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Abstract
Objective—To evaluate the use of a semiautomated computerized system for measuring speech
and language characteristics in patients with frontotemporal lobar degeneration (FTLD).

Background—FTLD is a heterogeneous disorder comprising at least 3 variants. Computerized
assessment of spontaneous verbal descriptions by patients with FTLD offers a detailed and
reproducible view of the underlying cognitive deficits.

Methods—Audiorecorded speech samples of 38 patients from 3 participating medical centers
were elicited using the Cookie Theft stimulus. Each patient underwent a battery of
neuropsychologic tests. The audio was analyzed by the computerized system to measure 15 speech
and language variables. Analysis of variance was used to identify characteristics with significant
differences in means between FTLD variants. Factor analysis was used to examine the implicit
relations between subsets of the variables.

Results—Semiautomated measurements of pause-to-word ratio and pronoun-to-noun ratio were
able to discriminate between some of the FTLD variants. Principal component analysis of all 14
variables suggested 4 subjectively defined components (length, hesitancy, empty content,
grammaticality) corresponding to the phenomenology of FTLD variants.

Conclusion—Semiautomated language and speech analysis is a promising novel approach to
neuropsychologic assessment that offers a valuable contribution to the toolbox of researchers in
dementia and other neurodegenerative disorders.
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The need for improved definition of syndromes and phenotypes is a key theme in dementia
research in general, and frontotemporal lobar degeneration (FTLD) in particular.1 Currently,
FTLD comprises 3 syndromes: behavioral variant frontotemporal dementia (bvFTD),
progressive nonfluent aphasia (PNFA), and semantic dementia (SD). The inclusion of
progressive logopenic aphasia (PLA) as either a variant of FTLD or Alzheimer is currently
being debated.2–8 These syndromes are diagnosed using standard clinical criteria,
neuropsychologic testing, and neuroimaging. Careful clinical evaluation is critical to FTLD
diagnosis, particularly in the early stages of disease progression. A systematic analysis of
spontaneous speech samples is considered “the single most valuable aspect of the
diagnosis”9 for the aphasic FTLD syndromes. Research in aphasia has contributed a set of
instruments in the form of picture description tasks designed to elicit and rate spontaneous
speech, including the Boston Diagnostic Aphasia Examination Cookie Theft stimulus.10 The
assessments with these instruments, however, are traditionally carried out manually, which
is subjective and may not have the detail and precision of measurements necessary to define
either the full range of syndromes, or their nuances. Detailed measurements are particularly
important to the assessment of syntax, semantics, and prosody—the 3 areas identified in a
survey of clinicians’ views on the clinical usefulness of aphasia test batteries.11

Recent advances in computerized natural language processing (NLP) and automatic speech
recognition (ASR)12,13 make it possible to develop objective and precise instruments for
automated or semiautomated analysis of speech and language patterns present in the
spontaneous speech elicited with standard stimuli. In addition to clinical diagnostic and
treatment purposes, precise and fine-grained measurements of prosodic and linguistic
characteristics of spontaneous speech are necessary to enable grouping of these
characteristics across populations of patients to define the linguistic phenotypes associated
with FTLD and other neurodegenerative disorders affecting language. Although FTLD is a
degenerative and currently untreatable disease, availability of objectively defined
characteristics with acceptable variability within and across subjects is critical to designing
clinical trials to test therapeutic interventions that are under development. In this study, we
use a semiautomated system for language and speech analysis for objective measurement of
speech and language characteristics elicited from patients with FTLD on a standard picture
description task.

SPEECH AND LANGUAGE CHARACTERISTICS IN FRONTOTEMPORAL
DEMENTIA

Over half of all patients with symptoms of FTLD exhibit language-related manifestations on
initial presentation. 14 A number of speech and language characteristics were shown to be
differentially sensitive to the effects of FTLD variants. The PNFA variant has been
characterized in terms of dysfluent, effortful, and agrammatical speech.3,15–19 The SD
variant involves multimodal non-verbal and verbal naming and recognition deficits with
relatively preserved grammar.20,21 However, despite these differences between the
nonfluent and fluent aphasic variants of FTLD, there is considerable overlap between their
language specific manifestations.22

Apart from the overlap between fluent and non-fluent types of primary progressive aphasia,
the distinction between the fluent subtype of aphasia and SD is also being debated. For
example, Josephs et al23 treat not otherwise specified primary progressive aphasia (PPA-
NOS) as separate from either SD or PNFA variants of FTLD. However, a recent study by
Adlam et al24 suggests that the distinction between these 2 classifications is a matter of
emphasis rater that differences in the underlying pathophysiology of the phenomenon.
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The PLA variant of FTLD has been introduced into the diagnosis of FTLD relatively
recently. Whereas bvFTD, PNFA, and SD syndromes are likely to represent FTLD
pathologically,7 the grouping of the PLA syndrome with FTLD or Alzheimer disease is
debatable. Similarly to PNFA, spontaneous speech production in PLA has also been
characterized by slower speaking rate, hesitations, and pauses attributable to word-finding
difficulties.2 Some of the cases of primary progressive aphasia distinct from SD and PNFA
in the Josephs et al study also exhibited these altered prosodic characteristics of speech with
relatively preserved grammar and could possibly be classified as PLA.23

