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It is well recognized that thermal motions of atoms in the protein native state, the fluctuations about
the minimum of the global free energy, are well reproduced by the simple elastic network models
(ENMs) such as the anisotropic network model (ANM). Elastic network models represent protein
dynamics as vibrations of a network of nodes (usually represented by positions of the heavy atoms
or by the Cα atoms only for coarse-grained representations) in which the spatially close nodes are
connected by harmonic springs. These models provide a reliable representation of the fluctuational
dynamics of proteins and RNA, and explain various conformational changes in protein structures
including those important for ligand binding. In the present paper, we study the problem of protein
structure refinement by analyzing thermal motions of proteins in non-native states. We represent the
conformational space close to the native state by a set of decoys generated by the I-TASSER protein
structure prediction server utilizing template-free modeling. The protein substates are selected by
hierarchical structure clustering. The main finding is that thermal motions for some substates, overlap
significantly with the deformations necessary to reach the native state. Additionally, more mobile
residues yield higher overlaps with the required deformations than do the less mobile ones. These
findings suggest that structural refinement of poorly resolved protein models can be significantly
enhanced by reduction of the conformational space to the motions imposed by the dominant normal
modes. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4710986]

I. INTRODUCTION

Accurate prediction of protein three-dimensional struc-
tures from the amino acid sequence is an ultimate goal in
computational molecular biology.1 In the last three decades
we have seen significant progress in this field; however, it still
remains one of the most important challenges, especially for
proteins having a low degree of sequence similarity to known
proteins structures. The importance of the protein structure
prediction problem reflects the key role of proteins in living
organisms, and potential significance of structure predictions
in the pharmaceutical and biotech industries. A more accu-
rate knowledge of protein structure is a critical basis for a ra-
tional, computer-aided drug design.2, 3 This deeper structural
knowledge can significantly enhance the prediction and un-
derstanding of the mechanisms of protein function.4 However,
with the high cost of experimental protein structure determi-
nation (estimated in 2008 to be on average $60 000–70 000
per single Protein Data Bank (PDB) entry),5 gains from com-
putational approaches are generally perceived to be impor-
tant, as evidenced by the National Institutes of Health Pro-
tein Structure Initiative (PSI) homology modeling program.
More important, a better understanding of protein function
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requires prior knowledge of its structure. Usually protein
function prediction follows a traditional scheme assuming
that the protein sequence determines its structure, and a static
structure determines its function.6 Despite a conventional
static view of protein structure based on crystallographic data,
certain parts of protein structure, especially those outside the
protein core are relatively mobile.7 All atoms in the struc-
ture fluctuate around their mean positions with some fluctu-
ations being as large as 10 Å.8 However, these motions are
not independent, and often depend on the entire structure, an
observed high level of cooperativity is well captured by the
elastic network models. These thermal fluctuations are mani-
fested in the crystallographic Debye-Waller temperature fac-
tors (B-factors), although often confounded by intermolecular
interactions. It is well established that protein function often
cannot be fully explained by its static structure only.9–11 The
dynamics is observed directly in multiple structures of the
same, or similar proteins, as revealed by principal component
analysis (PCA),12 which shows close agreement with the elas-
tic network models (ENMs).8, 13–21 The ENMs have proven
their ability to sample efficiently conformational space. Es-
pecially noteworthy has been their ability to agree with the
conformational transition direction between two forms of
the same protein. These studies by us and others provide
important evidence that structures, even when coarse-grained,
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have an intrinsic tendency to fluctuate in limited numbers of
directions.22–29 The present work to refine predicted protein
structures is built upon this foundation.

Other experiments such as NMR,30 site-directed spin la-
beling (SDSL)31, 32 and hydrogen exchange can also provide
dynamics information. All these studies provide deeper in-
sights into protein physics, which lead to improved methods
for protein structure prediction, protein engineering, and ra-
tional drug design. However, most researchers focus on the
dynamics and the structure of biomacromolecules near the
global free-energy minimum (native state). Despite the fact
that during the process of folding or misfolding (both in
vivo and in vitro) protein traverses through many intermedi-
ate states,33–35 much less attention is being paid to the struc-
tures in non-native (intermediate) states. The large number
of local (non-global) energy minima predicted by the the-
ory of the protein energy landscape,36, 37 makes it practically
impossible to analyze all possible non-native states. Usually
for a set of predicted structures, energy minimization is per-
formed to obtain the structure corresponding to the closest
energy minimum to the native one.38 Such an approach usu-
ally requires a full-atomic representation of the system. Ad-
ditionally, the reliability of such approaches can be ques-
tioned because of the difficulty of seeking the global energy
minimum.39, 40 There is not a reliable energy function which,
for a given protein, can distinguish the native state from all
non-native conformations. Most of the time a structure will
reside within the global energy minimum, but thermal interac-
tions with solvent can result in energy exchanges, conforma-
tional transitions, and even unfolding.35 There is also a non-
zero probability that a protein in local, non-native state energy
minimum can traverse energy barriers, and reach the global
energy basin. Such a model of protein dynamics in the local
state was proposed by Kitao et al., and called the jumping-
among-minima (JAM) model.41 In this model, protein mo-
tions in a state close to the native one are divided into two
groups: (i) Harmonic modes of higher frequency, which sam-
ple a basin of each substate, and are responsible for intrastate
vibrations. (ii) Anharmonic motions which are responsible
for the traversing of substates, and correspond to the slow-
est modes. They constitute about 5% of all motions, and are
called hierarchical modes. Despite the modes responsible for
large scale conformational changes being anharmonic it has
been shown that for short time scales they can be represented
by harmonic vibrations.42 The situation changes for longer
time scales, with the directions of vibrations changing only
slightly.42, 43 Because these anharmonic motions account for
the larger part of protein dynamics a “reaction” pathway be-
tween two states should be minimized.44 Obtaining such path-
way is difficult, but the elastic network models provide some
assistance in this direction.45, 46

