /< N, m(x) = 10+sin {2r (x -
1/2)}, ¢1(x) = =2 cos {r (x— 1/2)} and ¢o(x) = sin {r (x— 1/2)}. This setting implies Aq =
2 and A, = 0.5. The noise levels are set to be o = 0.5 and 0.3. The number of subjects nis
taken to be 60, 100, 200, 300 and 500, and under each sample size the number of
observations per curve is assumed to be NV = [/P-2%log2(7)]. This simulated process has a
similar design as one of the simulation models in Yao, Mller and Wang (2005), except that
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each subject is densely observed. We consider both linear and cubic spline estimators, and
use confidence levels 1 — a = 0.95 and 0.99 for our simultaneous confidence bands. The
constant c¢in the definition of N, in Section 4 is taken to be 0.2, 0.3, 0.5, 1 and 2. Each
simulation is repeated 500 times.

Figures 1 and 2 show the estimated mean functions and their 95% confidence bands for the
true curve m(-) in Model (16) with o = 0.3 and 7= 100, 200, 300, 500 respectively. As
expected when 77 increases, the confidence band becomes narrower and the linear and cubic
spline estimators are closer to the true curve.

Tables 1 and 2 show the empirical frequency that the true curve m(-) is covered by the linear
and cubic spline confidence bands (14) at 100 points {1/100, ..., 99/100, 1} respectively. At
all noise levels, the coverage percentages for the confidence band are close to the nominal
confidence levels 0.95 and 0.99 for linear splines with ¢= 0.5, 1 (Table 1), and cubic splines
with ¢=0.3, 0.5 (Table 2) but decline slightly for ¢ =2 and markedly for ¢=0.2. The
coverage percentages thus depend on the choice of N, and the dependency becomes
stronger when sample sizes decrease. For large sample sizes 7= 300, 500, the effect of the
choice of N, on the coverage percentages is negligible. Although our theory indicates no
optimal choice of ¢, we recommend using ¢ = 0.5 for data analysis as its performance in
simulation for both linear and cubic splines is either optimal or near optimal.

Following the suggestion of one referee and the Associate Editor, we compare by simulation
the proposed spline confidence band to the least squares Bonferroni and least squares
bootstrap bands in Bunea, lvanescu and Wegkamp (2011) (BIW). Table 3 presents the
empirical frequency that the true curve m(:) for model (16) is covered by these bands at
{1/100, ..., 99/100, 1} respectively as Table 1. The coverage frequency of the BIW
Bonferroni band is much higher than the nominal level making it too conservative. The
coverage frequency of the BIW bootstrap band is consistently lower than the nominal level
by at least 10%, thus not recommended for practical use.

Following the suggestion of one referee and the Associate Editor, we also compare the
widths of the three bands. For each replication, we calculate the ratios of widths of the two
BIW bands against the spline band at {1/100, ..., 99/100, 1} and then average these 100
ratios. Table 4 shows the five number summary of these 500 averaged ratios for o = 0.3 and
p=4. The BIW Bonferroni band is much wider than cubic spline band, making it
undesirable. While the BIW bootstrap band is narrower, we have mentioned previously that
its coverage frequency is too low to be useful in practice. Simulation for other cases (e.g. p=
2, o = 0.5) leads to the same conclusion.

To examine the performance of the two-sample test based on spline confidence band, Table
5 reports the empirical power and type | error for the proposed two-sample test. The data
were generated from (16) with o = 0.5 and /m(x) = 10+sin {21 (x— 1/2)}+6 (x), n= m for
the first group, and /m,(x) = 10 + sin {2r (x - 1/2)}, n= m, for the another group. The
remaining parameters, € jx, € ¢1(x) and ¢(x) were set to the same values for each group as
in (16). In order to mimic the real data in Section 6, we set V=50, 100 and 200 when r; =
160, 80 and 40 and 7, = 320, 160 and 80 accordingly. The studied hypotheses are:

Hy:m(x)=my(x),¥x € [0, 1] & H,:m(x) # my(x), for some x € [0, 1].
Table 5 shows the empirical frequencies of rejecting Ay in this simulation study with
nominal test level equal to 0.05 and 0.01. If §(x) # 0, these empirical powers should be close

to 1, and for 8(x) = 0, the nominal levels. Each set of simulations consists of 500 Monte
Carlo runs. Asymptotic standard errors (as the number of Monte Carlo iterations tends to

J Nonparametr Stat. Author manuscript; available in PMC 2013 June 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Caoetal.

