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Abstract

Background: Recurrent non-medullary thyroid carcinoma (NMTC) is a rare disease. We initially characterized 27 recurrent
NMTC: 13 papillary thyroid cancers (PTC), 10 oncocytic follicular carcinomas (FTC-OV), and 4 non-oncocytic follicular
carcinomas (FTC). A validation cohort composed of benign and malignant (both recurrent and non-recurrent) thyroid
tumours was subsequently analysed (n = 20).

Methods: Data from genome-wide SNP arrays and flow cytometry were combined to determine the chromosomal dosage
(allelic state) in these tumours, including mutation analysis of components of PIK3CA/AKT and MAPK pathways.

Results: All FTC-OVs showed a very distinct pattern of genomic alterations. Ten out of 10 FTC-OV cases showed near-
haploidisation with or without subsequent genome endoreduplication. Near-haploidisation was seen in 5/10 as extensive
chromosome-wide monosomy (allelic state [A]) with near-haploid DNA indices and retention of especially chromosome 7
(seen as a heterozygous allelic state [AB]). In the remaining 5/10 chromosomal allelic states AA with near diploid DNA
indices were seen with allelic state AABB of chromosome 7, suggesting endoreduplication after preceding haploidisation.
The latter was supported by the presence of both near-haploid and endoreduplicated tumour fractions in some of the
cases. Results were confirmed using FISH analysis. Relatively to FTC-OV limited numbers of genomic alterations were
identified in other types of recurrent NMTC studied, except for chromosome 22q which showed alterations in 6 of 13 PTCs.
Only two HRAS, but no mutations of EGFR or BRAF were found in FTC-OV. The validation cohort showed two additional
tumours with the distinct pattern of genomic alterations (both with oncocytic features and recurrent).

Conclusions: We demonstrate that recurrent FTC-OV is frequently characterised by genome-wide DNA haploidisation,
heterozygous retention of chromosome 7, and endoreduplication of a near-haploid genome. Whether normal gene dosage
on especially chromosome 7 (containing EGFR, BRAF, cMET) is crucial for FTC-OV tumour survival is an important topic for
future research.

Microarrays: Data are made available at GEO (GSE31828).
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Introduction

Thyroid cancer is a common disease of the endocrine system

with a worldwide incidence rate of approximately 212,000 new

cases and 35,000 related cancer deaths per year [1]. Differentiated

thyroid cancer can be subdivided into medullary (MTC) and non-

medullary (NMTC) thyroid carcinoma. Differentiated NMTC is

the most common, and two subgroups, papillary thyroid cancer

(PTC) and follicular thyroid cancer (FTC), account for approx-

imately 95% of all thyroid cancers. Many variants of these

subgroups have been identified, including a follicular variant of

PTC (FVPTC) and the Hürthle cell or oncocytic variant of FTC

(FTC-OV).

The large majority of patients with differentiated thyroid

carcinoma have a favourable prognosis and patient cure is

achieved by thyroidectomy, followed by adjuvant radioactive

iodine treatment. However, approximately 5% of patients show

recurrent disease, mostly due to impaired radioactive iodine-

response, frequently leading to death within 5 years of surgical

intervention [2]. Treatment options for these recurrent cases

remain limited.

Oncocytic carcinomas are characterised by mitochondrial

hyperplasia, which gives rise to distinctive morphologic features

typified by a strong eosinophilic cytoplasm in conventional

histology. The accumulation of mitochondria is associated with

mutations of mitochondrial DNA (mtDNA) in one of the three
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energy-transducing enzyme complexes of the respiratory chain. In

the FTC-OV, mtDNA mutations are mostly found in NADH-

ubiquinone oxidoreductase of complex I [3], resulting in loss of

enzyme activity. Due to the dysfunction of oxidative phosphory-

lation, cells become dependent on glycolysis for energy produc-

tion.

Progress has been made in further understanding the underlying

genetic alterations in thyroid cancer. In NMTC chromosomal

aberrations encompassing chromosomal losses or gains have been

described [4–6] although no specific pattern was recognized

(recently reviewed in [7] and [8]). One study suggested a relation

between numerical chromosomal aberrations, oncocytic follicular

thyroid carcinoma and recurrence [9]. BRAF and RAS mutations,

and RET-chromosomal rearrangements (RET/PTC and RET/

NTRK1) have been identified in approximately 35–70% of cases of

PTCs [10]. The BRAF V600E mutation was also found in 26% of

FVPTC cases [11]. Interestingly, BRAF and RAS mutations, and

RET/PTC rearrangements appear to be mutually exclusive [6,12],

and the less common RET/NTRK1 rearrangement, present in

5.5% of the PTCs, is absent from RET/PTC-associated PTC [13].

While BRAF-RAS mutations and RET-chromosomal rearrange-

ments are rarely seen in FTCs [14], PAX8/PPARc rearrangements

are seen at frequencies of 30–40% [15] and PIK3CA copy number

gains and mutations have also been recently found in FTCs [16].

