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Phagocytosis of bacterial pathogens
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Phagocytosis is an evolutionarily
ancient, receptor-driven process, by

which phagocytic cells recognize invading
microbes and destroy them after inter-
nalization. The phagocytosis receptor
Eater is expressed exclusively on
Drosophila phagocytes and is required
for the survival of bacterial infections. In
a recent study, we explored how Eater can
defend fruit flies against different kinds of
bacteria. We discovered that Eater bound
to certain types of bacteria directly, while
for others bacterial binding was depend-
ent on prior disruption of the bacterial
envelope. Similar to phagocytes, antimi-
crobial peptides and lysozymes are
ancient components of animal immune
systems. Our results suggest that cationic
antimicrobial peptides, as well as lyso-
zymes, can facilitate Eater binding to live
Gram-negative bacteria. Both types of
molecules promote surface-exposure of
bacterial ligands that otherwise would
remain buried and hidden under an outer
membrane. We propose that unmasking
ligands for phagocytic receptors may be a
conserved mechanism operating in many
animals, including humans. Thus, study-
ing a Drosophila phagocytosis receptor
may advance our understanding of innate
immunity in general.

The Drosophila Phagocyte
Receptor Eater and Recognition

of Pathogenic Bacteria

Most animals possess mobile cells that
survey tissues and body surfaces for foreign
intruders and, once recognition occurs,
quickly react by ingesting and destroying

them. These phagocytes are part of the
innate immune system, an evolutionarily
old form of immunity. The innate
immune system uses a limited set of
germline-encoded receptors to fend off a
multitude of microbes, which differ in
surface and composition. Drosophila mel-
anogaster has emerged as an attractive
model system to study how animals meet
this challenge.1,2 The concept of pattern
recognition, originally proposed by
Charles Janeway,3,4 provides an elegant
solution to the problem: by recognizing
evolutionarily conserved, or structurally
and functionally constrained molecules of
microbial origin (patterns), a host can
prevail despite using a limited set of
receptors (termed pattern recognition
receptors).

Scavenger receptors are one group of
molecules that participate in pattern
recognition.5 They form a superfamily of
structurally unrelated molecules with
emerging functions in vertebrate and
invertebrate immunity. Many of these
receptors remain poorly understood.
They are prevalent on endothelial cells
and phagocytes and display a preference
for multiple, polyanionic ligands.6 In
2005 we identified Eater, a Drosophila
receptor with scavenger receptor properties
and involved in bacterial phagocytosis.7

Eater is expressed exclusively in phagocytic
hemocytes and their precursors. Genetic
analysis showed that flies deficient in Eater
expression were immunocompromised and
succumbed more readily to bacterial infec-
tions with a range of diverse bacteria.7-11

Unexpectedly, we found that the
ectodomain of Eater consisted mostly of
EGF-like repeats, an extracellular protein
domain implicated, thus far, mostly in
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protein–protein interactions. However,
the N-terminal part of Eater (comprising
four EGF-like or NIM repeats)7,12,13 was
able to bind directly to heat-inactivated
bacteria,7 establishing Eater as a bona-fide
pattern recognition receptor. In a recent
study,14 we pursued these initial observa-
tions to better understand how a single
phagocytosis receptor can defend a host
organism against an array of different
microbes. In particular, we wondered
whether signaling to a transcriptional
response might contribute to Eater’s
protective role and how Eater interacts
with live bacteria in vivo.

Binding and Internalizing Rather
Than Sensing and Signaling?