Language-related deficits in patients diagnosed with bvFTD tend to be observed at the
higher discourse level rather than syntax, phonology, and semantics found with other FTLD
variants. Studies of patients with bvFTD (or social/dysexecutive variant) showed impaired
working memory that manifests itself through deficits in sentence comprehension,25

thematic role processing in verbs,18,26 and altered discourse characteristics.27 The latter,
including discourse coherence, cohesion, and “empty” speech (overuse of pronouns) are also
sensitive to diffuse neural degradation characteristic of Alzheimer disease on tasks involving
elicitation of spontaneous speech.28–30

Several diverse speech and language features have been identified and used to characterize
fluent PPA and SD in general, and the SD variant of FTLD in particular. Gordon31 used a
Quantitative Production Analysis (QPA) protocol32,33 to compare fluent and nonfluent
aphasic speech productions elicited with a picture description task. The measures used in
QPA protocol were found to be sensitive to the severity of both fluent and nonfluent aphasia
but could not reliably discriminate between these 2 subtypes. In a subsequent study,
Gordon34 tested additional measures of correct information units35,36 and type-to-token
ratio. Although these measures correlated with those obtained with the QPA protocol and
were sensitive to aphasia severity, they also failed to distinguish between fluent and
nonfluent groups.

In summary, language-specific manifestations of FTLD (and progressive aphasias in
general) are diverse with significant overlap across different variants and are currently
assessed using 2 main types of approaches. One approach consists of subjective assessment
conducted by trained neuropsychologists or speech-language pathologists that use Likert-
style scales to judge the performance of the subject/patient on a set of language dimensions
(eg, speaking rate, hesitancy, speech sound distortions, telegraphic speech, grammaticality).
The other approach consists of manual psycholinguistic analysis of speech and language
samples in terms of their phonologic, syntactic, semantic, and pragmatic features. This latter
approach attempts to identify linguistic features sensitive to manifestations of the disease
and then quantify the occurrence of these features in speech and language samples. The first
approach is more suitable in a clinical setting as it is easier and less time consuming to
conduct, whereas the second approach is likely to produce more objective and reproducible
results and, therefore, is more suitable in a research setting. However, the second approach
still relies on manual identification of linguistic features including utterance and clause
boundaries, verb argument structure, thematic roles of verb arguments, and parts-of-speech.

Manual annotation of linguistic features in spontaneous speech samples is a very labor-
intensive process and is subject to variable agreement among the annotators, particularly in
content analysis involving multiple semantic categories.37–39 Although manual linguistic
analysis is an indispensable exploratory tool, validated computerized linguistic analysis has
the potential to minimize the variability in detecting and measuring linguistic phenomena,
thus, offers a better reproducibility and comparability of measurements. High temporal
resolution of computerized analysis of the kind we propose in this article also has the
potential advantage over manual methods limited by human perceptual abilities.
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Neuropsychologic Tests and FTLD Assessment
In addition to the analysis of spontaneous speech and language, research in FTLD has also
relied on standard neuropsychologic test batteries, including visual confrontation naming,
trail-making, verbal fluency, digits backward, number cancellation, verbal memory and
learning, and Stroop test to differentiate between FTLD variants among others.3,7,14,40

However, one of the issues with the use of standardized neuropsychologic tests in FTLD
research has to do with the lack of consistency in test selection and scoring across different
clinical sites.41 These and other studies indicate that standard neuropsychologic tests are
certainly capable of distinguishing between FTLD variants and between FTLD and AD.
However, some studies found that the group differences identified with standard
neuropsychologic tests did not occur consistently across different tests. For example,
Thompson et al22 suggested that neuropsychologic tests may be too narrow to capture the
richness of the behavioral and cognitive features of FTLD and even obscure the differences
between patient groups. Qualitative assessments of error types were proposed to
complement neuropsychologic test scores in obtaining a more complete characterization of
FTLD variants. Computerized approaches to speech and language analysis based on
computational linguistics and NLP technology that we explore in the current study may help
quantify some of these qualitative measures. For example, some of the phonologic errors,
perseverative behavior, poor discourse organization or confabulation on verbal fluency,
Boston Naming and other tests may be correlated with quantifiable measures obtained
through the alignment of audio with transcripts of speech samples and measures based on
statistical language modeling discussed in the Methods section of this paper.

METHODS
Participants

Thirty-eight patients diagnosed with 1 of the 3 FTLD syndromes (bvFTD, PNFA, SD) and
PLA were recruited from 3 academic medical centers. All aspects of this study were
approved by the IRBs at each of the medical centers and the University of Minnesota. All 38
participants underwent a neuropsychologic test battery that included the Boston Diagnostic
Aphasia Examination Cookie-Theft Picture Description Task.10 This assessment was part of
a larger study and minimizing subject burden was a key concern. The details of
administering the neuropsychologic test battery and the spontaneous speech elicitation
procedures were earlier reported.7

Diagnostic Criteria
Diagnostic and exclusion criteria for this study were reported earlier.7 In brief, we defined 4
syndromes: bvFTD, PNFA, PLA, and SD. The inclusion in this study was based on the
Neary criteria.21 In addition, all patients were required to have imaging studies showing
focal cerebral atrophy of at least 1 of these: the anterior temporal lobes, frontal lobes, insula,
or caudate nuclei.

PNFA was diagnosed with expressive speech characterized by at least 3 of these: nonfluency
(reduced numbers of words per utterance), speech hesitancy or labored speech, word finding
difficulty, or agrammatism, in which these symptoms constitute the principal deficits and the
initial presentation.

