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Signaling by the Hedgehog (Hh) family of secreted proteins is
essential for proper embryonic patterning and development.
Dysregulation of Hh signaling is associated with a variety of
human diseases ranging from developmental disorders such as
holoprosencephaly to certain forms of cancer, including
medulloblastoma and basal cell carcinoma. Genetic studies in
flies and mice have shaped our understanding of Hh signaling
and revealed that nearly all core components of the pathway are
highly conserved. Although many aspects of the DrosophilaHh
pathway are conserved in vertebrates, mechanistic differences
between the two species have begun to emerge. Perhaps the
most striking divergence in vertebrate Hh signaling is its
dependence on the primary cilium, a vestigial organelle that is
largely absent in flies. This minireview will provide an overview
of Hh signaling and present recent insights into vertebrate Hh
secretion, receptor binding, and signal transduction.

Originally discovered for its role in Drosophila embryonic
patterning, the Hedgehog (Hh) pathway is among a handful of
signaling pathways governing the development of multicellular
organisms. Hh signaling is essential for the development of
nearly every organ system in vertebrates, from patterning the
neural tube and limbs to regulating lung morphogenesis and
hair follicle formation (1). Although the Drosophila genome
encodes a single hh gene, vertebrates harbor between three
(Sonic hedgehog (Shh), Desert hedgehog (Dhh), and Indian
hedgehog (Ihh) in birds and mammals) and six (Shh, Dhh, and
Ihh plus Tiggywinkle hedgehog (Twhh), Echidna hedgehog
(Ehh), andQiqihar hedgehog (Qhh) in fish) homologs, differing
primarily in tissue distribution (2). In vertebrates, Shh is
expressed throughout the developing nervous system and in
many epithelial tissues, Ihh functions primarily in bone devel-
opment, and Dhh expression is limited to the peripheral nerv-
ous system and reproductive organs (1). As a result of its wide-
spread expression, much of what is known about vertebrate Hh
signaling stems from work on Shh. All Hh ligands undergo a
similar series of processing events that result in the covalent
attachment of two lipid moieties and are essential for proper
signaling activity and tissue distribution (Fig. 1). Secreted Hh
ligands interact with Patched (Ptc)-coreceptor complexes on
the surface of responding cells, relieving Ptc-mediated inhibi-
tion of the signal transducer Smoothened (Smo) (see Fig. 4).
Activated Smo prevents the processing of full-length Gli tran-

scription factors (Gli-FL)2 into transcriptional repressors
(Gli-R) so as to allow Gli-FL to activate the transcription of Hh
target genes. Thus, the relative abundance ofGli transcriptional
activators and inhibitors ultimately regulates the transcription
of Hh target genes.
Although many aspects of Drosophila Hh signaling are con-

served in vertebrates, vertebrate Hh signal transduction differs
in its requirement for the primary cilium. Primary cilia are slim,
microtubule-based, non-motile structures that project from
the surface of nearly all vertebrate cells but are conspicuously
absent in most Drosophila cell types (3). The assembly and
maintenance of primary cilia require intraflagellar transport
(IFT) proteins, and several members of the IFT family are
essential for proper vertebrate Hh signaling (3, 4). Mutations in
components of the kinesin-driven IFT-B complex, whichmedi-
ates the anterograde transport ofmolecules from the base of the
cilium to the tip, lead to a complete loss of Hh signaling (3). In
contrast, mutations in members of the dynein-driven IFT-A
complex, which controls retrograde transport, lead to aberrant
Hh pathway activation (3). Nonetheless, it is not currently
known whether IFT-A and IFT-B complexes interact directly
with Hh pathway components to control their localization and
activity or if, instead, these complexes facilitate Hh signaling
simply by maintaining proper ciliary architecture. Indeed,
recent genetic studies suggest that the primary cilium may
function primarily as a scaffold for Hh signaling, arguing
against a direct role for IFT proteins in regulating the move-
ment of Hh pathway components (5).
In this minireview, we provide an overview of Hh production

and cytosolic signaling in vertebrates (for excellent reviews of
Drosophila Hh signaling, see Refs. 2 and 6). We discuss recent
insights into ligand release, receptor binding, and signal trans-
duction and attempt to incorporate these findings into existing
models of Hh signaling. Additionally, we present remaining
questions regarding Hh secretion and signal transduction that
warrant further investigation.