While all of these somatic DNA alterations are known to be

involved in the PIK3CA/AKT and MAPK pathways, the

upstream receptors of these signalling pathways, EGFR and

VEGFR1, also display copy number gains in about 32% and

44% of FTCs, respectively [16]. These studies strongly implicate

the PIK3CA/AKT and MAPK signalling pathways in thyroid

carcinogenesis and suggest that tailored compounds targeting

these pathways might be therapeutically beneficial. Phase II trials

including a variety of multi-kinase inhibitors are ongoing or have

been completed (reviewed by Kapiteijn et al. [17]) and partial

responses and stable disease were observed in patients with

differentiated thyroid carcinoma [18].

Many of the abovementioned studies used primary NMTC

tissue, without further information on recurrence in the patient. In

order to better characterise recurrent NMTC, we analysed

primary tumour tissue from a cohort of twenty-seven NMTC

patients showing recurrence, comprising mainly PTCs or FTC-

OV tumours. These patients were previously enrolled in a clinical

trial with sorafenib, a multi-kinase inhibitor targeting the MAPK

pathway [17,19]. We carried out a DNA copy number analysis of

tumour tissue using genome-wide SNP arrays and integrated

information on DNA content into these data. By combining these

data with allele-specific intensity, we were able to derive an

estimation of the true chromosomal dosage in these tumours. We

validated our findings in a cohort of twenty frozen benign and

malignant (both recurrent and non-recurrent) thyroid tumours.

This analysis was complemented by mutation analysis of

molecular components of the PIK3CA/AKT and MAPK

pathways.

Materials and Methods

Patient material and flow cytometry
Twenty-seven patients with recurrent non-medullary thyroid

carcinoma were included in the study. These patients were

enrolled under an earlier study protocol [19], approved by the

Institutional Review Board of the Leiden University Medical

Center. This study has been registered at ClinicalTrials.gov (#
NCT00887107). Informed written consent was obtained from all

patients in the study.

Formalin fixed paraffin embedded (FFPE) primary thyroid

carcinoma samples of the primary study were obtained from a

number of pathology departments in the Netherlands. For

validation frozen primary thyroid tumour samples were selected

from twenty patients (Dept. of Pathology, LUMC). One of these

patients took also part in the primary study (primary study Table 1,

No. 9; validation study Table 2, No. 39).

Samples were handled according to the medical ethical

guidelines described in the Code Proper Secondary Use of

Human Tissue established by the Dutch Federation of Medical

Sciences (www.federa.org). Paraffin or frozen sections were taken

from all samples, haematoxylin and eosin stained, and reviewed by

a pathologist (HM).

Multiparameter DNA flow cytometry of FFPE sample
Cell suspensions were prepared for multiparameter DNA flow

cytometry from three to four 2 mm diameter FFPE tissue punches

(Beecher Instruments, distributed by K7 Biosystems Inc. Chicago,

IL). Punches were dewaxed and submerged in citrate buffer for

heat-induced antigen retrieval (HIAR) at 80uC for 60 min,

followed by dissociation using collagenase/dispase at 37uC.

Harvested cells were washed, counted and stored on ice. Next,

cell suspensions were indirectly labelled for stromal cells

(allophycocyanin, APC), epithelial cells (fluorescein isothiocyanate,

FITC) and DNA (propidium iodide, PI) simultaneously and

analysed on an LSRII flow cytometer (BD Biosciences, Erembo-

degem, Belgium) [20].

DNA Isolation
In order to enrich for tumour DNA, 0.6 mm diameter tissue

punches (Beecher Instruments) were taken from selected tumour

areas. From the frozen samples three to six 10 mm sections were

taken using a cryostat. DNA from FFPE samples or frozen samples

was isolated by an overnight or 2 hour digestion with proteinase K

at 56uC, respectively. Next (morning), DNA was purified using the

NucleoSpin purification kit (Macherey-Nagel GmbH & Co. KG,

Düren, BRD) according to the manufacturer’s instructions. DNA

concentrations were determined using the Picogreen method (Life

Technologies Europe BV, Bleiswijk, The Netherlands).

SNP Array Analysis
In the initial series 6k SNP arrays (GoldenGate assay, Illumina,

Eindhoven, The Netherlands) experiments were performed at the

Leiden Genome Technology Center (http://www.lgtc.nl), as

described with minor modifications: [21] 0.4–1.0 mg DNA was

used as input in a multi-use activation step and was subsequently

dissolved in 60 ml resuspension buffer. Genotype, genotype quality

call score (GCS), and the allele specific raw intensities were

extracted using Beadstudio 2.3 (Illumina,). The beadarraySNP

package was adapted to combine copy number profiles, allele-

specific intensities and the DNA index, allowing the determination

of the allelic state for all genomic regions [22].