PLA was diagnosed with fluent aphasia with anomia but intact word meaning and object
recognition in which these symptoms constitute the principal deficits and the initial
presentation.

Pakhomov et al. Page 4

Cogn Behav Neurol. Author manuscript; available in PMC 2012 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SD was diagnosed with loss of comprehension of word meaning, object identity, or face
identity in which these symptoms constitute the principal deficits and the initial presentation.

Behavioral variant FTD was diagnosed with a change in personality and behavior sufficient
to interfere with work or interpersonal relationships; these symptoms constituted the
principal deficits and the initial presentation, and had at least 5 core symptoms in the
domains of aberrant personal conduct and impaired interpersonal relationships.

Cognitive Instruments
Neuropsychologic Assessments—All participants were administered a standard
neuropsychologic test battery consisting of these tests: California Verbal Learning Test Free
Recall,42 Number Cancellation,43 Digits Backward from Wechsler Memory Scale-
Revised,44 Stroop Test,45 Digit-Symbol Substitution, 46 Verbal Fluency for Letters and
Categories,47 Boston Naming Test.48 All tests were scored by board-certified behavioral
neurologists. The motivation for selecting these tests and detailed information on their
performance in the FTLD population can be found in an earlier publication.7

Computerized Psycholinguistic Assessments—NLP and ASR comprise a set of
computational techniques used for computerized analysis of speech and language. The
application of ASR and NLP to psychometric testing is new; however, it is a natural
extension of the capabilities afforded by this technology. We have developed a system for
semiautomated language and speech analysis based on NLP and ASR technology (illustrated
in Fig. 1). For this study, the system was configured to process audio recordings of speech
elicited during the Cookie-Theft picture description task of the Boston Diagnostic Aphasia
Examination. The audio input represented as digitized speech waveform was first manually
transcribed verbatim and then automatically aligned with the transcribed text. The details of
using ASR for automatic alignment including acoustic and language modeling are provided
in the on-line Appendix A.

The resulting subsecond level alignment (illustrated in Figure 2) enables precise
measurement and quantification of durational and frequency characteristics of the input at
the level of utterances (2 or more coarticulated words), words, and individual phonemes.
Although our current approach to treating mispronunciations does not account for many
phonemic distinctive features and may not identify phoneme boundaries precisely in cases
of dysarthric output, it can still be used to identify word or, in the case of unintelligible
speech, utterance boundaries. On the basis of the alignments between the audio, verbatim
transcriptions, and part-of-speech, we defined the following the variables:

1. Pause-to-word ratio

2. Fundamental frequency variance

3. Part-of-speech perplexity

4. Word-level perplexity

5. Pronoun-to-noun ratio

6. Word count

7. Total duration of speech in the sample

8. Mean prosodic phrase length

9. Correct Information Unit count

10. Normalized long pause count (silent pauses >400 ms in duration)
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11. Normalized filled pause count

12. Normalized silent pause count (silent pauses >150 ms in duration)

13. Normalized false start count

14. Normalized repetition count

15. Normalized dysfluent even count (filled pauses, false starts, and repetitions)

The definitions of these variables and technical details related to their computation are
provided in the on-line Appendix B.

Statistical Methods
Factor analysis based on the principal components analysis with Varimax rotation was used
to examine the relationships between various semiautomated psycholinguistic measurements
and to reduce the number of variables. One-way analysis of variance (ANOVA) was used to
evaluate the differences in measurements using different FTLD variants as factors with
Tukey post hoc tests for differences in means adjusted for multiple comparisons. Paired t-
test was used to evaluate the differences between the timings of the word boundaries
identified with semiautomated versus detailed speech and text alignments. All statistical
calculations were carried out with SPSS 13.0 statistical software package.

Precision of Semiautomated Alignment and Part-of-speech Tagging
Measurements of speech and language characteristics used by our semiautomated approach
rely on the alignment between the transcribed text of the picture description and the audio
signal depicted in Figure 2. The precision of semiautomated alignment was estimated in
terms of word beginning (WBBS) and word ending boundary shifts (WEBS)49 as compared
with word boundaries determined by aligning the transcripts with the audio manually. This
detailed manual alignment is a painstaking process and takes significantly more time, effort,
and training to carry out than the regular verbatim transcription. Thus, it was carried out on a
subset of 19 randomly selected cases. In addition to the word boundary shifts, manual
alignment also included part-of-speech annotation enabling evaluation of the accuracy of the
automatic part-of-speech tagging used by our system. Detailed manual alignment was done
subsequent to the verbatim transcription that was carried out for the semiautomated
alignment, and thus was used to estimate the accuracy of the verbatim transcriptions. The
verbatim transcriptions, the detailed manual alignments, and part of speech annotations were
carried out by a linguist specifically trained for this task (DC).

RESULTS
Reduction of Variables to Principal Components

On the basis of the results of the exploratory factor analysis done on all 38 samples and the
semiautomatic psycholinguistic variables, we identified 4 components that cumulatively
accounted for 71% of the total variance in all variables. On the basis of the values of the
coefficients greater than 0.6 in the component rotation matrix (Table 1), we subjectively
determined that the components represent speech length (component 1), hesitancy
(component 2), empty content (component 3), and grammaticality (component 4).