Hedgehog Processing and Release

The signaling activity of Hh ligands is intimately linked to a
complex sequence of post-translational modifications ulti-
mately resulting in the covalent attachment of two lipid moi-
eties, one at each terminus (Fig. 1). Following translation, the
Hh precursor peptide (�45 kDa in size) translocates into the
endoplasmic reticulum lumen, where it undergoes a cholester-
ol-dependent autocatalytic cleavage to generate a 19-kDa cho-
lesterol-modified N-terminal peptide fragment and a 25-kDa
C-terminal fragment (Fig. 1). This cleavage reaction occurs in
two steps. In the first step, the free thiol of Cys-198 (human
SHH) acts as a nucleophile, attacking the carbonyl carbon of the
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preceding glycine residue and generating a thioester interme-
diate (7–10). In the second step, this thioester intermediate is
subjected to nucleophilic attack by the 3�-hydroxyl group of
cholesterol, generating a cholesterol-modifiedN-terminal frag-
ment (Hh-N) and displacing the C-terminal fragment (Hh-C).
Although Cys-198 has long been recognized for its role in auto-
catalytic cleavage, a second conserved cysteine, Cys-363, is also
required for cleavage, forming a disulfide bond with Cys-198
that likely facilitates protein folding and the reduction of which
generates the reactive thiol required for cleavage (11). As such,
mutating either cysteine residue prevents autoproteolysis ofHh
precursors (11). Although processing-deficient full-length
forms of Shh are able to illicit juxtacrine signaling in cell-based
assays (12), the significance of this finding remains enigmatic,
as Shh is found exclusively in its cleaved form during embryo-
genesis (13). Indeed, mutations disrupting the cleavage of full-
length Hh peptides have been linked to developmental disor-
ders such as holoprosencephaly (14, 15).

All of the signaling properties of Hh proteins reside within
the N-terminal fragment. The C-terminal fragment undergoes
endoplasmic reticulum-associated degradation, a process that
requires the lectins OS-9 and XTP3, the ubiquitin ligase Hrd1
and its partner Sel1, and the p97 ATPase (Fig. 1) (11). Hh-N is
subjected to a second covalent modification by Hh acyltrans-
ferase (Hhat)/Skinny hedgehog (Ski), which catalyzes the
attachment of palmitate to the free amino group of the N-ter-
minal cysteine (16–18). Thus, Hh-N has two covalently
attached lipid moieties: cholesterol at its C-terminal end and
palmitate at its N-terminal end.
One unique feature of Hh proteins is their capacity to travel

very long distances, up to 300 �m in vertebrate limb, to reach
their targets. The release and long-range signaling of cholester-
ol- and palmitate-modified Hh-N (hereafter referred to as Hh)
require the activity of Dispatched (Disp), a 12-pass transmem-
brane protein belonging to the RND family of bacterial trans-
porters (13, 19–21). Although mice and flies deficient in Disp
synthesize Hh properly, Hh accumulates in producing cells,
able to activate the pathway in neighboring cells but not com-
petent for long-range signaling (19, 20, 22–24). Although the
Hh-distributing function of murine Disp requires two pre-
sumptive proton-binding domains in transmembrane domains
4 and 10, little else is known about how Disp facilitates Hh
secretion and long-range signaling (20). Recent studies of Dro-
sophila imaginal discs indicate that Hh and Disp co-localize
within endocytic vesicles and suggest that Disp may traffic Hh
to the basolateral membrane, where it is released (24).Whether
or not the trafficking function of Disp is coupled to its Hh-
releasing function or if these two activities are distinct remains
to be shown, and additional studies are needed to determine
whether the trafficking function of Disp is conserved in
vertebrates.