Briefly, the normalised intensity signal (copy number) and the

so-called lesser allele intensity ration (LAIR) values are subjected

to a segmentation procedure, which allows the identification of

genomic regions that share the same allelic state [21]. The LAIR

value is a measure of the contribution of the two parental alleles to

a genomic region. This value is close to 1 when the contribution of

both alleles of a SNP to the total intensity in the tumour is similar

to that of the reference sample. The value is close to 0 when there

is no signal for one of the alleles in the tumour (as in LOH). Allelic

imbalances will show intermediate values. Regions with a lesser

allele intensity ratio close to 1 should have an even copy number

because both alleles are in balance. The calculated DNA index
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obtained by LAIR analysis (LAIR index) from the summing of the

number of alleles for each SNP should match the DNA index

measured by flow cytometry. This is used to calibrate the allelic

copy number in each genomic region, referred to as the ‘‘allelic

state’’. The following allelic states can be distinguished: [AB],

normal; [A], LOH or physical loss in the context of a diploid

genome but monosomy in the context of a haploid genome; [AA],

copy-neutral LOH; [AAA] or [AAAA] etc., amplified LOH;

[AABB] or [AAABBB] etc., amplified heterozygous state; [AAB],

[AAAB], [AAABB] or [AAAABB] etc., imbalanced gain. All array

data is MIAME compliant and the raw data has been deposited in

GEO (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token = fnibdumqmooeezu&acc = GSE31828).

For the validation series CytoSNP-12 (Illumina, USA) high-

density SNP-arrays were used according to the manufacturer

instructions. After HE guided evaluation of snap frozen tumours

the tissue was sectioned. DNA was isolated as described above and

4 ml of DNA was processed according to the Infinium HD Ultra

Assay protocol and used for hybridization. Sample processing and

hybridisation was performed by ServiceXS (Leiden, The Nether-

lands).

Interphase FISH analysis
The chromosome 7 centromeric region probe (p7t1 alphoid

satellite probe) and the a-satellite centromeric chromosome 6-

probe (D6Z1, Oncor, Gaithersburg, MD) were labelled with biotin

by standard nick-translation. For EGFR, PAC clone RP5-1091E12

was selected from the Ensembl Genome Browser and was labelled

with digoxigenin-12-dUTP (Roche, Basel, Switzerland) by stan-

dard nick translation. The hybridisation solution contained 50%

Table 1. Summary of results of the analysis of 27 recurrent NMTC tumours: DNA index, allelic state and chromosome copy number
determined by FISH for chromosomes 6 (centromeric probe) and 7 (centromeric and EGFR locus specific probes) and mutation
analysis of BRAF, EGFR, RAS (HRAS, KRAS and NRAS) genes and PIK3CA.

Patient No.
Tumour
type Gender

Age at
diagnosis

DNA
index#

Chr. 6 allelic
state
(centromeric
region)

Chr. 6
FISH
copy
number

Chr. 7
allelic state
(centromeric
region)

Chr. 7 FISH
copy number BRAF EGFR RAS PIK3CA

1 FTC m 74 1.01 AB nd AB nd 2 2 NRAS 2

2 FTC f 59 0.98 AB nd AB nd 2 2 2 2

3 FTC m 82 0.90 AB nd AB nd 2 2 2 2

4 FTC/FVPC f 65 1.02 AB nd AB nd 2 2 2 2

5 FTC-OV m 77 0.73 AAAA 2 AB 2 2 2 2 2

6 FTC-OV m 68 0.71 A 1 AB 2 2 2 2 2

7 FTC-OV m 59 0.67 A 1 AB 2 2 2 2 2

8 FTC-OV m 54 1.27 AA 2 AABB 4 2 2 2 2

9 FTC-OV m 60 1.19 AA 2 AABB 4 2 2 2 2

10 FTC-OV m 69 1.01 A 1 AABB 4 2 2 2 2

11 FTC-OV f 66 1.28 AA 2 AAB 3–4* 2 2 22 +

12 FTC-OV f 61 0.62/1.26 A 1 AB 4 2 2 2 2

13 FTC-OV f 59 0.53/1.04 A nd AB nd 2 2 2 2

14 FTC-OV f 53 0.98/1.22 AA 2 AABB 4 2 2 2 2

15 FVPC m 68 1.05 AB nd AAB nd 2 2 2 2

16 PTC m 64 1.00 AB nd AB nd + 2 2 2

17 PTC f 65 1.02 AB 2 AB 2 + 2 2 2

18 PTC m 62 2.06 AABB nd AABB nd + 2 2 2

19 PTC m 72 1.02/2.05 AB 2 AB 2 + 2 2 2

20 PTC m 62 1.07 AB nd AB nd + 2 2 2

21 PTC f 60 0.92 AB 2 AB 2 2 2 2 2

22 PTC f 77 0.98/2.02 AB nd AB nd 2 2 NRAS 2

23 PTC m 60 1.01 AB nd AB nd + 2 2 2

24 PTC-OV f 72 0.94 AB nd AB nd + 2 2 2

25 PTC-OV m 56 0.97 AB nd AB nd + 2 2 2

26 PTC-OV f 63 1.04 AB nd AB nd + 2 2 2

27 PTC Tall Cell m 79 1.00 AB nd AB nd + 2 2 +

Underlined: discrepancy between FISH copy number and allelic state.
# = bold indicates the dominant population as determined by flow cytometry, in cases where multiple populations are present.
* = an intermingled pattern of three and four copies was found both for the centromeric and the EGFR locus specific probes.
+ = presence of mutation.
2 = mutation not found.
nd = not determined.
doi:10.1371/journal.pone.0038287.t001
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formamide, 10% dextran sulphate, 50 mM sodium phosphate

(pH = 7.0), 26SCC, 3 ng/ml of each probe, and a 50-fold excess

of human Cot-1 DNA (BRL-Life Technologies, Rockville, MD,

USA).