Page 11

infinity) are reported in the last row of the table. Results are listed only for cubic spline
confidence bands, as those of the linear spline are similar. Overall, the two-sample test
performs well, even with a rather small difference (6(x) = 0.7 sin(x)), providing a reasonable
empirical power. Moreover, the differences between nominal levels and empirical type |
error do diminish as the sample size increases.

6. Empirical Example

In this section, we revisit the Tecator data mentioned in Section 1, which can be downloaded
at http://lib.stat.cmu.edu/datasets/tecator. In this data set, there are measurements on 7= 240
meat samples, where for each sample a /= 100 channel near-infrared spectrum of
absorbance measurements was recorded, and contents of moisture (water), fat and protein
were also obtained. The Feed Analyzer worked in the wavelength range from 850 nm to
1050 nm. Figure 3 shows the scatter plot of this data set. The spectral data can be naturally
considered as functional data, and we will perform a two-sample test to see whether
absorbance from the spectrum differs significantly due to difference in fat content.

This data set has been used for comparing four classification methods (Li and Yu, 2008),
building a regression model to predict the fat content from the spectrum (Li and Hsing,
2010b). Following Li and Yu (2008), we separate samples according to their fat contents
being less than 20% or not. The right panel of Figure 3 shows 10 samples from each group.
Here, hypothesis of interest is:

Homy (x)=ma(x), Vx € [850, 1050] < Himy(x) # ma(x), for some x € [850, 1050],

where my(x) and m,(x) are the regression functions of absorbance on spectrum, for samples
with fat content less than 20% and great than or equal to 20% respectively. Among 240
samples, there are /7 = 155 with fat content less than 20%, the rest /2, = 85 no less than 20%.
The numbers of interior knots in (2) are computed as in Section 3 with ¢=0.5 and are My, =
4 and N, = 3 for cubic spline fit and Ay ;= 8 and Ay, = 6 for linear spline fit. Figure 4
depicts the linear and cubic spline confidence bands according to (15) at confidence levels
0.99 (upper and lower dashed lines) and 0.999995 (upper and lower dotted lines), with the
center dashed-dotted line representing the spline estimator /3 (x)— m(x) and a solid line
representing zero. Since even the 99.9995% confidence band does not contain the zero line
entirely, the difference of low fat and high fat populations' absorbance was extremely
significant. In fact, Figure 4 clearly indicates that the less the fat contained, the higher the
absorbance is.
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APPENDIX

In this appendix, we use Cto denote a generic positive constant unless otherwise stated.

A.l. Preliminaries

For any vector € = (Cy, ..., Cs) € R, denote the norm IICI, = (JC4)"+ -+ + |C4NY", 1 < r< +00,
ICllco = max (|G4, ..., [Cd). For any sx ssymmetric matrix A, we define Amin (A) and Amax
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(A) as its smallest and largest eigenvalues, and its £,norm as [|All,=max . .,IAZIl, Il In
particular, IAll; = Amax (A), and if A is also nonsingular, A} |l,=17! (A).

For functions ¢, ¢ € L5[0, 1], one denotes the theoretical and empirical inner products as

1 - N . .
(@.9)=[ o () ¢ (x) dv and (p. ), =N"" Zj=1¢ G/N) ¢ GIN). The corresponding norms are
Il5=(8, 9, lplI; ,=(0, $, .

We state a strong approximation result, which is used in the proof of Lemma A.6.

Lemma A.1l: [Theorem 2.6.7 of Cs6rg6 and Révész (1981)] Suppose that€;, 1 < i< oo are

fifd with K€1) = 0, E(ff):l and H(x) > 0 (x= 0) /s an increasing continuous function such
that X2~ H(X) is increasing for some-y >0 and x Y logH(X) is decreasing with EH (|€1]) <
oo, Then there exist constants Cy, C,, a> 0 which depend only on the distribution of €, and

a sequence of Brownian motions {W,(D)}.,, such that for any{x,}> , satisfying H1 (1) < X,

1
< Gy (nlogn)Y2 and S ’=Z;=1§"

P {Pl[‘ix = W,,(l)|>x,,} < Con{H(ax,)) ™"

The next lemma is a special case of Theorem 13.4.3, Page 404 of DeVore and Lorentz
(1993). Let pbe a positive integer, a matrix A = (gj) is said to have bandwidth pif a;;=0
when |/ - j| = p, and pis the smallest integer with this property.