Lipid Modifications Regulate Activity and Distribution of
Hedgehog

Genetic studies in flies andmice indicate that cholesterol and
palmitate are essential for the proper activity and distribution
of Hh ligands. The C-terminal cholesterol moiety is required
for the formation of multimeric Hh complexes, which are
thought to be the biologically relevant form of the morphogen
(25–27). In cells expressing a truncated form of Hh that cannot
be cholesterol-modified,Hhproteins are secreted asmonomers
in a Disp-independent manner (19, 23, 28). Although the pro-
cess by which cholesterol mediates multimerization remains
uncertain, one possibility is that by tetheringHh proteins to the
membrane, the cholesterolmoiety concentratesHhwithin spe-
cific microdomains such as lipid rafts and promotes electro-
static interactions between Hh monomers (29–31). Cholester-
ol-mediated clustering may also promote interactions between
Hh and other membrane-associated molecules such as heparin
sulfate (HS) proteoglycans, whose HS moieties are known to
interact with positively charged residues within a conserved
Cardin-Weintraub motif present in all Hh proteins (Fig. 2) (26,
27, 30, 31). In Drosophila, the HS-containing glypicans Dally
and Dally-like interact with both Hh and the hemolymph-de-
rived lipoprotein lipophorin, leading to the formation of soluble
lipoprotein complexes thatmediate patterning in thewing ima-

FIGURE 1. Hh processing and release. Hh precursor peptides 45 kDa in size
undergo a cholesterol-dependent autocatalytic cleavage in the endoplasmic
reticulum to generate a cholesterol-modified N-terminal fragment (Hh-N,
denoted by N) and a 25-kDa C-terminal fragment (Hh-C, denoted by C). Hh-C
is recognized by the lectins OS-9 and XTP3 and ubiquitylated by the ubiquitin
ligase Hrd1 and its partner Sel1. Ubiquitylated Hh-C is moved into the cytosol
by the p97 ATPase and subsequently degraded by the proteasome. Choles-
terol-modified Hh-N enters the secretory pathway, where the acyltransferase
Hhat catalyzes the covalent attachment of palmitate to the N-terminal cys-
teine. Dually lipidated Hh is targeted to the cell membrane, where cholesterol
facilitates the assembly of multimeric Hh complexes possibly by tethering Hh
to the membrane and promoting interactions with HS proteoglycans (HSPG).
Prior to its release, N- and C-terminal peptides may be cleaved by membrane-
proximal proteases such as those belonging to the ADAM family, resulting in
the removal of both lipid moieties. The 12-pass transmembrane protein Disp
facilitates the release of Hh multimers into the extracellular environment,
although the mechanistic details of this process are not well understood. Ub,
ubiquitin.
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ginal disc (27, 32). Although the addition of HS is sufficient to
induce dimerization of non-cholesterol-modified Shh in vitro,
the composition of vertebrate Hh multimers remains unchar-
acterized (30).
In addition to its role in multimerization, cholesterol also

regulates the distribution of Hh ligands (23, 33, 34). Although
there have been conflicting reports regarding how cholesterol
affects Hh distribution, the majority of data are in agreement
with a role for cholesterol in restricting the spread ofHh ligands
(23, 33, 35, 36). Nonetheless, the mechanism by which choles-
terol limits the distribution of Hh remains unclear, and the
increased range of non-cholesterol-modified Hh ligands may
be secondary to loss of multimerization or Disp-mediated
release. Such an indirect role for cholesterol in regulating Hh
distribution is supported by the finding that, in Drosophila, a
cholesterol-modified form of Hh that cannot multimerize (due
to aK132Dmutation) has a restricted distribution and signaling
range (Fig. 2) (26). Additionally, recent work in vertebrate cell
lines suggests that the cholesterol moiety of Shh is removed by
membrane-proximal proteases prior to its release (30). Taken
together, these data indicate that the role of cholesterol in
determining the range of Hh signaling may not be straightfor-
ward and warrants further investigation.
Whereas non-cholesterol-modified Hh ligands maintain

