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Purpose: To investigate the correlation and stationarity of noise in volumetric computed tomography

(CT) using the local discrete noise-power spectrum (NPS) and off-diagonal elements of the covari-

ance matrix of the discrete Fourier transform of noise-only images (denoted RDFT). Experimental con-

ditions were varied to affect noise correlation and stationarity, the effects were quantified in terms of

the NPS and RDFT, and practical considerations in CT performance characterization were identified.

Methods: Cone-beam CT (CBCT) images were acquired using a benchtop system comprising an

x-ray tube and flat-panel detector for a range of acquisition techniques (e.g., dose and x-ray scatter)

and three phantom configurations hypothesized to impart distinct effects on the NPS and RDFT: (A)

air, (B) a 20-cm-diameter water cylinder with a bowtie filter, and (C) the cylinder without a bowtie

filter. The NPS and off-diagonal elements of the RDFT were analyzed as a function of position

within the reconstructions.

Results: The local NPS varied systematically throughout the axial plane in a manner consistent

with changes in fluence transmitted to the detector and view sampling effects. Variability in fluence

was manifest in the NPS magnitude—e.g., a factor of �2 variation in NPS magnitude within the

axial plane for case C (cylinder without bowtie), compared to nearly constant NPS magnitude for

case B (bowtie filter matched to the cylinder). View sampling effects were most prominent in case

A (air) where the variance increased at greater distance from the center of reconstruction and in

case C (cylinder) where the NPS exhibited correlations in the radial direction. The effects of detec-

tor lag were observed as azimuthal correlation. The cylinder (without bowtie) had the strongest

nonstationarity because of the larger variability in fluence transmitted to the detector. The diagonal

elements of the RDFT were equivalent to the NPS estimated from the periodogram, and the average

off-diagonal elements of the RDFT exhibited amplitude of �1% of the NPS for the experimental

conditions investigated. Furthermore, the off-diagonal elements demonstrated fairly long tails of

nearly constant amplitude, with magnitude somewhat reduced for experimental conditions associ-

ated with greater stationarity (viz., lower RDFT tails for cases A and B in comparison to case C).

Conclusions: Volumetric CT exhibits nonstationarity in the NPS as hypothesized in relation to flu-

ence uniformity and view sampling. Measurement of the NPS should seek to minimize such

changes in noise correlations and include careful reporting of experimental conditions (e.g., phan-

tom design and use of a bowtie filter) and spatial dependence (e.g., analysis at fixed radius within a

phantom). Off-diagonal elements of the RDFT similarly depend on experimental conditions and can

be readily computed from the same data as the NPS. This work begins to check assumptions in

NPS analysis examine the extent to which NPS is an appropriate descriptor of noise correlations,

and investigate the magnitude of off-diagonal elements of the RDFT. While the magnitude of such

off-diagonal elements appears to be low, their cumulative effect on space-variant detectability

remains to be investigated—e.g., using task-specific figures of merit. VC 2012 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4705354]
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I. INTRODUCTION

Characterization of image noise is critical in 3D x-ray com-

puted tomography (CT) because the performance of many

diagnostic tasks is governed by underlying image noise,

which in turn is governed directly by the radiation dose to

the patient. Since noise is reduced by increasing patient

dose, characterizing the noise magnitude and correlations is

important in choosing imaging techniques that minimize

radiation dose while maintaining an acceptable noise level.

There is a large body of research characterizing the noise in

x-ray CT in two and three dimensions1–8 both in the Fourier

and the spatial domain, and standards for fully 3D NPS eval-

uation are rapidly evolving [for example, the American

Association of Physicists in Medicine (AAPM) Task Group

No. 169, “Measurements of the 3D Image Noise-Power

Spectrum in Computed Tomography,”39].

Proper characterization of the noise is an important step

in task-based assessment of image quality9–19 since the dose

should be appropriate to the clinical task for which the

images are taken. Simple measures of the noise level (e.g.,

the standard deviation and the contrast-to-noise ratio) fail to

account for the importance of noise correlation in clinical

tasks. These correlations can be characterized under condi-

tions of wide-sense stationarity (i.e., spatial invariance in the

moments of the noise distribution) in the frequency domain

using the noise-power spectrum (NPS) or in the spatial do-

main using the autocovariance function (ACF).

Images in 3D CT are nonstationary for reasons including

the discrete nature of the reconstructed images, variable flu-

ence in x-rays transmitted to the detector, angular sampling,

detector defects, detector nonlinearity, etc. In this work, we

investigate the changes imparted upon Fourier descriptors of

the 3D image noise under experimental conditions purposely

varied in a manner that affects such considerations. We

restrict analysis in the current work to a volumetric “slab”

1.6 cm thick and centered on the central axial plane to mini-

mize the effect of the “missing cone” at greater distance (z)

from the central plane in cone-beam CT reconstructions

from a circular trajectory. The missing cone is an important

consideration in fully 3D CT and the subject of significant

research.6,20 It also presents yet another source of noise non-

stationarity in cone-beam CT—viz., a null cone in the 3D

spatial-frequency response that increases with greater dis-

tance from the central axial plane and precesses about the

vertical (fz) axis as a function of (fx, fy), where (fx, fy, fz) are

Fourier domain coordinates. Nonstationarity in z is impor-

tant because the fully 3D noise characteristics [i.e., the

NPS(fx, fy, fz)] are expected to reflect the missing cone in 3D

filtered backprojection from a circular source-detector trajec-

tory, but emphasis herein is on the factors affecting noise

stationarity that are more physically intrinsic to photon sta-

tistics, system configuration, and a finite number of projec-

tions, with focus on analysis of 3D noise characteristics near

the central axial plane.