To investigate protein function and dynamics accurate
protein structures are required. Often even the most sophis-
ticated and successful structure prediction methods (e.g.,
I-TASSER,47 CABS,48 ROSETTA49), cannot provide the tar-
get structures with sufficiently high accuracy. Therefore, the
future progress in computational biology critically depends on
the successful refinement of models generated using standard
template(s)-based (or template-free) modeling techniques.

The importance of structure refinement has been recently em-
phasized and since the 8th edition of the Critical Assessment
of protein Structure Prediction (CASP) event (CASP8) a new
category of refinement of protein models was proposed. The
latest analyses of CASP results50, 51 suggest that the solution
to this problem is still missing.

Protein modeling efforts cannot yet provide predicted
models that agree perfectly with experimentally determined
structures, but often these structures are close enough to war-
rant efforts to refine them. Predicted structures are usually ob-
tained by clustering structures from folding simulations. It can
be assumed, that if a structure from the clustering, is not in the
global minimum it occupies one of the local energy minima
(substates) which are closely proximate to the global one. The
JAM model mentioned earlier suggests, that if one considers
a set of structures in such a substate, the directions of thermal
motions, even in the harmonic approximation, should over-
lap with the direction of deformation of structure towards the
native state.52 This expectation is additionally supported by
recently performed MD simulations which demonstrate the
validity of the JAM model on larger spatio-temporal scales,
which serve to justify approximating anharmonic oscillations
by harmonic terms.67, 68 Such an assumption is valid provided
that the structure modeled has at least a moderate accuracy. In
addition, it is important that the ensemble of structures comes
from template-free modeling, since when a template is used,
the generated ensemble of structures is artificially shifted to-
ward the local minimum imposed by template.

The idea of using normal modes for refinement of protein
structural models obtained from x-ray crystallography has
been presented previously.66 Here, we focus and test a similar
concept for the purpose of refining and improving predicted
protein structures. To choose such conformations, putatively
in non-global energy minima, protein structures are taken
from conformation decoy sets generated by I-TASSER.47 Hi-
erarchical structure clustering is then performed.53 The equi-
librium dynamics of these structures located at either local
or global minima is described by anisotropic network model
(ANM).54 Prior to applying the ANM, all structures have
been energy minimized. The overlap between the thermal mo-
tions and the direction of the deformation towards the native
state is then analyzed. From the viewpoint of the JAM model
these should be related, especially if one considers an ensem-
ble of putatively near-native structures instead of only one
structure.41 We measure the overlap as the cumulative over-
lap (COV) between the deformation matrix (which describes
how a given conformation differs from the native structure)
of the system, and the set of lowest frequency normal-modes.
Interestingly, a quite high correlation is observed. Correla-
tions between the contribution of each residue to the COV
and its mobility are examined. At the end, the properties of
the COVs and some simple descriptors of protein structures
are analyzed.

II. METHODS

A. Deformation vector

We represent a structure by its Cα trace where the chem-
ical identities of the amino acids are neglected. Thus a
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FIG. 1. Scheme of construction of the deformation matrix between two
structures. Structures are superimposed, and then the i-th element of defor-
mation matrix T is taken as a difference between the coordinates of two cor-
responding positions. On the picture Q indicates query, and the M modeled
structure so that T = Q – M.

structure can be expressed as an N × 3 coordinate matrix,
where N is the number of amino-acids in the protein, and the
position of the i-th residue is described by a set of three co-
ordinates (xi, yi, zi). Following the structural superposition of
two structures, the deformation vector is calculated. If Q is
the coordinate matrix of the native protein structure, and M
is the coordinate matrix of the structure being compared then
the deformation vector is given by

T = Q − M (1)

with T being the N × 3 matrix that describes the positional
difference between the structures Q and M. Then T is resized
from N × 3 to 3N × 1. An example of the construction of
such a matrix is depicted in Figure 1.

B. Decoy clustering – hierarchical clustering
of protein models (HCPM)

In order to condense the information from trajectories
and to find putative structures in global or local energy min-
ima, HCPM53 is performed. In the initial step, each structure
forms a separate cluster (size of one). During each iteration of
the algorithm, the two closest clusters are identified and com-
bined into a single cluster. Then program stores the identities
of the combined clusters and the distances between them. The
distance between any two clusters is calculated as the small-
est root-mean-square deviation (RMSD) between all pairs of
members of the clusters. The RMSD cut-off separating two
clusters is adjusted automatically during clustering. The min-
imum size of retained clusters is 20 members. The clusters are
sorted by the number of the members in the cluster. The most
populated cluster is called the top one.