some of their signaling capacity, loss of palmitoylation abol-
ishes the signaling activity of Hh almost entirely (17, 18, 29, 37),
indicating that palmitate is absolutely required for Hh signal-

ing. Although the importance of palmitate has long been rec-
ognized, only recently have inroads been made in understand-
ing why. Recent work in vitro suggests that palmitate facilitates
the cleavage ofN-terminal amino acids bymembrane-proximal
proteases such as ADAM (a disintegrin and metalloprotease)
family members (38). Such cleavage is required for the forma-
tion of active Shh multimers, as these residues otherwise
obstruct the Zn2� coordination site on adjacent molecules, a
region that likely interacts with Ptc and is known to regulate
Shh stability and activity (Fig. 3) (39–42). Thus, in the absence
of palmitoylation (due to mutation of the N-terminal Cys), Shh
maintains the capacity to multimerize, but these multimers
have significantly reduced signaling activity due to their inabil-
ity to properly interact with Ptc (38). Although these data pro-
vide insight into the role of palmitoylation inHh signaling, they
also raise a number of questions regarding the production and
secretion of Hh. For instance, how is the cleavage of lipid moi-
eties coupled to Disp-mediated release? Are the lipid moieties
of Drosophila Hh also cleaved? Future studies are needed to
address these questions and to determine whether lipid moi-
eties are also cleaved in vivo.

Dual Roles of Patched in Hedgehog Reception and
Pathway Inhibition

The Hh receptor Ptc is a 12-pass transmembrane protein
with homology to the RND family of bacterial transporter pro-
teins. Reception of Hh by Ptc is enhanced by the presence of
additional Hh-binding proteins on the cell surface. These pre-
sumptive coreceptors include a family of immunoglobulin- and
fibronectin type III (FnIII)-containing integral membrane pro-
teins (Ihog and Boi in Drosophila and Cdo and Boc in verte-
brates) and the vertebrate-specific cell surface protein Gas1
(43–45). Although removal of a single coreceptor leads to a
modest, tissue-specific reduction in Hh pathway activity,
removal of two or three coreceptors from Drosophila or mice,

FIGURE 2. Regions of Shh important for receptor binding and multim-
erization. Shown is the structure of human SHH-N (non-cholesterol-modi-
fied N-terminal fragment; Protein Data Bank code 3M1N (99)). Residues in
green (Glu-72, Arg-73, and Lys-75) mediate electrostatic interactions between
Hh monomers and are required for multimerization (38). Arg-73 is the verte-
brate equivalent of Drosophila Lys-132, the mutation of which results in
decreased long-range signaling in the imaginal disc (26). Residues in yellow
(His-133, His-134, His-140, His-180, and His-182) are important for Ptc binding
(note that His-140 and His-182 coordinate with zinc). Residues in red (Lys-32,
Arg-33, Arg-34, Lys-37, and Lys-38) form the Cardin-Weintraub motif and
interact with HS. Note how the N terminus extends away from the globular
domain of SHH-N; some of these residues may be cleaved in the formation of
active Shh multimers (see text).