For interphase FISH 500 to 2000 nuclei were prepared from nine

FTC-OV and three PTCs, spotted on ethanol-cleaned and air-dried

glass slides. After spotting, the slides were dried overnight at room

temperature. If necessary, the slides were incubated in a 0.1 M

solution of Na2B4O7 to permit swelling of the nuclei. The slides were

then serially rinsed in PBS and sterile water, dehydrated and air-

dried before hybridisation. After applying the probe mix the slides

were heated at 80uC for 12 min and incubated overnight in a moist

chamber at 37uC. Next, the slides were further prepared for

immunodetection, and fluorescent spots of a minimum of 50 nuclei

were counted per probe combination. Images were captured using a

COHU 4910 series monochrome CCD camera (COHU, San

Diego, CA, USA) attached to a DM fluorescence microscope (Leica,

Wetzlar, Germany), equipped with a PL Fluotar 1006, NA 1.30 –

0.60 objective and I3 and N2.1 filters (Leica) and Leica QFISH

software (Leica Imaging Systems, Cambridge, UK).

Somatic mutation analysis
For somatic mutation analysis of EGFR (exons 18–21), the RAS

(HRAS, KRAS and NRAS) genes (codons 12, 13 and 61), PIK3CA

(codons 542, 545 and 1047) and BRAF (codon 600), Sanger

sequencing was performed using specific primers listed in Table

S1. To allow universal sequencing, M13 tails were added to all

primers, which were obtained from Eurofins (Ebersberg, Ger-

many).

Uniform PCR conditions were used (iCycler, Bio-Rad,

Veenendaal, The Netherlands) in 10 ml reactions with 10 ng

DNA, iQ Supermix (Bio-Rad) and 2 pmol primers, as described.

PCR conditions were: 10 minutes at 95uC, followed by 40 cycles

of 5 seconds at 95uC, 10 seconds at 60uC, and 10 seconds at

72uC, with a final elongation step of 10 minutes at 72uC. Purified

PCR products were Sanger sequenced at the Leiden Genome

Technology Center and analyzed using the Mutation Surveyor

software package (Softgenetics, PA, USA).

Results

Patient cohort
We analyzed twenty-seven recurrent non-medullary thyroid

carcinoma (NMTC) cases. Tumours were categorised according to

their histological subtype. The FTC-OV and PTC variants were

predominant in this series (for details, see Table 1). To validate our

findings we further analyzed a cohort of 20 patients, primarily

composed of ATC, FTC-OV and PTC (Table 2 and Table S2).

SNP-array analysis, multiparameter DNA flow cytometry
and FISH

SNP array analysis of all ten FTV-OV showed genome-wide

LOH on most of the chromosomes. In all cases heterozygosity was

retained for chromosome 7. After integration of the DNA index

(DI, see Table 1) in the SNP-array analysis 5/10 FTC-OV showed

LOH due to chromosomal monosomy with the allelic state [A]

(see the materials and methods). In the remaining 5 FTC-OV DI

range (0.98–1.27) copy neutral LOH was found (allelic states

[AA]). The latter suggests endoreduplication of a previous near-

haploid genome.

A single tumour population was observed in 81% of the

samples, after gating in the flow cytometric analysis on the keratin-

positive (K+) epithelial cell fractions (Figure 1). Remarkably, two

out five FTC-OVs with a DNA near-haploid DI (range 0.53–0.73)

showed a second cell population with a DI twice that of the DNA

near-haploid population, indicative of endoreduplication of the

DNA near-haploid population (Table 1, Figure 1).

An example of complete allelic state of a FTC-OV (case No. 13)

in the SNP array analysis is shown in Figure 2A, whereas in

Figure 3 all samples are depicted. The FTC-OV case No. 13 is

only heterozygous [AB] for chromosomes 7, 12 and a segment of

18. All other autosomes show monosomy [A]. Flow cytometric

analysis showed in FTC-OV cases with allelic states AA a DI

between 1.01 and 1.28, indeed approximately twice the range of

DIs found in the DNA near-haploid tumour fractions. One of

these near-diploid tumours was also bimodal, with cell populations

displaying DIs of 0.98 and 1.22, possibly reflecting intra-tumour

heterogeneity. The near-haploidisation process, with or without

subsequent endoreduplication in FTC-OV, implied different

combinations of chromosomes, however LOH was seen in all

cases for chromosomes 3, 6, and 22. Remarkably, this histological

variant never displayed allelic states [A] or [AA] for chromosome

7 as all the FTC-OV samples showed retention of chromosome 7

in a heterozygous state (at least one copy of the B allele was

preserved).