Inducible and constitutive responses in the
Drosophila fat body or barrier epithelia are
mediated by two well characterized
immune signaling pathways, Toll and
Immune deficiency (Imd), which display
striking similarities to mammalian NFkB
signaling.1,2 In eater null flies, as well as in
the phagocytic cell line S2, signaling via
these pathways seems to be intact in the
absence of eater-expression, as judged by
the transcriptional induction of selected
examples of immune reporter genes, mainly
antimicrobial peptides.7 To determine
whether Eater is involved in the transcrip-
tional regulation of other genes that are
induced after bacterial binding and pha-
gocytosis, we performed a comprehensive
survey of transcriptional responses in S2
cells in which eater-expression was knocked
down by RNAi. Figure 1A shows that
reduced eater-expression caused a profound
decrease in the phagocytosis of heat-
inactivated bacteria. We monitored gen-
ome-wide transcriptional changes at 30, 90
and 180 min of bacterial phagocytosis
(GEO accession GSE31564). As can be
seen in Figure 1B, eater knock down was
specific; only eater transcripts were signific-
antly reduced. In response to bacterial
phagocytosis, no other significant transcrip-
tional changes could be detected when
comparing control and eater knock down
cells (Fig. 1B). Similar results were
obtained at all time points. We found a
normal induction of immune response
genes, including a battery of antimicrobial
peptides, in eater knock down cells at 90

and 180 min of phagocytosis, although
induction appeared slightly weaker at
30 min (Fig. 1C and data not shown).

These data illustrate that Eater may
work differently from the upstream pat-
tern recognition receptors in the Toll and
Imd pathways, which are expressed in
several immune tissues and act as sensors
whose activation gets translated into a
transcriptional response.1,2 Binding of
microbial components to these sensors
induces a variety of genes that are strongly
enriched in immune functions (illustrated
in Fig. 1C; DAVID enrichment scores
above 7). By contrast, our data suggest
that bacterial binding by Eater does not
significantly alter this transcriptional

response in phagocytes, since it remained
largely unchanged when eater expression
was strongly reduced (on average more
than 10-fold; Fig. 1B and C). The main
role of the phagocyte-specific pattern
recognition receptor Eater may, therefore,
lie in binding and internalization of
microbial particles rather than in sensing
and signaling to induce a transcriptional
response.

Unmasking of Eater Ligands
by Conserved Immune Effectors

Typically, bacterial phagocytosis and pha-
gocyte binding experiments are performed
with inactivated bacteria, in order to avoid

Figure 1. Knock down of eatermRNA in Drosophila S2 cells leads to reduced bacterial phagocytosis
in the absence of major transcriptional changes. (A) S2 cells were analyzed for bacterial
phagocytosis using a mixture of heat-inactivated, fluorescently labeled Gram-positive and Gram-
negative bacteria (Staphylococcus aureus and Serratia marcescens, respectively). Error bars indicate
SD (B and C) Gene expression microarray analysis of S2 cells after RNAi-mediated knock down and
exposure to bacteria. Black dots indicate significant expression changes of . 3-fold (FDR # 0.05;
mean of three independent repeat experiments). (B) Genome-wide transcriptional changes after
90 min of exposure to bacteria. One transcript (eater) was reduced significantly by . 3-fold. Similar
results were obtained at 30 and 180 min. (C) Genes significantly upregulated by . 3-fold after
90 min of exposure to bacteria were strongly enriched for immune response functions (DAVID
enrichment scores of 7.92 and 7.66). Overlap between eater knock down and control samples: 93%.
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confounding effects on phagocyte physi-
ology resulting from lytic or otherwise
toxic molecules that may be secreted by
live bacteria. However, the surface of live
bacteria resembles more closely the
molecular landscape that is encountered
by phagocytic receptors in vivo.15-17 In a
recent study,14 we decided to carry out
Eater binding assays with live bacteria. To
that end, we engineered a soluble Eater
receptor, Eater-Fc, by grafting the N-
terminal 199 amino acids of Eater onto an
antibody Fc-tag (Fig. 2A).

With the help of Eater-Fc, we were able to
show that Eater binds directly to live Gram-
positive bacteria such as Staphylococcus aureus
and Enterococcus faecalis.14 To our surprise,
Eater-Fc could not react with live Gram-
negative bacteria (Fig. 2B).14 It turned out
that the surface of Gram-negative bacteria
required disruption of the bacterial outer
membrane before Eater-Fc binding could
take place: heat- or ethanol-inactivation, but
not inactivation with formaldehyde rendered
bacteria accessible for Eater.14

How might this work in vivo? How can
Eater ligands on Gram-negative bacteria
become exposed in an infected host?