FIGURE 3. SHH-N receptor binding involves the Zn2� coordination site. a,
structure of human SHH-N in complex with HIP (Protein Data Bank code 3HO5
(39)). The L2 loop in the �-propeller domain of HIP interacts with SHH-N. b, HIP
binds the pseudo-active site in SHH-N, and Asp-383 completes the tetrahe-
dral coordination of Zn2� in SHH-N. Inset, His-140, His-142, and Arg-147 of
SHH-N coordinate Zn2�. Note that the Zn2� coordination site is also required
for binding to PTC, and PTC likely binds SHH in a manner similar to HIP (see
text).
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respectively, leads to a complete loss of signaling, underscoring
the importance of these coreceptors in Hh pathway transduc-
tion (43, 45, 46).
In addition to Boc, Cdo, and Gas1, vertebrates harbor a

fourth Hh-binding protein, Hip, which has no downstream sig-
naling function and likely acts as a decoy receptor by competing
with Ptc for Hh binding (39, 47). Analysis of the crystal struc-
ture of Hip in complex with Shh revealed that Asp-383 of Hip
displaces water and completes the tetrahedral coordination of
Zn2� in the Shh pseudo-active site (Fig. 3) (39, 40). Sequence
comparisons of Hip and Ptc revealed that Ptc contains a similar
sequence of amino acids capable of binding Shh and competing
with Hip for Shh binding, providing novel insight into Hh-re-
ceptor interactions (39). Given thatDrosophilaHh lacks a Zn2�

coordination site and is unable to directly bind Ptc, these data
also suggest that Hh-Ptc interactions differ between flies and
vertebrates (44). This possible divergence is further supported
by the finding thatDrosophilaHhbinds the second FnIII repeat
in Ihog, whereas vertebrate Hh proteins bind a third, non-or-
thologous FnIII repeat in Cdo (48). Thus, despite the conserved
function of Ptc and coreceptors in Hh signaling, the mode of
binding between Hh and these receptor complexes does not
appear to be conserved.
In addition to serving as the Hh receptor, Ptc functions as a

potent negative regulator of the Hh pathway by inhibiting the
seven-pass transmembrane protein Smo. In the absence of Hh,
Ptc localizes to the primary cilium and maintains Smo in an
inactive conformation, preventing Smo from entering the cil-
ium (49). Although early studies suggested that Ptc could
directly bind to and inhibit Smo (50), subsequent work revealed
that Ptc-mediated inhibition is non-stoichiometric, making
direct inhibition unlikely (51). The mechanism by which Ptc
inhibits Smo remains enigmatic. Sequence similarities between
Ptc and the RND family of bacterial transporter proteins have
led many to hypothesize that Ptc may regulate the flux mole-
cules that activate or inhibit Smo, a theory that is supported by
the susceptibility of Smo to modulation by small molecules
such as the steroidal alkaloid cyclopamine (52–54). Given that
Ptc is enriched around the base of the primary cilium, where
vertebrate Hh signaling likely occurs, Ptc might locally control
the abundance of Smo inhibitors or activators (49). Although a
number of Smo agonists and antagonists have been identified,
to date, none have been shown to be regulated by Ptc. Recent
work in Drosophila suggests that Ptc may inhibit Hh signaling
by regulating the synthesis of phosphatidylinositol 4-phosphate
(PI4P), revealing that increased and decreased levels PI4P lead
to Hh pathway activation and repression, respectively (55).
Importantly, by showing that cells deficient in Ptc have
increased PI4P levels, this work provides the first evidence of an
endogenous Hh activator that is regulated by Ptc. Nonetheless,
future studies are needed to determine how Ptc regulates PI4P
synthesis and to verify that PI4P activates the pathway at the
level of Smo rather than acting farther downstream.

Transcriptional Repression in Absence of Hedgehog

The zinc finger-containing Gli transcription factors are the
principal effectors of canonical Hh signaling. Depending on the
availability of Hh ligands, Gli proteins function either as tran-

scriptional activators or repressors. In the absence of Hh,
Gli-FL is proteolytically processed to yield a truncated N-ter-
minal transcriptional repressor (Gli-R) (Fig. 4a). WhereasDro-
sophila harbors a single Gli family member, Cubitus interrup-
tus (Ci), vertebrates have three, Gli1–Gli3. Of these, Gli2 and
Gli3 function as both transcriptional activators and repressors,
whereas Gli1 is a target of Hh signaling and exists only as an
activator.
Althoughmany aspects of vertebrateGli-R formation remain