C. Datasets from I-TASSER simulation

For this study 56 trajectories have been considered. They
come from template-free protein folding simulations carried
out by using one of the most accurate algorithms for pro-
tein structure prediction: I-TASSER.37 Each structure dataset

is prepared from a long template-free simulation. Each orig-
inal decoy set contains 12 500–32 000 of protein decoys. We
use trajectories that are freely available from the Zhang Lab
web-site (http://zhanglab.ccmb.med.umich.edu).47, 55 Details
of the I-TASSER algorithm can be found elsewhere.47 Here,
we are dealing with structures considered to be at local en-
ergy minima, and near the global free energy minimum (na-
tive structure). To select possible structures trajectory cluster-
ing is performed. An appropriate structure in the local (global)
energy minimum is found by taking the central member of the
cluster. Such a medoid can sometimes have some structural
clashes. To remove these we perform molecular mechanics
minimizations in vacuum with the OPLS-AA56 force field us-
ing GROMACS version 4.0.7.57 Minimization stop criteria was
the presence of maximal force <1 kJ mol-1 nm-1. Electrostatic
and van der Waals interactions were applied with a cut-off of
1 nm.

D. Protein quality predictor (ProQ)

For the quality assessment of each medoid the neural net-
work method ProQ58 was applied. This method combines the
descriptors for a given structure and returns two values: LG-
score and Max-Sub, which taken together describe the qual-
ity of the structure. LG-score (Max-Sub) scores higher than
1.5(0.1), 3(0.5), and 5(0.8) correspond to correct, good, and
very good models, respectively. The descriptors used are non-
hydrogen atom contacts with a cut-off of 5.0 Å, and residue-
residue contacts with a 7.0 Å cut-off. The residues are ex-
pressed in a six letter alphabet. In addition, solvent accessi-
bility surface area for each amino-acid and the compatibility
of the secondary structure with the secondary structure pre-
dicted by PSIPRED59 are taken into account.

E. Anisotropic network model

The anisotropic network model54 is a coarse-grained
model for the protein dynamics, which is used to investigate
and describe the fluctuational dynamics in terms of the normal
modes of an elastic network. It is assumed that each amino
acid is represented by one point (in our case by the Cα atom).
Then each pair of residues separated less than a cutoff dis-
tance is assumed to be connected by a harmonic spring.

If the native structure corresponds to the energy mini-
mum, then we can expand the potential energy in the Taylor
series in terms of small positional deviations of residues �R
from their mean equilibrium values R0

V (R0 + �R) = V (R0) + ∂

∂R
V (R)R0

· �R

+1

2

∂2

∂R2
V (R)R0

· �R2 + ... . (2)

For small deviations one can neglect terms higher than the
second. Taking V(R0) = 0, and noticing that the first deriva-
tive is equal to zero, we can rewrite that equation as

V (R0 + �R) = 1

2
�RT H�R, (3)

http://zhanglab.ccmb.med.umich.edu
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where H is the matrix of second derivatives. If the distance be-
tween two residues i and j is less than or equal to a cutoff value
(taken in this study as 18 Å),65 then we calculate H3i + k, 3j + l

(k, l = 1–3) by applying a harmonic potential in the compu-
tation of the second derivative; otherwise H3i + k, 3j + l is set to
0.

The Hamiltonian of the system can be written as

M�R̈ + H�R = 0. (4)

From the assumption of the harmonic nature of oscillations,
we can express the Hessian as

H = U�UT , (5)

where U matrix is a matrix of eigenvectors, and � is a diago-
nal matrix of eigenvalues. There are 3N-6 non-zero eigenval-
ues. The six zero eigenvalues arise from the rigid body trans-
lations and rotations corresponding to six degrees of freedom.

From such decomposition one can easily calculate the
thermal fluctuations of each element of the elastic network,
which can be expressed as a B-factor with the following
formula

Bi = kBT

γ

3∑
k=1

H−1
3i+k,3i+k. (6)

Here γ is the universal spring constant used in the calculation
of the Hessian, kB is the Boltzmann constant, T is tempera-
ture, and H−1

3i+k,3i+k is the (3i+k)-th diagonal element of the
inverse of the Hessian matrix H−1 .