Antimicrobial peptides are evolutionarily
ancient and occur in virtually all the
animal epithelia and barrier tissues.
Furthermore, many antimicrobial pep-
tides possess membrane-disrupting activ-
ities,18,19 and it was reported that cationic
peptides can enhance phagocytosis of
Gram-negative bacteria.20 We used live
Escherichia coli as a model system to test
whether pre-treating with a cationic pep-
tide might render a Gram-negative bac-
terial surface accessible for Eater-Fc
binding. Figure 2C illustrates that this
was the case: incubation of E. coli with
the evolutionarily conserved, cationic anti-
microbial peptide cecropin A lead to
exposure of Eater-binding determinants.14

Our data raise the possibility that some
antimicrobial peptides may possess a
previously unknown function.21 They
may contribute to the in vivo processing
of the bacterial surface in order to unmask
phagocytosis receptor ligands that other-
wise would be hidden under an outer
membrane.

What may be the nature of the ligands
that are recognized by Eater? We found
that Eater-Fc was able to bind to poly-

meric insoluble peptidoglycan,14 a con-
served cell wall component that is nearly
ubiquitous in bacteria.22 However, Eater
did not bind equally well to all types of
polymeric peptidoglycan. For example,
Eater did not bind to the actinobacterium
Micrococcus luteus, neither to live nor
inactivated bacterial particles or to M.
luteus-derived polymeric peptidoglycan.14

M. luteus peptidoglycan differs in import-
ant ways from the peptidoglycans of many
other bacteria. On the one hand, the
crosslinking peptide stems and peptide
bridges within the polymer are distinct.23

On the other hand, it is not associated
with a class of negatively charged mole-
cules, the teichoic acids that are abundant
in the cell walls of S. aureus and E.
faecalis,17 and instead contains teichuronic
acids and lipomannan.17,24

Open Questions

One rather interesting possibility is that
Eater might recognize a combination of
different polyanionic molecules on differ-
ent types of bacteria, or even on the
same bacterium. In this respect, it may
perhaps behave like a “dirty drug.” This
concept was suggested for cationic anti-
microbial peptides, which are able to bind
multiple polyanionic targets with mod-
erate affinity.16,21,25 Different experimental
approaches will be required to address this
possibility.

Further experiments will also be neces-
sary to confirm a role for antimicrobial
peptides in ligand processing and to firmly
establish a biologically relevant coopera-
tion between antimicrobial peptides and
phagocytic receptors. It will be important
to demonstrate that this mechanism
operates not only on laboratory E. coli
strains such as the one used in our study14

and shown in Figure 2, but also on fully
virulent, smooth Gram-negative bacteria
that carry full length lipopolysaccharide
chains. Our attempts to use smooth type
Serratia marcescens, Pseudomonas aeruginosa
or E. coli in conjunction with cecropin A
were unsuccessful. Yet, two membrane-
disrupting treatments, heat-inactivation or
ethanol-fixation, both efficiently exposed
Eater ligands on these bacteria.14 This
finding led us to speculate that antimicrobial
peptides may not be the only molecules that

Figure 2. Eater-Fc binding to live Gram-negative bacteria is dependent on prior exposure of
bacteria to a cationic antibacterial peptide. (A, left) The ectodomain of the native Eater receptor
consists mainly of tandem EGF-like repeats. N- and C-terminal tandem repeats (dark gray) show
higher variability than internal repeats (light gray). Eater-Fc (right): the N-terminal 199 amino acids
of Eater were fused to an IgG1-Fc tag to generate a soluble fusion protein. (B and C) Pre-formed
complexes of biotinylated Eater-Fc with 15 nm gold–streptavidin conjugate were used to reveal
binding of Eater to live E. coli in the absence (B) or presence (C) of cecropin A. Electron micrographs,
magnification 60,000x.
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participate in the process of ligand unmask-
ing in vivo.