enigmatic, Suppressor of Fused (Sufu), the kinesin Kif7, and the
primary cilium are required for efficient processing of Gli-FL
into Gli-R (Fig. 4a) (3, 56–59). Sufu stabilizes Gli2-FL and
Gli3-FL and sequesters both proteins in the cytosol, thus pre-
venting their nuclear translocation and activation (6, 60–62).
Sufu also promotes the phosphorylation of C-terminal residues
in Gli-FL by protein kinase A (PKA), which primes Gli-FL for
further phosphorylation by glycogen synthase kinase 3�
(GSK3�) and casein kinase 1� (CK1�) (63, 64). Phosphorylated
Gli-FL is recognized by the E3 ubiquitin ligase �TrCP, leading
to the ubiquitylation and degradation of C-terminal peptides to
generate Gli-R (63–66). In contrast to its relatively minor role
in Drosophila, Sufu is absolutely required for proper develop-
ment and is essential forGli-R formation in vertebrates (56, 67).
Mice deficient in Sufu die around embryonic day 9.5 with sig-
nificantly reduced levels of both full-length and repressor forms
of Gli and features of aberrant Hh activation that resemble loss
of Ptc (56, 67). In the absence of Sufu, Gli-FL enters the nucleus
and is converted into a labile transcriptional activator (Gli-A)
that is quickly degraded within the nucleus in a manner that
depends upon the cullin-3-based ubiquitin ligase adaptor Spop
(62, 68–70). Indeed, Sufu and Spop have been shown to com-
pete for Gli-FL binding, and loss of Spop from Sufu�/� cells
leads to a significant recovery of Gli-FL levels (62). Together,
these data indicate that Sufu regulates Gli-R formation by sta-
bilizing Gli-FL in the cytosol and preventing Spop-dependent
degradation in the nucleus. In addition to its role in Gli pro-
cessing, Sufu may also inhibit the transcription of Hh target
genes through its interaction with SAP18, a component of the
mSin3-histone deacetylase repressor complex (71). However,
this processing-independent role for Sufu was recently chal-
lenged (69), and additional data are needed to clarify the func-
tion of nuclear Sufu in Hh pathway inhibition.
In addition to Sufu, the kinesin-4 family member Kif7 also

appears to be required for optimal Gli processing (57–59, 72).
Mice deficient in Kif7 have increased levels of Gli-FL and
decreased levels of Gli-R and exhibit features of pathway dere-
pression such as polydactyly (57–59). Although themechanism
by which Kif7 promotes Gli processing remains unclear, one
possibility is that, like its Drosophila homolog Costal2 (Cos2),
Kif7 recruits PKA, GSK3�, and CK1� to phosphorylate Gli-FL
(Fig. 4a). Although Kif7 has been shown to interact with Gli,
additional data are needed to determine whether the scaffold-
ing function of Kif7 is conserved in vertebrates.
Studies both in vivo and in vitro indicate that the primary

cilium is required for efficient processing of Gli-FL into Gli-R
(3). Interestingly, the role of Sufu in Gli-R production appears
to be independent of cilia, as cells lacking both primary cilia and
Sufu exhibit aberrant Hh pathway activity akin to Sufu�/� cells
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(69, 73). By contrast, the role of Kif7 in Gli processing is cilium-
dependent, as mice lacking both cilia and Kif7 resemble cilia
mutants (57). Although the exact function of the cilium in Gli
processing remains enigmatic, the cilium may serve as a plat-
form for Gli-processingmachinery. Indeed, Kif7, PKA, GSK3�,
and CK1� are present in the primary cilia and/or basal body in
the absence of Hh signaling (57–59, 74–76). Although Sufu
cannot localize to the cilium on its own, it is likely recruited
there by Gli, as low levels of both Sufu and Gli can be observed
in the cilium even in the absence of Hh signaling (60, 61). Thus,
although Sufu-Gli complexes form throughout the cytosol, they
may be directed to the cilium by Gli for efficient processing in a
Kif7- and kinase-dependent manner.
AlthoughGli2 andGli3 both undergo partial proteolytic deg-