All other NMTC variants, with the exception of one PTC with

a DI of 2.06 (Tumour No. 18, DNA near-tetraploid), showed a

near-diploid tumour population with a DI between 0.90 and 1.07.

Table 2. Summary of results of the analysis of the 20 tumours
in the validation cohort: diagnosis, near-homozygous
phenotype and recurrence.

No. Diagnosis
Near-homozygous
phenotype Recurrence

28 FA No -

29 FA No -

30 FA, partially OV No No

31 ATC No *

32 ATC No *

33 ATC No *

34 ATC No *

35 ATC, partially OV No *

36 FTC No Yes

37 FTC, partially OV Yes Yes

38 FTC-OV& Yes *

39 FTC-OV** Yes Yes

40 FTC-OV, min. inv. No No

41 FTC-OV, min. inv. No$ No

42 Mixed FTC/PTC No Yes

43 PTC No No

44 PTC No No

45 PTC No No

46 PTC No No

47 PTC No Yes

The presence of homozygous chromosomes was determined by high-density
SNP-arrays.
min. inv. = minimal invasive.
* = incomplete resection and death of disease ,5 months.
** = sorafenib study, FFPE sample No. 9.
& = other tumour fraction dedifferentiated to ATC.
$ = possible intratumour heterogeneity.
doi:10.1371/journal.pone.0038287.t002
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Figure 1. Examples of DNA content analysis of recurrent NMTC. Multiparameter DNA content analysis was performed on FFPE
NMTC, as described. A. Multiparameter DNA content analysis of a bimodal PTC with a DI of 1.02 and 2.05 (case No. 19), B. a PTC-OV with a DI of
0.97 (case No. 25) and C. a bi-modal FTC-OV with a DI of 0.53 and 1.04, respectively (case No. 13). a. Haematoxylin – eosin staining 2006. b. keratin
vs. vimentin density plot (note the vimentin co-expression of these tumours and the clear separation between the stromal and the epithelial cell
fraction. The expression of keratin and vimentin are high, relative to the controls showing background fluorescence [d]). Twenty-five samples, 93%
(25/27), showed high vimentin co-expression in more than 50% of the cancer cells (data not shown). c. DNA histogram generated after gating on the
epithelial cell fraction. e. DNA histogram generated after gating on the normal DNA diploid stromal cell fraction. This fraction was used as a DNA
content reference. f. DNA histogram of the epithelial cell fraction after modelling by ModFit (note that the presence of a second cell cycling
population in the bimodal PTC and the FTC-OV DNA histograms is significant and demonstrates endoreduplication. In addition, the FTC-OV shows a
dominant DNA near-haploid population [c, f]).
doi:10.1371/journal.pone.0038287.g001

Figure 2. Examples of genome-wide allelic state analysis of an FTC-OV and a PTC-OV. A. FTC-OV (case No. 13, see also Figure 1) with DIs
of 0.53 and 1.04 shows allelic state [A] for most chromosomes, except for chromosomes 7 and 12 and a segment of chromosome 18 showing
retention (allelic state [AB]). Chromosome X also shows an allelic state [A]. B. The PTC-OV sample with a DI of 0.94 (case No. 24) shows a relatively
limited number of genomic alterations. Chromosomes 1q and 7p showed an [AAA] allelic state after LAIR analysis. Another segment of 1q showed 1
copy but was heterozygous, which can be explained by a balanced mixture of two populations, one with an allelic state [A] and one with an allelic
state [B], representing intra-tumour heterogeneity. In comparison with normal cells, one copy of chromosome 9, 13 and 22 was lost, as shown by the
allelic state [A]. Both X chromosomes were detected in this female patient [AB].
doi:10.1371/journal.pone.0038287.g002
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In two of these tumours (No. 19 and No. 22), in addition to the

DNA near-diploid cell population, a second cell fraction was

observed with a near-tetraploid DNA index.