Discriminating Between FTLD Variants
In this section, we present the results of a one-way ANOVA with the 4 FTLD variants
(bvFTD, PNFA, PLA, and SD) used as factors for several neuropsychologic, and
semiautomatic psycholinguistic variables.
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Neuropsychologic Assessments
Of all tests evaluated in this study, only 2 showed statistically significant differences in
means: verbal category fluency (P<0.001) and correctness on the Boston Naming Test
(P<0.001). The mean verbal fluency score for the bvFTD group was 12.87, for PNFA—
11.90, for PLA—7.75, and for SD—5.33. The mean correctness score on the Boston
Naming Test was 23.2 for bvFTD, 23.40 for PNFA, 16.75 for PLA, and 5.00 for SD. Tukey
post hoc test for pairwise differences in mean category fluency scores showed significant
differences between bvFTD and SD (P<0.01) and a difference between bvFTD and PNFA
that approaches significance (P=0.057). On the Boston Naming Test, the differences
between the bvFTD and the SD and the PNFA groups were highly significant (P<0.0001).
The difference between PLA and SD was also significant (P=0.029).

Semiautomated Psycholinguistic Measures
The measures obtained from all 38 study participants showed significant differences in
means on one-way ANOVA tests for pause-to-word ratio (P<0.01), normalized dysfluent
event (P<0.001) count, and the ratio of pronouns to nouns (P=0.01) scores. The distribution
of the scores for these 3 measurements is presented in Figures 3–5, respectively. Tukey post
hoc test for pairwise differences in means for the pause-to-word ratio and the normalized
dysfluent event variables showed significant differences between PNFA and all 3 other
groups— bvFTD (P<0.001), PLA (P=0.01) and SD (P<0.001). For the pronoun-to-noun
ratio variable, significant difference was found only between bvFTD and SD groups
(P=0.02). The differences in means for all the remaining measures were not statistically
significant. However, we did find that the proportion of nouns and verbs was higher in the
PNFA group (26% for nouns and 20% for verbs) than in the SD group (20% for nouns and
18% for verbs). None of the composite variables obtained from the principal components
analysis showed significant differences in means among the FTLD groups.

Precision of Semiautomated Alignment and Part-of-speech Tagging
The mean difference between fully manual and semiautomatic alignments at the word-initial
boundary was 580 ms (SD=920). The mean difference at the word-final boundary was 680
ms (SD=905). Of all semiautomated word-initial boundary alignments, 76% had a difference
from manual alignments of less than 500 ms, whereas this number was 74% for the word-
final boundary alignments. Overall, the accuracy of the automated part-of-speech tagging, as
compared with manual review, was 84% (SD=8). The automatic part-of-speech tagger
carried out best on subjects with PNFA (86%, SD=11) and worst on subjects with bvFTD
(84%, SD=11). A comparison of the verbatim transcriptions created for the semiautomated
alignment and those created during the subsequent manual alignment revealed an 88%
(SD=5.58) absolute agreement between these 2 types of transcription.

DISCUSSION
Our computerized approach to quantifying language uses characteristics obtained from
spontaneous speech, removing the subjectivity inherent in manual assessments, and thus
may improve the reliability and the comparability of measurements across different studies.
Current computer-based neuropsychologic tests face a number of challenges because they
offer only indirect analogues of the traditional “paper-and-pencil” tests. Effective speech
recognition could enable the development of direct analogues and open up a wide range of
new possibilities for neuropsychologic testing.50 Current commercial speech recognition
applications do not have the robustness required, for example, to transcribe fully
automatically spontaneous picture descriptions spoken by patients with FTLD. However, the
semiautomated approach described in this article offers a viable alternative to bridge the gap
between computerized and manual testing based on spontaneous speech. Our approach relies
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on a human transcriptionist (not necessarily trained in neuropsychologic testing) to carry out
tasks that are currently beyond the reach of computers (eg, using global and local semantic
contexts during the process of recognizing speech). At the same time, our approach relies on
computers rather than humans to do what computers do best (eg, capture frequency and
duration of prosodic events). This synergistic combination of human and computer
capabilities offers an opportunity to examine in detail a number of speech and language
characteristics including syntax, semantics, and prosody useful in diagnostic assessments of
FTLD and other syndromes affecting language.

The results of our study are consistent with other studies that investigated the use of
computerized speech analysis for the diagnosis of mild cognitive impairment13 and aphasia
in children.12 We found that speech hesitancy characterized by the ratio of silent pauses to
words and the ratio of disfluent events to words are sensitive indicators of PNFA. Fluency of
spontaneous speech has been earlier found to be significantly decreased in PNFA patients as
compared with controls and other FTLD groups.15 The same study found that speech
fluency was generally decreased in all FTLD variants as compared with healthy controls
with partially overlapping neuroanatomical sources associated with fluency.

Two clinical measures (verbal category fluency and correctness on the Boston Naming Test)
and 2 semiautomated psycholinguistic measures (pronoun-to-noun ratio and pause-to-word
ratio) showed significant differences between the means among the 4 FTLD diagnostic
groups. The findings on the clinical measures are consistent with some of the prior work
showing that category fluency and confrontation naming are among the first single-word
measures to be affected in patients presenting with primary progressive aphasia16 and
FTLD.7,40 Our results suggest that the category fluency of the PNFA group is similar to that
of the bvFTD group in contrast to the PLA and the SD patients. Whereas these results are in
keeping with some of the earlier studies,51,52 other studies have found slightly more
impaired performance on this test in the PNFA group,53 possibly owing to heterogeneity of
the PNFA group and the overlap between diagnostic subtypes of FTLD.