radation in the absence of Hh, the processing of Gli3 is signifi-
cantly more efficient than that of Gli2 (77). Consequently,
Gli3-R serves as the principal transcriptional repressor of Hh
signaling in the absence of ligand, whereas Gli2-A functions as
the predominant transcriptional activator when Hh is present
(78). The increased efficiency of Gli3 processing is due in large
part to the sequence of a 200-residue processing determinant
domain in its C terminus (79). Together with an appropriate

degron and the zinc finger domain, the processing determinant
domain forms a three-part signal that is essential for efficient
Gli3 processing (80). But what happens to Gli2-FL in the
absence of Hh? Like Gli3, the C terminus of Gli2 is phosphory-
lated by PKA in the absence of Hh. Although this phosphoryl-
ation leads to a limited amount of processing, it may also
destabilize Gli2-FL, leading to complete degradation by the
proteasome (77, 81). Such a processing-independent role of
PKA in Hh pathway inhibition is supported by recent genetic
data showing that mice lacking both catalytic subunits of PKA
(Prkaca�/�;Prkacb�/�) die midgestation with a completely
ventralized neural tube, a defect that cannot be explained by
loss of Gli processing alone and that suggests a increase in Gli
activation (75, 82). Given that PKA may also regulate the entry
of Sufu-Gli complexes into the cilium, additional studies are
required to clarify the mechanism(s) by which PKA inhibits Gli
activation and to determine to what extent Gli2 phosphoryla-
tion inhibits pathway activation (61, 75, 83).

Smoothened and Gli Activation in Presence of Hedgehog

In the presence of Hh, Ptc relieves its inhibition of Smo and
allows Smo to become activated. Despite significant sequence

FIGURE 4. Vertebrate Hh signal transduction. a, in the absence of ligand, the 12-pass transmembrane protein Ptc localizes to the primary cilium base and
maintains Smo in an inactive conformation. Gli-FL transcription factors complex with Sufu. Sufu sequesters Gli-FL in the cytosol and stabilizes the protein. Sufu
and the kinesin-4 family member Kif7 promote the phosphorylation of C-terminal residues in Gli-FL by PKA, GSK3�, and CK1�, which may occur at the basal
body of the primary cilium. Phosphorylated Gli-FL is recognized by the E3 ubiquitin ligase �TrCP, resulting in ubiquitylation and proteasomal degradation of
C-terminal residues to generate a truncated N-terminal transcriptional repressor (Gli-R) that inhibits Hh target gene transcription. b, in the presence of ligand,
Hh binding to Ptc causes Ptc to exit the cilium and relieves its inhibition of Smo. Smo is phosphorylated by CK1� and GRK2, inducing a conformational change
and enabling �-arrestin (�-Arr)- and Kif3a-dependent transport into the cilium. Within the cilium, activated Smo promotes the disassembly of Sufu-Gli
complexes. Kif7 also localizes to the cilium in the presence of Hh and likely assists Smo in this disassembly. Gli-FL accumulates in the tip of the cilium and is
shuttled into the nucleus, perhaps on cytoplasmic microtubules. Within the nucleus, Gli-FL receives additional modifications that convert it to a labile
transcriptional activator (Gli-A) that activates Hh target genes. Gli-A is subsequently degraded in a manner that requires the cullin-3-based adaptor Spop.
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differences, many aspects of Drosophila Smo activation are
conserved in vertebrates. In Drosophila, phosphorylation of
C-terminal residues by PKA, CK1�, and G protein-coupled
receptor kinase 2 (GRK2) cause Smo to adopt an open con-
formation and promote its accumulation on the membrane
(84–89). Although the C terminus of vertebrate Smo differs
significantly compared withDrosophila and lacks PKA phos-
phorylation sites, recent data indicate that vertebrate Smo is
also phosphorylated in response to Hh signaling (76, 90, 91).
CK1� and GRK2 phosphorylate the C-terminal tail of verte-
brate Smo, inducing conformational changes and facilitating its
lateral translocation into the primary cilium (Fig. 4b) (76). The
movement of Smo into the cilium is dependent upon �-arres-
tins and the kinesin-2 motor subunit Kif3a, both of which are
recruited to Smo following its phosphorylation by CK1� and
GRK2 (76, 90, 92, 93).
Activated Smo both inhibits Gli processing and promotes