F. Cumulative overlap

The overlap (alignment) Oi between the deformation ma-
trix T, and the i-th normal mode ui is defined as44

Oi = |T · ui |
‖T‖ · ‖ui‖ , (7)

where ‖X‖ denotes the norm of the vector X. Perfect match
between the two directions occurs when OT,i is equal to 1.0.
Next, we define the k-th cumulative overlap COV(k) between
first k normal modes and the deformation matrix as8

COV (k) =
(

k∑
i=1

O2
i

)1/2

. (8)

Positional overlap between deformation matrix T, and i-th
normal mode is defined as

Oi,j = |T · ui |
‖T‖ · ‖ui‖ − |T · u0,j

i |
‖T‖ · ‖ui‖ , (9)

where T, u, and i have the same meaning as in
Eqs. (7) and (8), and the superscript 0, j denotes that the j-th
element of the ui mode was set to zero. Cumulative positional
k-th overlap COV(j,k) is defined by analogy to COV(k) as

COV (j, k) =
(

k∑
i=1

O2
i,j

)1/2

. (10)

G. Spearman correlation coefficient

Spearman’s rank correlation coefficient is a non-
parametric measure of the statistical dependence between
two ranked variables. In the case of no tied ranks the Spear-
man correlation coefficient can be computed from a simple
formula:

ρS = 1 −
6

n∑
i=1

d2
i

n(n2 − 1)
(11)

with di = xi – yi being the difference between the ranks of
the two variables. Spearman’s rank correlation coefficient is
especially useful when we predict a monotonic dependence
between two variables. In the case of the existence of equal
rankings ρS is computed from the same formula as Pearson
correlation coefficient (but after replacing random variables
by their rankings),

ρP =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

n∑
i=1

(yi − ȳ)2

. (12)

H. TM-score

Template Modeling score (TM-score)64 is a parameter to
measure proteins structure similarity and it is defined as

TM − score = 1

LQ

LQ∑
1

1

1 +
(

di

d0

)2 , (13)

where LQ is the length of the query protein, di is the Cartesian
distance of two corresponding amino acids after structures su-
perposition, and d0 is estimated from following formula:

d0 = 1.24 3
√

LQ − 15 − 1.8. (14)

III. RESULTS AND DISCUSSION

A. Trajectories clustering summary

Structure clustering of 56 decoys sets obtained from
template-free protein structure predictions by I-TASSER37

was performed. Characteristic representatives of highly pop-
ulated clusters called medoids are obtained. Only cases with
sufficiently large population of clusters are analyzed. Here 53
cases were considered. Table I summarizes the results of clus-
tering. Proteins are small to medium size, with a median num-
ber of residues equal to 76. Proteins are modeled moderately
well with an average RMSD of about 5.36 Å if the best struc-
ture is from the top cluster. The accuracy of prediction is in-
creased (to RMSD = 4.55 Å) by relaxing the considerations
and permitting the choice of the best structure from among the
first top five clusters. Because only models close to the native
structures are considered, they should have at least the same
fold. As a cut-off a TM-score greater than or equal to 0.5 that
is equivalent, more or less to 4.5 Å is used.60 Following ap-
plication of this restriction, 28 cases remain (from initial 53
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TABLE I. Summary of clustered output. First column is the PDB name of the protein. Italic cases were not considered in later analyses because of poor
resolution. The second column is the number of amino acids in the protein. The third column shows the RMSD of the medoid of the first cluster, while the fifth
column shows the RMSD for the best medoid among the first top 5 clusters, and the number of that cluster. The fourth and sixth columns show the changes of
RMSD after energy minimization. The superscript m denotes a median from the column.

�RMSD[Å] ∼ energy Top 5 – �RMSD[Å] ∼ energy
Name Length Top 1 – RMSD[Å] minimization RMSD[Å]/C. No. minimization