Common methods for evaluating CT image noise in the

Fourier domain typically compute the location-averaged

NPS. The NPS can be interpreted as the variance of the Fou-

rier coefficients of the noise. These variance terms are the

diagonal components of the covariance matrix of the discrete

Fourier transform of “noise-only” images (denoted as

RDFT).13,21–24 In this work, we conduct an experimental

study in which different phantoms were imaged to explore

both the spatial variability of the local 3D NPS as well as the

magnitude of the off-diagonal elements of the RDFT which

are typically ignored. We emphasize analysis in real physical

phantoms under various imaging conditions to identify prac-

tical implications of noise characterization for engineers and

practicing medical physicists for whom noise and NPS anal-

ysis are increasingly part of system development, acceptance

testing, and quality assurance (QA) in CT. The motivation

for this work comes from the need both to understand how

the local NPS varies in space and to investigate the off-

diagonal elements of the covariance matrix of the discrete

Fourier transform which are typically ignored by the current

methodology. The latter begins to answer a long-standing

challenge24 to check assumptions regarding the extent to

which NPS represents an appropriate noise characterization

and to examine the RDFT more completely (not just the diag-

onal) in characterizing image noise.

II. THEORY

II.A. Definitions

In the characterization of noise from real measurements,

it is important to clearly define what is meant by “noise.” A

reasonable definition of noise is the component of the data

that change stochastically when image acquisition is

repeated under otherwise identical conditions

n ¼ I� HðOÞ (1)

where n is the discrete noise in the reconstructed images, I

are the reconstructed images, and H is the deterministic con-

tinuous-to-discrete operator that maps the object O to the

reconstructed image I. In the absence of Poisson quantum

noise and electronic noise, the discrete noise n would be the

zero image. Artifacts in the image due to finite sampling,

missing data, or aliasing would not be considered noise by

this definition and would be reproducible under repeated

measurement. However, these artifacts could affect the

noise, for example, by applying a multiplicative spatially

varying mask. The analysis below includes both the purely

stochastic quantum noise in combination with such sampling

effects.

The digital NPS which is often computed for experimen-

tal characterization of noise is an estimate of the variance of

the DFT of the noise21,23

NPSðfiÞ �
1

N

XN

k¼1

DFTfnkgðfiÞj j2

¼ 1

N

XN

k¼1

DFTfnkgðfiÞDFTfnkgðfiÞ; (2)

where nk is a reconstructed noise volume and DFTfnkgðfiÞ is

the complex conjugate of the discrete Fourier transform of the

nk volume evaluated at the spatial frequency fi. Considering
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the noise image as a random vector, the elements of the full

RDFT would be given by

RDFT;ij �
1

N

XN

k¼1

DFTfnkgðfiÞDFTfnkgðfjÞ: (3)

Hence, we see that common methodology for noise charac-

terization assumes that this matrix is diagonal by only com-

puting the NPS (the diagonal elements). The relationship

between the Fourier domain covariance matrix (RDFT) and

the spatial domain covariance matrix (Kx) illustrates how the

DFT approximately diagonalizes the covariance matrix

under the stationary assumption:

RDFT ¼ DFTfngðDFTfngÞH
D E

¼ DFT nnh iDFTH

¼ DFT Kx DFTH; (4)

where DFTH is the conjugate transpose of the DFT. This

assumption is natural if one thinks of the image as a sample

of an underlying stationary random process, but for real

data, the assumption is violated. For example, the discrete

nature of the data ensures that the assumption cannot for-

mally hold.

II.B. The spatially varying NPS

The NPS of CT images is expected to exhibit variations in

magnitude and correlation across the spatial domain—i.e.,

nonstationarity—due to well-known effects of varying quan-

tum noise (nonuniform x-ray fluence transmitted to the detec-

tor), view aliasing effects (discrete sampling from a finite

number of projection views), and detector lag (spatiotemporal

blur).1,2,6,7,25,26 A detailed treatment of the variability of the

3D NPS from an analytic and experimental perspective is

given in Refs. 6 and 7. An estimate of the NPS in CT should

therefore be recognized as a “local” estimate of the noise mag-

nitude and correlation. Despite such systematic variability, the

image NPS is an important factor in image quality assessment

and system QA as mentioned above, and it is useful to study

not only the manner in which the NPS varies but also system-

atic variations in the off-diagonal elements of the covariance

matrix of the DFT as a check on the implicit assumptions.