We also found that the mean scores on the verbal category fluency test were similarly high
for the bvFTD (12.87) and the PNFA (11.90) variants as compared with the PLA (7.75) and
SD (5.33) variants. The mean scores on the Boston Naming Test were very close for bvFTD
(23.20) and PNFA (23.40) but different for the PLA (16.75) and the SD (6.00) variants.
These results support earlier findings that the category fluency and the Boston Naming tests
may be more sensitive to semantic deficits and are likely to be useful in the diagnosis of SD
and anomia. Both of these tests fail to distinguish between the behavioral and the nonfluent
aphasia variants of FTLD. The results obtained with the pronoun-to-noun ratio are similar to
those with the Boston Naming Test in that they identify the SD variant as having the highest
ratio of pronouns (0.78) corresponding to the lowest BNT score (6.00). However, the results
obtained with computerized measurements of the pause-to-word ratio indicate that the
PNFA variant has nominally the highest proportion of pauses and dysfluent events including
filled pauses, false starts, and repetitions in their speech and thus, may complement the
standard verbal category fluency and the Boston Naming tests in distinguishing between the
4 FTLD variants.

Our findings for the semiautomated psycholinguistic measures show that pronoun-to-noun
ratio was the highest in subjects with the SD variant and lowest in subjects with the PNFA
variant. The former condition is characterized by an impaired ability to access names of
objects, and thus may lead to the observed tendency for increased pronoun use, whereas the
latter condition involves difficulties with speech production but not necessarily picture
naming. In earlier studies, patients with SD variant of FTLD were found to be significantly
more impaired on a picture naming test as compared with the PNFA and bvFTD
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variants.52,53 Patients with PNFA also produced more errors on the BNT test than healthy
controls; however, these errors were predominantly phonologic in nature, suggesting intact
semantic store in this group.52 Overuse of pronouns (eg, “empty” speech) is a prominent
feature of progressive aphasia found in later stages of Alzheimer disease28,54 and is likely to
be a manifestation of semantic deficits in FTLD that may also lead to impaired use of nouns
and verbs in this population.16,55–57 Similar to these earlier studies, our data also suggest
involvement of verbs and nouns. The proportion of both verbs and nouns was lower in
patients with SD, albeit not significantly so. The fact that the ratio of pronouns to nouns
showed a significant difference indicates that the use of closed class (pronouns) and open
class (nouns, verbs, adjectives, etc.) words diverge in this population, which is consistent
with earlier findings in fluent and nonfluent progressive aphasia variants.22

Pause-to-word ratio measures the hesitancy of speech, and the group diagnosed with the
PNFA variant of FTLD had the highest pause-to-word ratio mean of 0.59. This ratio
indicates that more than half of the audio recordings of picture descriptions by these patients
consisted of silence. These findings are also consistent with earlier studies of nonfluent
progressive aphasias and the PNFA variant of FTLD15,52,53 that showed decreased
performance in this group on the letter fluency test and spontaneous speech fluency
assessments.3,15,17–19

The results of our exploratory factor analysis on the semiautomated measurements indicate
that the measurements may be grouped into 4 composite variables roughly corresponding to
the length/duration of the picture description, speech hesitancy, empty speech
(preponderance of pronouns and false starts), and grammaticality. Although these categories
are subjectively determined and do not capture all aspects of the components, the fact that
the analysis resulted in 4 major components whose nature (albeit subjective) is consistent
with described phenomenology of the progressive aphasias.

The precision of word-initial and word-final boundary semiautomated alignment was better
than expected, given the conversational nature of the discourse, quality of the recording, and
the population with impaired speech. In a study of automatic alignment accuracy on
spontaneous speech obtained in conversational dialogues, Chen et al49 reported word-initial
and word-final differences between automatic and manual alignments on entire
conversational turns in excess of 2.3 seconds. These differences were greatly reduced to less
than 50 ms when the dialogues were presegmented on silences of greater than 500 ms
resulting in shorter utterances. A major drawback of segmenting dialogues on silences,
however, is that the transcripts must also be segmented, which is a manual and labor-
intensive process. Thus, we did not use this technique in our study. The alignment of
spontaneous dialogues is inherently a more difficult task than the picture description and
contains multiple points of overlap in which both speakers talk at the same time. The audio
used in our study had fewer instances of cross-talk and also fewer speaker turns, thus
resulting in smaller alignment differences. The accuracy of automatic part-of-speech tagging
was also consistent with earlier reported results. Brants had earlier trained and evaluated the
part-of-speech tagger that was used in this study on a corpus of Wall Street Journal articles
manually tagged for part-of-speech. The tagger was found to be 97% accurate on predicting
the part-of-speech of the words that were present in the training data and 86% accurate on
new words present only in the test data.58 Our results show that this tagger is 84% accurate,
likely owing to the differences between the data used to train the tagger (Wall Street
Journal) and the conversational discourse of the picture descriptions resulting in new
vocabulary for which the tagger had not been trained. Whereas the accuracy of 84% is good
(approximately 1 out of 10 words is mislabeled), it can be further improved by adapting the
tagger specifically to the language used in picture description tests.
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Characterization of speech in the progressive aphasias has important implications for
diagnosis. There is increasing recognition that the different subtypes of progressive aphasia,
including PNFA, SD, and PLA, have different anatomic and biochemical bases. Proper
identification of the expressive speech disorder plays an important role in differential
diagnosis. Although there are no effective treatments for the different subtypes at this time,
the prospects are quite favorable for the emergence of specific treatments for the tauopathies
that are associated with PNFA and the TDP-43 proteinopathy associated with semantic
dementia. Although automated speech analysis could not replace clinicians, the automated
approach offers a standardized way of characterizing expressive speech and could serve as a
means of classifying subjects for a clinical trial, either by supporting or calling into question
a clinical diagnosis.