1abv 103 13.75 0.56 9.03/4 0.30
1af 7 72 4.83 0.19 4.26/3 0.61
1ah9_ 63 3.42 0.43 3.42/1 0.43
1b4bA 71 5.74 0.59 5.37/4 0.14
1b72A 49 2.91 0.43 2.91/1 0.43
1bm8 99 10.26 0.18 7.06/3 0.41
1bq9A 53 8.56 0.51 6.67/2 0.53
1cewI 108 4.16 0.40 3.82/2 0.46
1cqkA 101 2.08 0.52 1.91/4 0.48
1csp_ 67 2.64 0.36 2.54/4 0.37
1dcjA 73 9.63 0.36 9.63/1 0.36
1di2A 69 3.59 0.42 3.06/5 0.42
1dtjA 74 2.37 0.45 1.80/4 0.46
1egxA 115 2.79 0.54 2.03/3 0.49
1fadA 92 3.64 0.49 3.35/3 0.49
1fo5A 85 3.89 0.13 3.71/4 0.54
1g1cA 98 2.68 0.37 2.49/4 0.44
1gjxA 77 8.7 0.50 8.62/5 0.44
1gnuA 117 9.81 0.54 9.44/4 0.55
1gpt 47 6.56 0.54 6.52/3 0.53
1gyvA 117 3.62 0.49 3.60/2 0.54
1hbkA 89 3.95 0.56 3.70/2 0.50
1itpA 68 10.6 0.33 10.49/3 0.01
1jnuA 104 3.27 0.43 2.89/4 0.58
1kjs 74 8.29 0.41 5.73/2 0.42
1kviA 68 2.21 0.15 2.21/1 0.15
1mkyA3 81 4.91 0.47 4.91/1 0.47
1mla_ 70 3.74 0.39 2.97/2 0.55
1mn8A 84 12.38 0.44 8.69/6 0.58
1n0uA 69 5.18 0.41 4.17/2 0.51
1ne3A 56 5.29 0.3 4.66/3 0.2
1no5A 93 11.02 0.52 10.69/5 0.49
1npsA 88 2.56 0.61 2.29/3 0.63
1o2f B 77 6.91 0.52 6.91/1 0.52
1of9A 77 3.41 0.35 3.41/1 0.35
1ogwA 72 1.46 0.61 1.46/1 0.61
1orgA 118 3.06 0.50 2.51/2 0.50
1pgx_ 59 3.29 0.49 3.16/2 0.59
1r69 61 2.08 0.44 1.45/4 0.45
1sfp 111 5.35 0.14 5.05/3 0.01
1shfA 59 1.48 0.54 1.48/1 0.54
1sro_ 71 3.22 0.55 3.22/1 0.55
1ten_ 87 2.06 0.47 2.00/3 0.42
1tfi 47 5.52 0.48 5.52/1 0.48
1thx_ 108 2.98 0.49 2.32/4 0.15
1tif 59 10.02 0.50 8.19/3 0.52
1tig 88 8.59 0.59 4.36/2 0.01
1vcc 76 10.35 0.30 7.94/4 0.21
2cr7A 60 4.97 0.11 2.85/5 0.87
2f3nA 65 2.01 0.52 1.87/2 0.17
2pcy 99 4.71 0.47 4.51/2 0.24
2reb 60 10.05 0.49 5.02/2 0.52
256bA 106 3.49 0.48 3.39/2 0.55
Average 76m 5.36 (2.93) 0.44 4.55 (2.68)/3m 0.43
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ones). For such a reduced protein set the RMSDs of the pre-
dictions are 2.93 Å and 2.68 Å, for the best among all clusters,
and for the best among the top five clusters, respectively. In-
terestingly, often it is not the most populated cluster that is
the best. The median of the distribution of best cluster among
the top five is number 3. Energy minimization is required in
all cases, because an average �RMSD (between minimized
and non-minimized decoys) for the first cluster medoid was
about 0.44 Å and almost the same: 0.43 Å, for the best mod-
eled among top five medoids. Anyway, in all further analysis
only minimized structures were used. Thus, by referring to a
medoid of a cluster it means that this structure was energy
minimized before use (no re-clustering had been made after
energy minimization).

B. Protein structure quality and medoids’ resolution

Figure 2 presents the correlation between model quality
and quality score predicted by the neural network-based ProQ
method.58 It is noted that there is a high correlation between
RMSD and TM-score, and LG-score and Max-Sub, but there
is no significant correlation between RMSD or TM-score and
the predicted quality of decoys. Models quality prediction was
based only on a single structure, and the applied method looks
only for structural defects (e.g., atom clashes). Because each
medoid was energy minimized (to the nearest energy mini-
mum), the number of such structural defects is relatively low,
so evaluation consequently is poor. Thus, using scores from
ProQ is not a reliable method for choosing structures for fu-
ture refinement. On the basis of Figure 2 (RMSD vs TM-
score) it can be seen why 4.5 Å is reasonable cut-off for trying

FIG. 2. Distributions and comparisons of various structure quality metrics.
Upper triangle: Spearman correlation coefficients between: RMSD, TM-
score, LG-score, and Max-Sub score. Diagonal: Density distributions. Lower
triangle: Pairwise correlations plots between each measure. Red lines (lower
triangle) are averages over all points in bins on abscissa. Red dots correspond
to decoys for which TM-score ≥ 0.5, and black dots for these with TM-score
≤ 0.5. Plots are generated for all cluster medoids (see Sec. II).

to refine structures, since it appears that below this value there
is no false-positive structures with a TM-score ≥ 0.5.

C. Cumulative overlap of thermal motions
and deformation vector

To investigate whether thermal motions are biased in the
same direction as the deformation needed to obtain the native
structure, the overlap between the deformation matrix of the
medoid structure and the normal mode directions is calculated
(see Sec. II). Analysis is performed for each trajectory in the
dataset (28 cases). For each medoid, the cumulative overlap
COV(k), where k = 3, 6, 20 between the deformation matrix
and the first k normal modes is calculated. Cumulative over-
laps with 5% of the slowest modes have also been calculated.
One study case is presented in Figure 3. Figure presents chain
A of RNA binding protein (PDB ID: 1di2) and its top medoid.
For this pair of structures RMSD is equal to 2.91 Å and first
three decoy’s normal modes account for 0.73 fraction of de-
formation. The deformation origins from bad modeling of one
loop (14 Gly–18 Pro) and one hairpin (27 Gly–32 Arg). It
can be noticed that in both regions thermal motions (spanned
by three lowest normal modes) point at a correct direction
of needed deformation. For the first medoids, in the whole
dataset, an average cumulative overlap is: 0.34, 0.42, 0.54,
and 0.48 for k = 3, 6, 20, and 5% of the slowest modes, re-
spectively. (Usually 5% of the slowest modes corresponds to
k = 11–12.) Thus, by taking only 20 degrees of freedom, and
sampling along them, we are able to derive more than 50%
of the motion required for moving towards the native state.
This is also nearly true for 5% of the slowest motions, which
according to the JAM model should more or less describe the
anharmonic motion directions.41