additional ill-defined modifications that convert Gli-FL pro-
teins into transcriptional activators. Although the details of this
process remain somewhat enigmatic, activated Smo likely pro-
motes the disassembly of Sufu-Gli complexes that accumulate
in the cilium following pathway activation (Fig. 4b) (60–62, 94).
Kif7 may also promote Sufu-Gli disassembly, as it localizes to
the cilium in response to Hh and interacts with overexpressed
Smo in tissue culture cells (58). Indeed, such a positive role of
Kif7 in Hh signaling is consistent with the finding that mice
deficient in Kif7 exhibit features of decreased Hh pathway
activity such as reduced Ptc expression in the notochord and
floor plate (57, 58). Nonetheless, additional studies are needed
to determine whether Kif7-Smo interactions are dependent on
Smo phosphorylation, as they are for Drosophila Cos2 (95, 96).
The disassembly of Sufu-Gli complexes allows Gli-FL to enter
the nucleus, where it is converted to its activator form (Gli-A)
(61). The translocation of Gli requires cytoplasmic microtu-
bules, as microtubule-destabilizing agents such as nocodazole
have been shown to inhibit its nuclear accumulation and activ-
ity (60, 97). Although the details of Gli activation remain neb-
ulous, they may involve phosphorylation, as Gli2 and Gli3
appear to be phosphorylated within the nucleus in response to
Hh (60).Given that the nucleus is also the site of Spop-mediated
degradation, however, it is difficult to ascertain whether this
phosphorylation is coupled toGli activation or degradation (62,
69). Gli proteins might also be deacetylated in response to Hh
stimulation, as HDAC1 overexpression in tissue culture cells
leads to Gli1 deacetylation (98). Activated Gli promotes the
transcription of genes involved in differentiation, proliferation,
and cell survival as well as several negative regulators of the
pathway such asPtc andHip to down-regulate pathway activity.

Conclusions and Perspectives

Over the past 2 decades, mouse and fly genetics have been
instrumental in identifying components of the Hh pathway and
elucidating their functions, revealing a high degree of conser-
vation between the two species. However, the discovery that
vertebrate Hh signaling requires the primary cilium has signif-
icantly changed how the pathway is studied and made it some-
what more difficult to draw comparisons between vertebrates
and flies. Despite these challenges, significant progress has been

made in defining vertebrate Hh signal transduction. Nonethe-
less, several questions regarding vertebrate Hh secretion and
signal transduction remain unanswered. The mechanistic
details of Disp-mediated secretion remain elusive, as does the
composition of secreted Hh multimers. The mechanism by
whichPtc inhibits Smo continues to be amystery, and a detailed
understanding of how activated Smo promotes Gli activation is
lacking. Additional studies are needed to examine the role of
Kif7 in Gli processing and activation as well as determine to
what extent the motor function of Kif7 is important for Hh
signaling. Perhapsmost intriguing are the questions of how and
why the primary ciliumplays such an essential role in vertebrate
Hh signal transduction. As cell and developmental biologists
continue to adapt to the challenges inherent in the study of
vertebrate Hh signaling, the answers to these and other ques-
tions will undoubtedly be revealed.
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