Limitations and Future Directions
Certain limitations must be acknowledged to enable the interpretation of the results of this
study. First, the sample size used in this study is relatively small. This is particularly
important for the interpretation of the factor analysis results, which are preliminary and
suggestive rather than conclusive. Many more samples will be required for a more
comprehensive analysis that may include clustering of speech and language characteristics
to define FTLD variants. FTLD is a relatively rare condition, which limits obtainable sample
size; however, we continue to verify our results as we obtain more samples. Second, the
semiautomated approach to language and speech analysis resulted in some loss of precision
in both time alignments and part-of-speech identification. The former is owing to the quality
of the available audio, whereas the latter is likely owing to the fact that the statistical model
used for automatic part-of- speech tagging was trained on a publicly available manually
labeled corpus of written language (Penn Treebank—Wall Street Journal).58 Retraining the
model on a suitable corpus of spontaneous speech manually labeled for part-of-speech may
yield higher accuracy. The audio samples used in this study were initially collected for
traditional manual rather than automatic analysis using an analog tape recorder. Despite the
relatively poor quality of the audio, we found alignment accuracy within 500 ms. Going
forward, we are optimizing the technology and procedures used for audio collection to
obtain high quality digital audio to enable more precise alignment of audio and text. A pilot
test conducted on picture descriptions by 5 healthy younger adults from a different study
showed that fully manual and semiautomatic alignments were within 80 ms at word onsets
and 230 ms at word endings. Third, the current implementation of the system does not
identify phrasal or sentential boundaries— our syntactic analysis is currently limited to
automatic part-of-speech identification and part-of-speech perplexity calculation. Being able
to distinguish intrautterance from interutterance pauses and hesitations may improve the
sensitivity of our prosodic measurements in addition to providing more detailed information
on syntactic violations indicative of grammaticality. Fourth, the acoustic model of the
speech recognizer used in this study was trained on spontaneous speech of English speakers.
Thus, the generalizability of our results to speakers of other languages, English as a second
language, and various social and regional dialects remains to be determined. From the
technological standpoint, our system is extensible to other languages, provided that
appropriate acoustic, language, and part-of-speech models are available or can be created.
Fifth, similarly to the model used by the automatic part-of-speech tagger, the statistical
models used for calculating part-of-speech and word level perplexity were trained on
general English text. Retraining these models on picture descriptions by healthy controls of
the same age and socioeconomic background as patients may change the results. Finally, the
system described in this manuscript is semiautomated. As such, it still requires human input
in the form of verbatim transcription of the speech samples. To make the system operate in a
fully automated fashion, it will be necessary to develop an ASR engine that will carry out
speech to text transcription rather than alignment of manually transcribed speech with the
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audio. The challenge will be to train a system that can operate on impaired speech and to
determine the acceptable level of the accuracy of the system. This study lays the foundation
for these future investigations.
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APPENDIX A: AUTOMATIC ALIGNMENT
The ASR engine used for alignment was based on the Hidden Markoff Model Toolkit (HTK
3.4) developed at Cambridge University Labs, UK.59 We trained a speaker-independent
acoustic model using speech and transcripts obtained from the TRAINS corpus containing
samples of 6.5 hours of speech from 91 spontaneous dialogues containing 55,000
transcribed words.60

Language models were automatically constructed from transcripts for each of the 38 speech
samples in this study and were represented by simple deterministic word-level networks.
Each network contained all words from the picture description transcript with nonoptional
transitions between words, false starts, and filled pauses, and optional silences inserted at
each word boundary. A standard US English pronunciation dictionary was used to bridge the
phoneme-level acoustic model and the word-level language model. To address instances of
dysarthric or otherwise distorted speech, the transcribers were instructed to represent
distorted speech as closely as possible to the original orthographically. For example, in 1
instance the patient had trouble with saying “cookie jar” where the first voiceless stop (k) in
“cookie” was pronounced as a voiceless fricative (ch) and the word “jar” was not
pronounced. This instance was transcribed as “chookie.” As this word is not found in the
standard English dictionary, its pronunciation was automatically constructed on-the-fly
resulting in a simplified (consonant- vowel-consonant-vowel) representation in which
consonants represented by phoneme (t) and vowels were represented by the midcentral (ah).
Completely uninterpretable speech is also represented in transcription orthographically as
closely as possible to the sound and represented on-the-fly as a sequence of “default” sounds
[(t) and (ah)] in the dictionary used by the speech recognizer. Although this method does not
allow us to access the content of the word (phonologic or semantic), it allows us to identify
the speech/silence boundaries necessary to compute prosodic measurements, such as the
pause-to-word ratio.