An example of complete allelic state of a PTC tumour (PTC-

OV, case No. 24) is shown in Figure 2B. In the SNP-array analysis

relative limited chromosomal alterations were identified in this

case. In contrast to FTC-OV, the other histological variants

Figure 3. Summary of the genomic alterations found after LAIR analysis (see Materials and Methods) in 27 recurrent NMTCs. In this
heatmap, rows represent tumours and columns represent chromosomes. The first column shows the tumour number, type and DNA index (DI). The
tumours have been grouped according to their subtype, with ten FTC-OV tumours in the upper group and 17 NON FTC-OV in the lower group. The
combined frequency of genomic alterations for each group is indicated in a separate row. Black indicates allelic states with .2 copies and at least one
B allele retained, e.g. [AABB] and [AAB]. Grey indicates allelic states of [A] and [AA]. The colours in the heatmap indicate: white, allelic state
[AB] = normal heterozygous state. Dark red, allelic states [AABB], [AAABBB], etc. = amplified heterozygous states. Light red, allelic states [AAB],
[AAABB], etc. = imbalanced gain. Dark blue, allelic state [A] = LOH or physical loss in the context of a diploid genome but monosomy in the context of
a haploid genome. Light blue, allelic states [AA], [AAA], etc. = copy neutral LOH and amplified LOH, respectively. Notice the retention of chromosome
7 for five out of ten FTC-OV tumours (allelic states [AB]) with the remaining five showing endoreduplication with allelic states [AABB] (n = 4) or [AAB]
(n = 1). The Integrative Genomics Viewer (IGV) was used to produce this image.
doi:10.1371/journal.pone.0038287.g003
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showed relatively limited numbers of chromosomal aberrations.

Allelic state [A], indicating physical loss, or [AA] (copy-neutral

LOH) was observed for chromosome 22 in six out of eleven PTC

or PTC-variant cases.

FISH analysis: To confirm the copy number of chromosomes 6

and 7, FISH analysis was performed on interphase nuclei isolated

from nine FTC-OV and three PTCs (Table 1, Figure 4).

Centromeric probes for both chromosome 6 and 7 and an

additional probe on 7p (EGFR locus) were used. The previously

determined copy numbers were confirmed in the vast majority of

cases, with 3 exceptions. Two of these exceptions involved

chromosome 7 of tumours no 11 and 12. In tumour no 11, the

LAIR results for chromosome 7 (Figure 4D) were interpreted as

three chromosomal copies in an imbalanced state (allelic state

[AAB]) while FISH (Figure 4E) clearly showed a mixture of three

and four copies, both for the centromeric and the EGFR specific

probes. In tumour no 12, the chromosome 7 discordance might be

attributable to intra-tumour heterogeneity as this sample corre-

sponds to a bimodal histogram where two cell populations are

present.

Validation of the near-homozygous phenotype found in
recurrent FTC-OV

In order to validate our findings we additionally studied the

frozen tissue of twenty thyroid tumours using high-density SNP-

arrays. The validation cohort consisted of three follicular

adenomas (FA, one partially oncocytic), five anaplastic thyroid

carcinomas (ATC, one partially oncocytic), one FTC/PTC, one

FTC, one FTC partially oncocytic, two FTC-OVs, two minimal

invasive FTC-OVs, and five PTCs. All patients with ATC died

within 5 months after treatment. Of the remaining cases five

showed recurrences (see Table 2 and for detailed information

Table S2).

Two FTC-OV (Table 2, No’s 38 and 39) and one FTC,

partially OV (No. 37) showed the characteristic near-homozygous

phenotype as described above. From one FTC-OV patient

(Table 2, No. 39) an FFPE sample was analyzed in the initial

series (Table 1, No. 9). The frozen sample was comparable with

the FFPE sample and showed chromosomes 1–11, 15–17 and 19–

22 in identical heterozygous or homozygous states, respectively.

Only chromosomes 12, 13 and 19 showed homozygous in the

FFPE sample while these were retained in the frozen sample

(compare Figure 3, No. 9 with Figure S2, No. 39).

The near-homozygous phenotype was not observed in any other

case in the validation series. However one ATC with partially

oncocytic features (Table 2 and Table S2, No. 35) showed allelic

imbalances for all chromosomes except chromosome 7 (Figure S2).

Mutation analysis of EGFR, BRAF, RAS genes and PIK3CA
A summary of the detected mutations in the initial cohort is

presented in Table 1. Mutations in the RAS genes and PIK3CA

were rarely found. One FTC-OV case (No. 11) and the PTC Tall

Cell tumour (No. 27) showed a PIK3CA (c.86276A.G,

p.H1047R) mutation. Two tumours (FTC No. 1 and PTC

No. 22) showed NRAS (c.2987A.G, p.Q61R) mutations. No

mutations were detected in EGFR. Of the thirteen PTCs and PTC

variants analysed, ten (77%) showed the activating BRAF

mutation, c.1799T.A, p.V600E. The BRAF mutation was not

detected in the FTC-OV (n = 10) or FTC (n = 4) subgroups. In the

validation cohort 4 BRAF c.1799T.A, p.V600E mutations were

detected, all in PTC. No mutations were found in KRAS or

PIK3CA.

Discussion

We initially characterised recurrent NMTC by combining

genome-wide SNP-array analysis with DNA flow cytometry. We

clearly showed that recurrent oncocytic follicular thyroid carcino-

ma (FTC-OV) is characterised by genomic haploidisation,

frequent endoreduplication of a DNA near-haploid genome with

especially retention of a heterozygous chromosome 7 in all the

cases. The latter suggests a strong association of genomic

haploidisation with mitochondrial defects. In a subsequent

validation cohort this genomic phenotype found in FTC-OV

was also observed in two additional recurrent thyroid cancers with

oncocytic features. There were also 4 cases showing morpholog-

ically partially or overt oncocytic features (one benign FA and one

ATC and 2 non recurrent minimal invasive FTC-OV) that did not

show the characteristic genomic phenotype described above. The

one ATC (partially OV) however did show genome-wide

imbalances with the exception of chromosome 7. Tumour cell

percentage was high enough in this particular sample, so only

tumour heterogeneity could be an explanation.