However, RMSD for the Cα atoms is not a fully perfect
measure of how close the structure is to the native state. Not

FIG. 3. An example case for an overlap between thermal motion of decoy
structure and deformation from the native state. Picture presents best medoid
of 1di2A protein. Native structure is in cartoon representation, colored ac-
cording its secondary structure elements (purple – helix; yellow – β strand;
light green – hairpin; white – loop), and decoy in represented as a blue tube.
Combination of the three lowest normal modes in presented as red arrows.
In boxes mark two worst modeled structure elements: loop from 14 Gly to
18 Pro and hairpin from 27 Gly to 32 Arg.
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all states with low RMSD are necessarily directly (in the one
step) accessible from the native state. Sometimes other more
deformed structures with larger RMSDs can be more readily
accessed. Because of this we decided to consider all top five
medoids. These provide an even higher average cumulative
overlap COV(k) equal to 0.38, 0.46, 0.63, and 0.55 for k = 3,
6, 20, and 5% of the slowest modes, respectively. This shows
that a small increase in the number of conformations permits
an even better (up to 0.63) sampling of space for moving to-
wards the native state.

To obtain a broader perspective about the effect of a struc-
ture deformation along the normal modes, we have calculated
the cumulative overlap between the deformation vector and
the isotropic Gaussian deformation. In both cases: for the best
medoid and the top five medoids, this value equals on aver-
age ∼0.21. The averaging was done for all of the proteins
considered in the paper and 1000 randomly generated normal
modes.

Since protein structures fluctuate, thermal motions can
lead to global↔local and local↔local conformational transi-
tions between energy minima. In the original version of the
manuscript only local→global transitions were considered.

Thus, it is interesting to investigate whether the cumulative
overlap is the higher for transitions between local energy min-
ima substates and the native structure (global energy min-
imum state) or between local energy minima substates, as
asked by the reviewer. We have found that despite the fact
that the cumulative overlap is high for transitions from local
minima to the native state, often the highest cumulative over-
lap occurs for a transition between two medoids. Thus, it is
interesting to investigate, whether the newly reached local en-
ergy minimum conformation is structurally closer to the na-
tive state. In our calculations all decoys for all studied proteins
were used except for the worst ones (where by a definition ev-
ery transition to a new conformation would be always closer
to the native one). For cases where the RMSD between decoys
was larger than 4.5 Å the cumulative overlap was set to zero,
to avoid unlikely direct transitions between structurally dis-
tant conformations. We have found that on average, medoid
conformation with the highest cumulative overlap was 0.35 Å
closer to the native structure than the starting one.

The quality of the results depends on what one wishes to
obtain from performing a structure refinement. If the goal is
to reach experimental native structure, then following only the

TABLE II. Cumulative overlap table for medoids of the first largest clusters. The first column is the PDB name of the studied protein. The second to fourth
columns show cumulative overlaps for the first 3, 6, and 20 slowest modes, respectively. The fifth column show cumulative overlap for 5% of the slowest modes,
and the number of those modes. The sixth column shows Spearman correlation coefficient between positional cumulative overlap and B-factor (calculated based
on decoy structure) and the seventh column shows Spearman correlation coefficient between positional cumulative overlap and root square deviation (RSD) of
every amino acid. The superscript m denotes a median from the column.

Spearman correlation Spearman correlation
Name COV(3) COV(6) COV(20) COV(5%)/NM.No. (COV, B-Factors) (COV, RSD)

1ah9_ 0.21 0.37 0.54 0.39/9 0.84 0.80
1b72A 0.35 0.36 0.52 0.40/7 0.78 0.68
1cewI 0.42 0.48 0.55 0.54/15 0.74 0.88
1cqkA 0.36 0.41 0.48 0.47/14 0.73 0.81
1csp_ 0.26 0.33 0.49 0.34/9 0.79 0.86
1di2A 0.65 0.76 0.79 0.76/10 0.72 0.86
1dtjA 0.24 0.39 0.45 0.41/10 0.73 0.77
1egxA 0.12 0.16 0.42 0.36/16 0.72 0.80
1fadA 0.21 0.52 0.59 0.52/13 0.75 0.71
1fo5A 0.11 0.12 0.37 0.26/12 0.76 0.60
1g1cA 0.52 0.53 0.57 0.56/14 0.69 0.63
1gyvA 0.31 0.36 0.48 0.46/17 0.65 0.85
1hbkA 0.48 0.57 0.67 0.65/13 0.87 0.78
1jnuA 0.34 0.43 0.63 0.60/15 0.78 0.69
1kviA 0.15 0.16 0.38 0.19/9 0.80 0.56
1mla_ 0.27 0.28 0.38 0.32/10 0.74 0.61
1npsA 0.37 0.40 0.59 0.54/12 0.77 0.77
1of9A 0.42 0.55 0.64 0.58/11 0.71 0.69
1ogwA 0.48 0.55 0.65 0.56/10 0.81 0.73
1orgA 0.40 0.52 0.57 0.56/17 0.78 0.67
1pgx_ 0.31 0.44 0.51 0.45/8 0.66 0.73
1r69 0.39 0.40 0.48 0.40/8 0.73 0.60
1shfA 0.21 0.39 0.64 0.44/8 0.80 0.75
1sro_ 0.36 0.42 0.52 0.45/10 0.82 0.74
1ten_ 0.45 0.46 0.57 0.54/12 0.73 0.82
1thx_ 0.21 0.24 0.45 0.44/15 0.82 0.77
2f3nA 0.54 0.57 0.67 0.59/9 0.78 0.71
256bA 0.40 0.45 0.59 0.57/15 0.83 0.82
Average 0.34 0.42 0.54 0.48/11.5m 0.76 0.74