Lemma A.2: /fa matrix A with bandwidth p has an inverse At and d= | AlLIA™ L, /s the
condition number of A\, then |A o, < 2¢5 (1 = )7L, with ¢y = v=2AIA M, 1 = (& - 1)I(?
+1)Y4p),

Nin

— N —
X'X=NV,, XTYz{ZFIB,,p IN)Y ‘j}

One writes -1, Where the theoretical and empirical

- - Nm
inner product matrices of {B/,p(x)},zl,p are denoted as

N,
No V. — "
V=B, B, ) V=(,8,,) ) A

I =1-p

We establish next that the theoretical inner product matrix V, defined in (A.1) has an
inverse with bounded Lo norm.

Lemma A.3: For any positive integer p, there exists a constant My, > 0 depending only on p,
such thatlIV,' |, < Myh,,!, where A= (Np+ 1)L,

Proof. According to Lemma A.1 in Wang and Yang (2009b), V, is invertible since it is a
symmetric matrix with all eigenvalues positive, i.e.

0<cPN,;1 < Amin (Vp) € Amax (V) < C,,N;,‘<oo, where ¢, and Cpare positive real numbers.
The compact support of B-spline basis makes V , of bandwidth p, hence one can apply
Lemma A.2. Since dp = Amax (V) Amin (Vp) < G ¢y, hence
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1/4 ~1/4 _ 1/4 _ —1/4
mp=(ds— 1) "+ < (Che? - 1) T(CRe )T <L

If p=1, then V;,'=h,'T, ., the lemma holds with A, = 1. If p> 1, let

T T
u1-p=(1 0y ) ,UO=(01T,_1, 1,0 ) , then llug—4ll; = llugll; = 1. Also lemma A.1 in Wang

> T Nm+p-1 n

and Yang (2009b) implies that

Amin(Vp) = Amin(Vp)llwipll3 < uf_ Vour_p=l1Bioy,l13,

ulVoug  =[1Bopll5 < Amax(Vp)luol3=Amax(V ),

hence dy=Amax (V)/Amin (V) 2 [1Bo pl53lIB1-p.pll>>=r,>1 where 7, is an absolute constant

L _L L L
depending only on p. Thus np=(d} - 1) (d&3+1) ¥ > (r; - _1)4” (r7+1) *>0. Applying
Lemma A.2 and putting the above bounds together, one obtains
-1 ~2pvr-1 -1 rp+l 2 -1
IVl m < 20,70V, L, (T =1p) ™ hyy <2 2] Ain(Vp)

2 —
-1 -1
22 -1\ 2+1 )72 22— 1\
NO L It — hy<2| 22— W1 22—
C%c;2+1 rlz, -1 P C12,c132+1

The lemma is proved.

M,.

For any function ¢ € C[0, 1], denote the vector ¢ = (¢ (1/N), ..., ¢ (MA))T and function

$(x) = {Bi_pp(x), ..., By, (%)} (XTX)_]XTQS.

Lemma A.4: Under Assumption (A3), for\/ , andNlp defined in (A.1), IV 5=V fleo = O

) ezna’H";;1 Hw < 2hy,. There exists Cy,p € (0,00) such that when n is large enough, 1llco<
Cp,p19llco for any ¢ € C[0, 1]. Furthermore, if$ € O°11 [0, 1] for some . € (0, 1], then for

Co1 = (Gpp+ DCp1

2=l < Comrall? o, 1 (A2)

Proof. We first show that ||V,,—\7pl|oo = O(ND). Inthe case of p=1, define for any 0 < J<
Ny, the number of design points /N in the Fth interval /;as A then

| #j:j € [NJ/(Nuw+ D), NU+1)[(Np+1))}, 0 < J<N,
T\ #j:j € INJ/(Nw+1), NJ+1)[(Np+ D1}, J=N;,

Clearly maxo< g, |V = Nhp| < 1 and hence
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HV] —V]H = max
o 0<J<N,

2 2| _
18,012, = 18,13 = max.

N“ZN B2 (j/N) — hy,|= max |N"'N,—h,,|=N"" max |N,~Nh,,| < N~
1o "| " 0<J<N,, s 0<J<N,, e ’

For p> 1, de Boor (2001), Page 96, B-spline property ensures that there exists a constant
C1,p> 0 such that

B, (j/N)B, (j/N)-B, (x)B, <C,N'nl,
N e e

while there exists a constant C; ,> 0 such that maxy- </ <n;,; Nijs<Co pNAm Where Nj 7 =
#J:1<j<N,B;, IN)By , (I N) > 0}. Hence

[vo -9,
N 1 N [N
=, max N—IZF1 B,,(j/N)B,, (j/N) - f OBJYP(x)BJ,OP(x)dx < 1_[)131}5),2%2],:] f W/NIB,_,,(J'
IN)B,, (j
/N) = B,,(x)B,, (x)ldx < C2,Nhy,
x N7!

x C,N"'m,! < cN.