Our flow cytometric findings differ from previous single

parameter flow cytometric DNA content measurements of FTC-

OV carcinomas [23,24]. In contrast, our multiparameter flow

cytometric method for FFPE samples allows the use of stromal

cells as a DNA diploid reference [20]. Previously, defining a

reliable DNA content reference was problematic [25]. In the

single-parameter approach, the left peak of a bimodal DNA

histogram was assumed to represent the normal stromal cell

fraction in all cases [26]. This approach can lead to the mistaken

designation of a DNA near-haploid FTC-OV as DNA diploid. To

date, all studies measuring DNA content of FTC-OV have defined

these tumours as DNA diploid or aneuploid [23]. In our opinion

the DNA histograms published in 1988 by McLeod et al. [24]

show DNA near-haploidy in FTC-OV, but these authors did not

elaborate on this observation (see Figure S1). Haploidisation has

only been widely documented in chondrosarcomas [27] and is

found sporadically in solid tumours. Even so, we found one report

of a renal oncocytoma with a near-haploid karyotype [28]. One

study on copy number alterations by SNP-arrays showed a near-

homozygous like phenotype in one of the fifteen renal oncocytoma

cases [29]. Others did not report these specific genomic alterations

[30,31]. Oncocytic thyroid tumours have been studied by CGH

technology. A limitation is that with CGH possible regions of

chromosomal homozygosity cannot be detected. Haploidisation is

missed with CGH due to the fact that normalisation of CGH

patterns is based on average genomic content. Interestingly, one

well documented array-CGH study of 13 thyroid FTC-OV and 15

FA-OV by Wada et al. showed highly comparable copy number

alterations [9]. Just like our investigation they found increased

signal intensities for chromosomes 5, 7, 12, 17, 19 and 20. Relative

losses were mostly restricted to chromosomes 2 and 9. Notewor-

thy, these authors (also) suggested an association between these

specific numerical chromosomal aberrations and recurrence. Five

Patients (n = 5) without chromosomal aberrations did not recur,

whereas 5 of 8 patients with chromosomal aberrations showed a

recurrence. In addition, XTC.UC1 cells [32], the only known

model for oncocytic thyroid cancer [33,34], shows a CGH profile

[7] highly comparable with those found by Wada et al. [9].

Our observations suggest a possible relation between the FTC-

OV phenotype and haploidisation/endoreduplication. However,

the underlying molecular mechanism remains to be elucidated.

Possible mechanisms are abnormal mitosis [35] or meiosis-like

events. Alternatively, the process of haploidisation may well be

driven by a lack of cellular energy [36] which in FTC-OV may be
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caused by disruptive mutations in mitochondrial respiratory

complex I [37]. Low mitochondrial ATP levels [38] may compel

a decrease in DNA content in order to promote cell survival. The

loss of entire chromosomes might be a step-wise process and might

be associated with tumour progression (Figure 5). This is

supported by our findings in the FFPE and frozen sample of the

primary tumour of the same patient which differed in allelic state

for chromosomes 12, 13 and 19 (Sample No. 9 and 39,

respectively). However, the endoreduplication seen in several of

the tumours also demands further explanation.

Taken together, these and our observations suggest a relation

between mitochondrial complex I deficiencies, lack of energy and

loss of entire chromosomes during tumour development and

progression. Mitochondrial complex I deficiencies have also been

found in other types of tumours [39], amongst chromophobe renal

cell carcinoma [40] and renal oncocytoma [41]. Also chromo-

phobe renal cell carcinoma shows frequent losses of entire

chromosomes [29–31,42] and as mentioned earlier renal oncocy-

toma does show a highly comparable genomic pattern in rare cases

[29].

High frequencies of LOH in FTC-OV were previously observed

using microsatellite analysis [43,44]. The authors of one study

actually suggested the involvement of chromosomal loss, but did

not recognise possible DNA haploidisation since the FTC-OV

tumours were assumed to be DNA diploid or DNA aneuploid

[45]. Retention of chromosome 7 has been described previously,

both for FTC-OV and FTC [45]. This might indicate that

retention of the heterozygous state in this chromosome is

Figure 4. Interphase FISH analysis in relation to allelic state analysis. In FTC-OV, chromosome 6 was always observed in allelic state [A] or
[AA], whereas chromosome 7 was always retained in a heterozygous state or amplified heterozygous state. To confirm these results, interphase FISH
was performed for chromosomes 6 and 7. Examples are shown, see also Table 1. A. FISH on normal thyroid epithelium. B and C show FTC-OV case
No. 10. B: Allelic state analysis illustrating allelic state [A] for chromosome 6 and allelic state [AABB] for chromosome 7. C. Left panel: green signal,
centromere 6 shows 1 copy, confirming the allelic state [A] in three of the four nuclei. Right panel: four green and four red signals representing EGFR
and centromere 7, respectively and confirming the [AABB] allelic state. D–E show FTC-OV, case no 11. D. The allelic state [AAB] of chromosome 7
could not be confirmed definitively and showed a mixture of nuclei containing three green (EGFR) and three red (centromere) signals or four green
and four red signals, respectively (E). This may be due to intra-tumour heterogeneity.
doi:10.1371/journal.pone.0038287.g004
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important for tumour survival in recurrent FTC-OV. Interesting-