195101-8 Gniewek et al. J. Chem. Phys. 136, 195101 (2012)

TABLE III. Cumulative overlap for the single best medoid from the first five clusters. The first column shows the PDB name of the studied protein. The second
column shows the index number of the best cluster (according to COV(20)) and its RMSD. The third to fifth columns show the cumulative overlaps for 3, 6, and
20 slowest modes, respectively. The sixth column shows the cumulative overlap for 5% of the slowest modes, and also the number of these modes. The seventh
column shows Spearman correlation coefficient between positional cumulative overlap and B-factor (calculated based on decoy structure) and the eighth column
shows Spearman correlation coefficient between positional cumulative overlap and root square deviation (RSD) of every amino acid. The superscript m denotes
a median from the column.

COV(3) COV(6) COV(20) Spearman correlation Spearman correlation
Name Top 5 # Top 5 Top 5 Top 5 COV(5%)/NM.No. (COV, B-factors) (COV, RSD)

1ah9_ 1/3.42 0.21 0.37 0.54 0.39/9 0.84 0.80
1b72A 3/4.56 0.50 0.50 0.66 0.58/7 0.69 0.68
1cewI 4/4.11 0.40 0.48 0.55 0.51/15 0.75 0.85
1cqkA 2/2.64 0.39 0.42 0.62 0.58/14 0.82 0.82
1csp_ 5/2.58 0.26 0.37 0.64 0.52/9 0.79 0.74
1di2A 2/3.11 0.73 0.75 0.80 0.78/10 0.77 0.80
1dtjA 5/2.65 0.41 0.54 0.69 0.57/10 0.80 0.79
1egxA 3/2.03 0.09 0.20 0.51 0.39/16 0.73 0.83
1fadA 5/3.69 0.35 0.59 0.63 0.61/13 0.84 0.60
1fo5A 3/3.84 0.09 0.14 0.47 0.25/12 0.84 0.61
1g1cA 5/3.39 0.43 0.50 0.59 0.56/14 0.77 0.85
1gyvA 2/3.60 0.27 0.35 0.50 0.45/17 0.69 0.89
1hbkA 1/3.95 0.48 0.57 0.67 0.65/13 0.87 0.78
1jnuA 1/3.27 0.34 0.43 0.63 0.60/15 0.78 0.69
1kviA 2/2.49 0.45 0.46 0.61 0.48/9 0.71 0.70
1mla_ 2/2.96 0.40 0.42 0.60 0.45/10 0.75 0.67
1npsA 1/2.56 0.37 0.40 0.59 0.54/12 0.77 0.77
1of9A 3/3.74 0.44 0.59 0.70 0.63/11 0.75 0.66
1ogwA 1/1.46 0.48 0.55 0.65 0.56/10 0.81 0.73
1orgA 3/2.94 0.28 0.53 0.62 0.61/17 0.79 0.70
1pgx_ 2/3.16 0.44 0.51 0.59 0.55/8 0.66 0.80
1r69 5/2.23 0.48 0.57 0.62 0.59/8 0.80 0.71
1shfA 3/1.58 0.36 0.39 0.76 0.51/8 0.75 0.78
1sro_ 4/3.92 0.20 0.42 0.64 0.53/10 0.81 0.84
1ten_ 2/2.72 0.41 0.53 0.67 0.65/12 0.85 0.81
1thx_ 4/2.32 0.31 0.33 0.57 0.54/15 0.77 0.81
2f3nA 4/2.16 0.64 0.66 0.78 0.72/9 0.87 0.69
256bA 3/3.53 0.41 0.46 0.63 0.58/15 0.86 0.86
Average 3m/3.02 0.38 0.46 0.63 0.55/11.5m 0.78 0.76

slowest normal modes, and using only a single medoid would
not readily yield a significant structural refinement. Nonethe-
less, by selecting only a few medoids structures and by
deforming these along only a few normal modes it is possible
to obtain a significant enrichment of the near-native confor-
mational space for structural refinement.

Other ways to possibly enhance the sampling might in-
clude some deviations from the normal mode directions.
Such putative sampling would be steered overall by the nor-
mal modes, but some fluctuations around these directions
are allowed. However, the demonstration above that 63% of
the samples move toward the native structure is a relatively
high performance and adding (computationally costly) ran-
dom motions would be unlikely to improve these results.