According to Lemma A.3, for any (N, + p) vector [V, '7]|., < 7' IIYllw. Hence, IV jylloo
hmIylles = By Assumption (A3), N1 = o () so if nis large enough, for any -y, one has

— — _ h
[Vl = Vvl = ||Vor = V|, = il = OV DI le= 2 e

Hence ”V;le < 2k,

To prove the last statement of the lemma, note that for any x € [0, 1] at most (p + 1) of the
numbers Bi—p 5 (X), ..., B, p (X) are between 0 and 1, others being 0, so

|6 (0] < (p+1) ‘(XTX)_IXTq} —(p+1) |V;1 (XTon") ' < (p+1)HV;1||m IXToN"!| < 2 (p+1) B3} [XTL N il

in which 1y = (1, ..., ). Clearly | XTI yN 1< Ch,;, for some C> 0, hence [p(x)|< 2 (p+ 1)C
I$lloo = Cp,p pllco. Now if ¢ € C71# [0, 1] for some . € (0, 1], let g€ # P~ [0, 1] be such

that llg — @lleo < Cpo1ulld? Vllo,, #a”~" according to Theorem 3.1, then g= gas g€ # (D)
[0, 1] hence
16— 0]l =16 — & = @ — D), < |6 — 2]l H16 — glleo < (Cop+ D 16 = glloo < (cop+1) Cpora[ 67|y, o™

proving (A.2).

J Nonparametr Stat. Author manuscript; available in PMC 2013 June 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Caoetal.

Page 15

Lemma A.5: Under Assumption (A5), for Co=C1 (1+5C> Zszlfg_l_y') andnz1

max E (€. = Ze] < Cot™, (A3)
max [£j =7 je] =Ous. (#7) (Ad)

— _ n —_— _ n .
where Z.xg=n lzizlzik,g, Z.je=n lzileij,g, 1<j<N,1<k<k Also
max E Ekl <n 2 Q/m)' P rCorf . (A5)

1<k<k

Proof. The proof of (A.4) is trivial. Assumption (A5) entails that /—=,,+flk< G (n+ )71 k=
1,...,% t=0,1, ..., 0, in which Fn+s=P [IZ,zlak - Zizlzﬂc,fl>cl(n+f>ﬁ]. Taking
expectation, one has
3 - Y 7] Cunsor
+Zt:1C1(n+1)ﬁ (Frvi—t = Freep) < C1ifP
+ZZOC1C2 e+t VB () < € {nﬁ+BC2Z:0(n+t)B_l_7l} <Pt
co sn—1
HBC NN N (T < AP
+B8Con~ I

© B 1y
X an:IPB < C()nﬁ,

which proves (A.3) if one divides the above inequalities by n. The fact that Z_,k,é ~ N (0, 1/n)
entails that £1Z x¢| = mY/2 (2/m)Y/2 and thus maxy<iex A€ A< Y2 (2m)Y2 + CorP L,

Lemma A.6: Assumption (A5) holds under Assumption (A5’).

Proof. Under Assumption (A5’), £1€4" < +00, 1y > 4, Ee;|"2 < +00, 1, > 4+26, so there
exists some B € (0, 1/2) such that n; > 2/B, mp > (2 + 6) /B.

Now let H(x) = X1, then Lemma A.1 entails that there exists constants Cy 4, Cox axWhich
n — — 1-

depend on the distribution of € j, such that for B=Cuirt, H(arx,) "' and iid

MO, 1) variables Zjx¢ such that

t t o _
P [max Zi:lfik - Z[zlzik,§| >C1]J’t’8] <C2kakmcll?lnl 171,3.

1<t<n

Since g > 2/B, y1 = mP — 1 > 1. If the number « of kis finite, so there are common

t t
constants C;,C, > 0 such that [maxlszgnlzi:]&k - ZiZ]Zik,§|>C1nﬁ]<C2n_7‘ which
entails (3) since x is finite. If x is infinite but all the § j¢s are iid, then Gy, Cox ax are the
same for all &, so the above is again true.
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Likewise, under Assumption (A5’), if one lets A(x) = X2, Lemma A.1 entails that there
exists constants Cy, G, awhich depend on the distribution of & ;; such that for

_ L mem 1-mp .. .
x,=Cif, H(akx”)—“ "C T and iid MO, 1) variables Zj;, such that

t t
max P {max |Z &jj — Z Zije
1<j<N 1<t<N i=1 i=1

>C]nﬁ} < Cua P C M P,

now P > 2+6 implies that there is -y, > 1 such that npp —1 >y, +6 and (4) follows.