APPENDIX B: SEMIAUTOMATED PSYCHOLINGUISTIC MEASUREMENTS

Pause-to-word Ratio
This variable represents a simple ratio of pauses to words. A silent pause is defined as a
silent segment longer than 150 ms. This cutoff was chosen conservatively to avoid counting
phonetically conditioned pauses such as the release phase in the phonation of a word-final
stop consonant that may last up to 100 ms in duration.61,62 All nonsilent segments with the
exception of filled pauses (um’s and ah’s) were treated as words in calculating this measure.

Fundamental Frequency Variance
Fundamental frequency (FF) is the lowest frequency in the harmonic series produced by an
instrument with resonant properties including the human windpipe and mouth. In speech
analysis, fundamental frequency is associated with pitch. Changes in FF that occur over the
span of a single phoneme, word, or utterance are treated as indicative of the intonation.
Thus, we use the variability in FF over the entire duration of nonsilent segments produced
by patients with FTLD as an indicator of the variation in pitch or intonation. Lack of this
variation may be indicative of “flat affect” and create an impression of reduced prosody. In
our experiments, FF variance was calculated using the pitch-tracking tools available as part
of the Praat system.63
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Part-of-speech Perplexity
The distribution of parts-of-speech in normal language is not random and can be captured
with a probabilistic language model by calculating the conditional probability of a part-of-
speech occurring in a specified position given 1, 2, 3 or more preceding parts-of-speech.
Such part-of-speech language model captures the notion of grammaticality in which, in
normal spoken English, the likelihood of seeing an adjective immediately after a noun (eg,
boy/noun little/adjective) is much smaller than the likelihood of the reverse (little/adjective
boy/noun). In general terms, the language model “perplexity” is a measure of how well the
part-of-speech sequence obtained from the picture description task “fits” the language model
constructed from a set of reference English utterances.

For this study, we used a corpus of spontaneous telephone conversations
(SWITCHBOARD) obtained from native English speakers to construct the reference part-
of-speech language model. The corpus comprised 2430 6-minute conversations between 500
male and female speakers from all major American dialect groups.64 The parts-of-speech in
the transcripts of the Cookie-Theft descriptions for this study were determined using an
automatic part-of-speech tagger-TnT.58 The tagger operates by calculating the probability of
a part-of-speech occurring in the context of surrounding words and parts-of-speech. For
example, in “cookie in his hand,” the word hand would be tagged as a noun because
statistically that is a more likely category to occur after a preposition (in) and a possessive
pronoun (his) than a verb. However, in “the boy wants to hand his sister a cookie,” the word
hand will be tagged as a verb because that is a more likely category in the context of another
verb (wants) followed by an infinitive (to) than a noun. The details of this statistical part-of-
speech algorithm can be found in the article by Brants, 2001.58

Word-level Perplexity
This measure captures the perplexity of a language model constructed the same way as
measuring part-of-speech perplexity, with the exception that the perplexity is calculated
using sequences of words rather than their parts-of-speech. For example, a language model
may capture the fact that the word sequence “washing dishes” is more likely to be spoken by
a healthy adult native speaker of English than “washing cookie.” The likelihood of these
word sequences is determined by counting how often the words “dishes” and “cookie”
follow the word “washing” in a representative collection of naturally occurring English
utterances. Once the language model is trained on a collection of utterances, we can measure
how well it will predict the words in new utterances that were not used in the initial training.
A model that is more efficient in predicting the words in the new utterances is said to have
lower perplexity.65 Lower perplexity indicates better generalizability of the model to new
utterances and represents greater similarity between the language used to train the model and
the language of the new (test) utterances.

Pronoun-to-noun Ratio
After the part-of-speech for each word in the text of the picture description is automatically
labeled using the TnT part-of-speech tagger, we compute the ratio of words tagged as
pronouns to words tagged as nouns.

Word Count
This measure represents a count of all words found in the picture description transcript.
Silent and filled pauses and other vocalizations such as breaths, sighs, and noise were
excluded.
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Total Duration of Speech in the Sample
This measure was computed by adding up the durations of all nonsilent elements excluding
filled pauses, noises, and false starts in the audio alignment of the picture description.

Mean Prosodic Phrase Length
Spontaneous speech produced by healthy speakers has a certain rhythm that is made up of
changes in speaking rate, stress, and hesitation patterns. A sharp change in rhythm may be
indicative of a rhythmic or prosodic phrase boundary, distinct from syntactic boundaries. 62

To identify changes in speech rhythm, we followed the methodology proposed by Wightman
and Ostendorf66 that relies on calculating the average normalized duration of phonemes.
Wightman and Ostendorf66 used the difference in the average normalized duration of the
last 3 syllables in the coda of the preceding words from the first 3 syllables in the onset of
the word after the word boundary as a predictive feature for detecting prosodic phrase
boundaries. We used Wightman and Ostendorf’s methodology for computing speaker
normalized segment durations, with the simplifying exception that we averaged the segment
duration over the entire word rather than only its coda or onset. We then computed the
difference in averaged normalized segment durations for each pair of adjacent words in the
input. If the difference was greater than 1 standard deviation computed over the entire
speech sample, we marked that location as a rhythmic boundary. We were then able to use
these locations to calculate the average length of a prosodic phrase.