The intended use of the present scheme is to generate an
ensemble of structures and to evaluate them (depending upon
the resolution of the generated decoys) using either a coarse-
grained or an atomic force-field, and follow this up with en-
ergy minimization. It has to be mentioned that ANM sam-
ples structures based on the harmonic approximation, with
the starting structure having the lowest energy. This is cer-
tainly not the case if the applied deformations are large, and a

structure traverses energy barriers between two energy min-
ima basins. This conclusion can be reached with the JAM
model although harmonic modes are not exactly the same as
intersubstate modes, but they actually vibrate in similar di-
rections as the anharmonic intersubstates.41 Further analysis
of the positional cumulative overlap and thermal mobility and
RMSD for each position is consistent with a hierarchical view
of conformational substates.61 Positional cumulative overlaps
describe how much each amino acid, here represented only
by Cα , contributes to COV(k) (see Tables II and III). Inter-
estingly, it was found that for both cases: of the first medoid
and the top five cluster medoids, correlations between posi-
tional overlap in mobility or deviation from the native state
is quite significant and equals: 0.76, 0.74 and 0.78, 0.76 for
first and the top five medoids, respectively. This means that
amino acids that are more mobile or deviate more from the
native structure, move significantly in directions toward native
state. This is also supported by a hierarchical model of con-
formational substates since jumps between two energy basins
do not involve changes equally throughout the whole struc-
ture, but only changes in few parts of the structure – such as
closing and opening hinges in many enzymes. This finding
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FIG. 4. Distributions and comparisons of RMSD, sizes and cumulative over-
laps. Upper triangle: Spearman correlation coefficients for: RMSD, Length,
COV(20), and COV(5%). Diagonal: The density distributions for each quan-
tity. Lower triangle: Pairwise correlations plots between each measure. Red
lines (lower triangle) are averages over all points in bins on abscissa. Red
dots correspond to decoys for which TM-score ≥ 0.5, and black dots for
cases with TM-score ≤ 0.5. Plots are generated for all cluster medoids (see
Sec. II).

can be also useful for developing structure refinement
algorithms,16, 62 where only some parts of the chain are de-
formed and the core domain residues are kept fixed.

D. Quality of the model and cumulative overlap

The lack of the correlation between RMSD and the sizes
of the modeled structures in Figure 4 suggests that the predic-
tive power of the I-TASSER force-field and clustering method
does not actually depend much on the length of protein at least
in the range of analyzed cases: 50–120 amino acids. Thus
it may suggest that the results are related to generic prop-
erties of protein substates and that these are independent of
size. The same is true regarding the correlation between pro-
tein length and COV(20) or COV(5%). Because usually 5%
of modes include fewer than 20 modes the deviations away
from linearity in Figure 4 for COV(20) vs COV(5%) is easily
understood. But in summary COV(20) is only slightly differ-
ent from COV(5%). It can be explained by the fact, that 5%
of the lowest modes account for the majority of the system’s
variance. Another interesting fact is that there is a fairly high
correlation between both COV(20) or COV(5%) and RMSD.
The correlation is caused by a tail of results for decoys mod-
eled with resolution from 4 to 5 Å (i.e., when TM-score is
lower than 0.5) to 15 Å. These models definitely are not suit-
able for refinement using normal modes. However, for models
with resolution below 4 Å, the correlation is near zero. Some
of decoys have cumulative overlap as high as 0.8 but some of
them as low as 0.1. The explanation of this fact comes from
hierarchical picture of conformational substates. It means that

some structures must traverse other substates’ basin before
reaching the native state, so they are not directly connected
to the native basin through a simple fluctuation type pathway;
i.e., the pathway on the energy surface has more than one sad-
dle point.

IV. CONCLUSIONS

Our results suggest some directions for further develop-
ment of refinement algorithms. Such an algorithm could be
for example MD or MC steered by normal modes. In these
approaches one would deform a given decoy, or set of decoys,
along a few slowest normal modes. The magnitude of such de-
formation could be either uniform along the chain or depen-
dent on mobility of each residue separately, or could even de-
pend on other parameters such as the accessible surface area
(ASA), secondary structure, or others. Beside, as can be seen
from Eq. (7) cumulative overlap is a measure between direc-
tions of vectors. The normal modes are orthogonal, so com-
bining them requires specification of phase angles between
the pairs of modes. These phase angles could in principle be
determined from simulations by MD or MC. To improve the
accuracy of refinement, the most promising approach would
be to pursue an ensemble of different structures and try to re-
fine them, and in the end pick up the best model among the
all refined.

Another significant problem encountered in protein re-
finement is imperfect force field used to compute energies of
protein models. Recently, we have shown that a random noise
in the force field can prevent protein refinement if the level of
noise is too high.63 Thus, by reducing the number of degrees
of freedom, we diminish the influence of errors in force field
on the structure refinement.

We have demonstrated that there are significant gains that
can be obtained application of the sampling of conformations
with the elastic network models. The most critical consider-
ation for successful application of this approach is to have a
starting conformation that is reasonably close, say within 4 Å
of the native structure.

Since protein motions are damped by both intermolecular
interactions with solvent and intramolecularly, it is possible
to represent such effects by extending our approach with an
overdamped Langevin equation.
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