Proof of Proposition 3.2. Applying (A.2), |, — m|l,, < Cp—1,1 k. Since Assumption (A3)
implies that O (h%:n'/%)=0 (1), equation (10) is proved.

Proof of Proposition 3.3.

Denote by Z,» (X) = {B1-pp (A, ... Bnp,p (0} (XTX)IXT Z, where Z = (o (1IN) Z1.,
..o (MN) Zpng)T. By (Ad), one has IZ — elloo = Oy5(7#71), while

14T . . -1
INTXTZ - @)l < IZ el | max (B, 1), <CIZ—elo max #1j:B,,(i/N)>ON" < CIZ = elluhy.

p< p<

Also for any fixed x € [0, 1], one has

Note next that the random vector V,'N~'X"Z is (N, +p)-dimensional normal with

covariance matrix N‘ZV;IXTvar @) XV;', bounded above by
2 -1 Aa-1y-1v v-1 1 -1|x-1 1 -1;-1
max Pl NIV < ov [V s o ety
bounding the tail probabilities of entries of V;IN‘leZ and applying Borel-Cantelli Lemma

leads to

HVPTIN_IXTZH(”:O""" (N‘l/zn_”zh;l/zlog”z(Nm+p)) -0, (N_l/zn_l/zh;l/zlogl/zn).

Hence, Sup.efo,11l1"*Zp.c (V)|=0us. (N1, *log"n) and

sup] |n1/251,(x)| =0g.. (n‘B_]/2+N_]/2h,_nl/210g1/2n) =045.(1).

xe[0,1]

Thus (11) holds according to Assumption (A3).
Proof of Proposition 3.4.

We denote C(X) = Zxedk (X), k=1, ..., x and define
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~ K _1/2 K ~ K ~
O DI IC o B SR A S Suaeo)

It is clear that C (x) is a Gaussian process with mean 0, variance 1 and covariance £C (x) C
(X)) = G(x, )12 G(x, X )12 G(x, '), for any x, X' € [0, 1]. Thus € (x), x€ [0, 1] has the
same distribution as C (x), x € [0, 1].

Using Lemma A.4, one obtains that

18, < coplidilloos |3 — ]|, < Copulidillo, Hons 1 < k < . (A6)

Applying the above (A.6), (A.5) and Assumptions (A3), (A4), one has

Kn

Enl/zsupxe[O,I]G (x, x)" /2 |ZZ=15/< {‘/’/\»(X) - @k(x)}| < Cnl’? {Zk:lE Ek' ||¢k||o,,1h‘,ﬁl
+ZZ:;<”HE € 4| llpellee < € {Zzlnd’k”wh‘i
3 dell=o (1),
hence
n'2sup,co1) G (x, 071/ |ZZ:]g_k ) - J;k(x)}| o, (1). A

In addition, (A.3) and Assumptions (A3), (A4) entail that

En2Sup 0.1 G (607 2|7 Zke €0 du0)] < PPN igilleo=o (1),

hence
1 25up o, G (6 072 D Zae — E1) pe)| =0, (1. (A9
Note that
m) —m@ -, =) E g0 - G},
nV2G (0100 — ) ~m(0) =) Ze = &) i)
hence

n'2 sup G (x, )7 m(x) - m(x) - € ,(x)| =0, (1),
x€[0,1]
Z (x) = n'2G (x, )71 {m(x) — m (1)} =0, (1).

SUP er0,1]

according to (A.7) and (A.8), which leads to both (12) and (13).
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Figure 1.

Plots of the linear spline estimator (2) for simulated data (dashed-dotted line) and 95%
confidence bands (14) (upper and lower dashed lines) (14) for m(x) (solid lines). In all
panels, o = 0.3.
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Figure 2.

Plots of the cubic spline estimator (2) for simulated data (dashed-dotted line) and 95%
confidence bands (14) (upper and lower dashed lines) (14) for m(x) (solid lines). In all
panels, o = 0.3.
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Left: Plot of Tecator data. Right: Sample curves for the Tecator data. Each class has 10
sample curves. Dashed lines represent spectra with fact > 20% and solid lines represent
spectra with fact < 20%.
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