Similar to antimicrobial peptides, lyso-
zyme is a ubiquitous and evolutionarily
conserved antibacterial molecule. Lysozyme
possesses a membrane-lytic activity, which is
independent of its enzymatic function as a
peptidoglycan-degrading muramidase.26,27

We were curious, whether lysozyme might
be able to promote Eater-binding to Gram-
negative bacteria. Figure 3 shows that
incubation of live E. coli with lysozyme led
to Eater-Fc binding in a concentration-
dependent way. It is remarkable that Eater
ligands were exposed on live bacteria at low
nM concentrations, which are below lyso-
zyme levels in many tissues (e.g., 9 mM in
mouse lung)28 and the bactericidal concen-
trations of lysozyme (micromolar range).26,29

Our data suggest that multiple immune
mechanisms exist in vivo that can lead to
exposure of previously hidden bacterial
determinants, and that these could be
important for efficient phagocytosis.
Furthermore, antibacterial peptides and
lysozyme may act synergistically.30

Conclusions

In vivo efficiency of pathogen clearance by
phagocytes matters, because bacteria can
outcompete host defenses by rapid replica-
tion. This is especially important in the
initial stages of infection or in tissues that are
constantly exposed to an influx of external
pathogens, such as the non-inflamed

lung.31-33 It is conceivable, that an animal
host uses multiple synergistic ways to cope
with this problem. Phagocytes, antimicro-
bial peptides and lysozymes are well poised
to take part in this process. Our data raise
the possibility that these ancient immune
components act not only as parallel forces,
but also by directly cooperating and
synergizing in the preparation and proces-
sing of ligands for immune receptors. By
studying how a Drosophila phagocytosis
receptor interacts with live bacteria, we may
have uncovered a more general mechanism
by which the innate immune system max-
imizes its use of a limited number of germ-
line encoded receptors in order to counter a
great variety of potential pathogens.

Materials and Methods

Phagocytosis and eater RNAi knock down
experiments were performed as described.14

Quantitative real time PCR (qPCR) was
used to determine the abundance of eater
mRNA in S2 cells (30–60 copies per cell).
Eater knock down was found to reduce
eater mRNA levels by 5- to 10-fold (n = 8;
average: 8-fold reduction) when measured
by qPCR and 16- to 25-fold when measured
by microarray (n = 12; average: 19-fold
reduction). Gene expression data were
generated using Affymetrix GeneChips
(Drosophila Genome Array 2.0) and
GenePattern 2.0 software.34 Gene expres-
sion data in MIAME-compliant form and
details of the experimental design are

available from the GEO public repository
(GEO accession GSE31564). To identify
“enriched biological themes,” gene lists
were analyzed with DAVID (v6.7) using
the “Functional Annotation Clustering”
module with “medium” stringency and
Affymetrix Drosophila Genome Array 2.0
as background.35,36 Eater-Fc binding assays
were performed as described using E. coli
DH10B/TOP10.14 Neutrophil lysozyme
was purchased from Athens Research and
Technology, Inc., reconstituted with water
at 200 mg/ml (12 mM), aliquoted and
stored at -80°C. Lysozyme was diluted in
phosphate-buffered saline at pH 7.2 to the
indicated concentrations and incubated
with washed, live E. coli for 30 min at 25°C.
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Figure 3. Lysozyme promotes Eater-Fc binding to live E. coli. Flow cytometry analysis of binding of 200 nM Eater-Fc to lysozyme-treated E. coli. Lysozyme
efficiently unmasked Eater ligands on live bacteria in a concentration-dependent way; a plateau was reached at 15 nM. Lysozyme concentrations up to
1.5 mM did not affect bacterial viability under these conditions ($ 95% live E. coli). Data shown are representative of four independent runs.
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