Correct Information Unit Count
We developed an automated approach to counting Correct Information Units (CIU) as
defined by Brook-shire and Nicholas.67,68 CIUs represent words and phrases that reflect the
conceptual content of the Cookie Theft picture. In our implementation, the text of the
transcript obtained in the picture description task is searched electronically for sequences of
1,2,3, and 4 words to find matches to a predefined list of word sequences representing CIUs.
The list of CIUs and word sequences was compiled using Yorkston and Beukelman’s36 list
of concept units as a starting point. The list was expanded to include lexical and
morphologic word variants (eg, falling, fall, fell). The complete list used in this study is
provided in Appendix C.

Normalized Long Pause Count
This variable represents a normalized count of all silent pauses greater than 400 ms in
duration. This measure and the subsequent measures in 11–14 were normalized by dividing
their value by the total length of speech in the sample.

Normalized Filled Pause Count
Our system distinguishes between 2 types of pause fillers—the shorter ones without
nasalization [eg, (ah), (eh)] and the longer ones with nasalization [eg, (uhm)]; however, for
this study we collapsed the 2 filled pause types into 1.

Normalized Silent Pause Count
Only silences greater than 150 ms in duration were counted as silent pauses as described
earlier.
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Normalized False Start Count
This is a normalized count of false starts in which the speaker begins to speak a word but
does not finish the word.

Normalized Repetition Count
Sequences of 2 and/or 3 words adjacent to each other were counted as repetitions.

Normalized Dysfluent Even Count (Filled Pauses, False Starts, and
Repetitions)

This is a combined normalized count of all filled pauses, repetitions, and false starts.

APPENDIX C: LIST OF INFORMATION UNITS AND THEIR VARIANTS
two

children

little

boy

girl

sister

brother

kid

kids

standing

by the boy

by her brother

near the boy

near her brother

reaching up

reach up

reach

on stool

wobbling

off balance

three legged

3-legged

fall over

fall off

falling over
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falling off

tip over

tipping over

by boy

on the floor

hurt himself

reach up

reaching up

reaching

reach

taking

take

took

stealing

pull

pulling

stole

steal

cookie

cookies

for himself

for his sister

pouring

from the jar

cookie jar

on the high shelf

on the top shelf

on the shelf

from the high shelf

from the top shelf

from the shelf

in the cupboard

with the open door

handing to sister

handing to his sister
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handing cookies

to his sister

to the sister

asking for cookie

asking for a cookie

asking for cookies

trying to get

ask for cookie

ask for a cookie

ask for cookies

has finger to mouth

finger to mouth

finger to her mouth

pressed to her mouth

saying shhh

keeping him quiet

keeping the boy quiet

trying to help

laugh

laughing

mother

woman

lady

children behind her

children behind the woman

children behind the mother

behind the mother

standing

by the sink

washing

doing

dishes

on the counter

drying

faucet is on
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full blast

ignoring

daydreaming

oblivious

paying attention

water

overflowing

onto the floor

on the floor

on the shoes

on her shoes

onto the shoes

onto her shoes

on her feet

onto her feet

feet are getting wet

getting wet

dirty dishes left

puddle

in the kitchen

indoors

inside

outside

disaster

lawn

road

path

tree

trees

driveway

house

next door

garage

open window

window is open

Pakhomov et al. Page 20

Cogn Behav Neurol. Author manuscript; available in PMC 2012 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



curtains

drapes

draperies

plate
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FIGURE 1.
Flowchart illustrating the operation of the computerized system for speech and language
assessment.
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FIGURE 2.
An example of time-aligned portion of the transcription from a Cookie-Theft picture
description task.
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FIGURE 3.
Pause-to-word ratio means in 4 frontotemporal lobar degeneration variants. Group means by
diagnosis are indicated with (×) with mean values at the top of each boxplot.
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FIGURE 4.
Normalized dysfluent event means in 4 frontotemporal lobar degeneration variants. Group
means by diagnosis are indicated with (×) with mean values at the top of each boxplot.
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FIGURE 5.
Pronoun-to-noun ratio means in 4 frontotemporal lobar degeneration variants. Group means
by diagnosis are indicated with (×) with mean values at the top of each boxplot.
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TABLE 1

Rotated Component Matrix Obtained With Principal Component Analysis of the Semiautomated
Psycholinguistic Measurements on all 38 Picture Description Samples*

Variable

Component

1 2 3 4

Length† Hesitancy Empty Content Grammaticality

Pause-to-word ratio −0.148 0.803 0.132 −0.020

Fundamental frequency variance 0.042 −0.162 −0.075 0.798

POS perplexity −0.041 0.380 0.279 0.726

Word perplexity −0.407 0.529 0.024 0.213

Pronoun-to-noun ratio 0.108 −0.375 0.729 0.223

Word count 0.932 0.002 0.000 0.126

Speech duration (ms) 0.864 −0.063 −0.027 0.245

Mean prosodic Phrase length −0.498 −0.550 −0.013 0.006

Correct Information unit count 0.726 0.053 −0.390 −0.217

Long pause count −0.322 0.288 0.844 −0.135

Filled pause count 0.195 0.651 0.143 0.206

Pause count −0.182 0.426 0.830 −0.158

False start count 0.329 0.368 0.427 0.248

Pause-to-word ratio 0.181 0.403 −0.091 0.650

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

*
Rotation converged in 7 iterations.

†
Coefficients in bold represent the items used in subjective labeling of components with values exceeding 0.6.
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