ly, an association between accumulation of mitochondria in

oncocytic lesions and trisomy of chromosome 7 has also been

described [46]. Several important oncogenes are located on

chromosome 7, including cMET, BRAF and EGFR. Three thyroid

cancer cases with activating EGFR mutations have been

described, two of which showed a favourable response when

treated with EGFR tyrosine-kinase inhibitors [47,48]. No activat-

ing mutations in EGFR were identified in our cohort and only two

samples showed a mutation in an EGFR downstream signalling

molecule (NRAS and PIK3CA).

Only a limited number of gross chromosomal aberrations were

identified in FTC and PTCs. PTCs showed frequent LOH on

chromosome 22q, in concordance with a previous study [49]. An

array CGH study in PTCs showed higher percentages of

chromosomal aberrations [6]. However, in contrast to our study

with BRAF c.1799T.A, p.V600E in 77% of the PTCs, very low

frequencies of this mutation were found in that particular study.

These findings further support the concept of different routes of

tumour development in PTC.

Also in concordance with previous studies, DNA ploidy

measurements on PTCs showed mainly diploidy or near-diploid

DNA content. The three PTC-OVs (carrying BRAF c.1799T.A)

did not show the typical haploidisation/endoreduplication seen in

FTC-OV but were comparable to non-oncocytic PTC. Thus,

haploidisation might be frequent in oncocytic tumours, but it is

unlikely that all subtypes of oncocytic tumours show haploidisa-

tion. It is known that the BRAF p.V600E mutant protein in PTC

translocates to the outer membrane of mitochondria and seems to

be involved in high glucose uptake rate and reduced mitochondrial

oxidative phosphorylation and ATP synthesis [50]. To compen-

sate for reduced ATP synthesis, the mitochondrial mass expands,

resulting in the typical oncocytic phenotype. The mitochondrial

proliferation found in PTC-OV might therefore be secondary to

the BRAF c.1799T.A mutation. Still, although speculative, the

effects on the cellular energy supply of mutations in nuclear

encoded mitochondrial genes might be different from mutations in

mitochondrial encoded genes.

In summary, we showed for the first time that FTC-OV is

frequently characterised by initial genomic haploidisation, showing

monosomies of entire chromosomes but with retention of

chromosome 7 in a heterozygous state. Endoreduplication of the

previous near-haploid genome was observed in half of the FTC-

OV cases. Retention of chromosome 7 might be essential for

tumour cell survival in recurrent FTC-OV and may open new

avenues to targeted therapies. A cohort of 20 cases confirmed our

findings. The near-homozygous phenotype is associated with

FTC-OV and might reflect a more aggressive disease. Whether

the oncocytic cell phenotype and mitochondrial dysfunction in

FTC-OV are directly related to these chromosomal aberrations

remains to be established.

Supporting Information

Table S1 Primers used for hot-spot mutation analysis
of EGFR, NRAS, HRAS, KRAS, BRAF and PIK3CA in
NMTC.
(DOC)

Table S2 Detailed overview of the validation cohort.
(XLS)

Figure 5. Hypothetic model of oncocytic follicular thyroid carcinoma development and progression. Mutations in mtDNA underlie low
levels of ATP productions. In order to compensate for these low energy levels mitochondria carrying these mutations proliferate and accumulate in
the cytoplasm of affected cells. Oncocytic FTC is also characterised by a mitochondria-rich cytoplasm, are known to harbour mtDNA mutations
(mainly complex I) and do show a disturbed energy production. DNA replication and progression through the cell cycle are energy demanding
processes. Low energy levels might also disturb normal formation and function of the mitotic spindle, resulting in an unbalanced mitosis. Cells that
have lost chromosomes during several rounds of cell division become DNA near-haploid (haploidisation process). Sustaining a near-haploid genome
may require less energy than of normal 2n cells. Consequently near-haploid cells show a growth advantage and are selected for during tumour
development. Maintaining chromosome 7 in heterozygous state ([AB]) seems to be essential for tumour survival. This might be indicative for the
presence of genes playing an important role in oncocytic FTC. Endoreduplication of these genes into an [AABB] allelic state increases the gene
dosage which might be beneficial for further progression.
doi:10.1371/journal.pone.0038287.g005
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Figure S1 Examples of DNA content analysis of FFPE
oncocytic follicular thyroid carcinomas by McLeod et al.
[24].
(DOC)

Figure S2 Summary of high-density genomic patterns
found in the validation cohort (n = 20).
(DOC)
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