While we will primarily focus in this paper on variability with

radius, we anticipate at least three sources of systematic varia-

tion of the NPS (and RDFT) in the axial spatial domain.

II.B.1. Variability with radius (i.e., distance from the
center of reconstruction)

Under conditions in which the x-ray fluence transmitted

to the detector is nonuniform, the noise in CT reconstruc-

tions is expected to vary accordingly. The most common,

simple example is a water cylinder imaged without a bowtie

filter, for which the fluence at the detector is lower along

more highly attenuated rays (through the center of the cylin-

der), and the image noise (NPS magnitude) is correspond-

ingly higher in the center of reconstruction. Detector lag

arising from temporal correlation of successive projections

imparts spatiotemporal blur in the reconstructed image,

which will also lead to an overall decrease in NPS. For cases

of uniform exposure at the detector (e.g., an air scan or a cyl-

inder imaged with a perfectly matched bowtie filter), the

noise in CT reconstructions is expected to be more uniform

as a function of radius. View sampling effects, on the other

hand, are anticipated to result in the converse dependence on

radius—i.e., image noise increasing at greater radius due to a

finite number of projection views.

II.B.2. Variability with angle

Finite view sampling is furthermore anticipated to result in

an angular dependence of noise correlation. For filtered back-

projection reconstruction, view sampling is evident as “streaks”

emanating from the center of reconstruction, with intensity of

the streaks related to both the number of projection views

(greater for fewer views) and radius (greater at increased ra-

dius). The effect of image lag is an azimuthal correlation which

is perpendicular to that caused by view sampling.

II.B.3. Variability with height (i.e., distance from the
central axial plane)

As mentioned above, although outside the scope of the

current work, the NPS for CBCT images is expected to vary

in z due to the “null cone” associated with the “cone-beam

artifact” of incomplete sampling from a circular source-

detector orbit.6,20 Specifically, a null cone about the fz axis is

expected within the 3D NPS, increasing at greater distance

from the central axial plane.

These sources of systematic variation in the NPS (and

presumably the RDFT) pose important considerations for

image quality evaluation, system QA, and ultimately task-

based performance assessment. They immediately suggest

methods by which one might hope to minimize NPS nonsta-

tionarities in such assessment: (i) operate under conditions

providing uniform x-ray fluence to the detector; (ii) restrict

analysis to a given radius (or explicitly analyze radial de-

pendence); (iii) incorporate analysis that accounts for angu-

lar variation (e.g., a rotating reference frame); and (iv)

restrict analysis to a given height (e.g., z� 0 or explicitly an-

alyze z dependence). Such factors were analyzed in their

effect upon NPS and RDFT under a variety of experimental

conditions below, with the aim of quantifying the degree of

such nonstationarity and elucidating practical considerations

for CT noise measurement.

II.C. Connection between the RDFT and detectability

In this paper, we focus on the characterization of CT

noise in and of itself, motivated by the growing use of NPS

as a more standardized quality metric, and with an underly-

ing theoretical motivation coming from the connection

between the RDFT and detectability. This connection arises

from expressing the SNR (detectability) for the Hotelling ob-

server in the continuous domain9,11,15

SNR2 ¼
ð jHðf Þj2

NPSðf ÞjWðf Þj
2df ; (5)
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where H(f) is the Fourier transform of the point spread func-

tion of the imaging system and W(f) is the Fourier transform

of the object being detected.

For discrete data, this equates to

SNR2 ¼WtR�1
DFTW; (6)

where W is the DFT of the discrete signal (i.e., discrete

approximation of the continuous signal W).21,23,27 The use of

the digital noise-power spectrum to compute the SNR is

based on the assumption that the continuous-to-discrete

imaging system has a covariance matrix that is diagonalized

by the DFT. Under the assumption that RDFT is a diagonal

matrix, the SNR expression in Eq. (6) becomes

SNR2 ¼
X

i

jWij2

NPSi
; (7)

where NPSi is RDFT,ii.

With characterization of imaging systems based on the

NPS becoming more prevalent, several researchers have

questioned the underlying stationarity assumption and its

effect on the off-diagonal elements of the covariance matrix

of the DFT which are currently ignored.21,24 This work

begins to address that question by measuring the off-

diagonal elements of a 3D CT system.

III. EXPERIMENTAL METHODS

III.A. CBCT imaging bench and experimental
conditions

An imaging bench for CBCT reported in previous work28

was used for experiments described below. Briefly, the bench

includes an x-ray tube (Rad94 in Sapphire housing; W anode,

14� anode angle, 0.4 mm focal spot; Varian, Inc., Salt Lake

City, UT) and flat-panel detector (PerkinElmer RID1640;

250 mg/cm2 CsI:Tl x-ray converter, 0.4 mm pixel pitch,

1024� 1024 pixel format; PerkinElmer, Inc., Palo Alto, CA)

implemented on linear translation stages (406XR series;

Parker-Hannifin, Irwin, PA) for precise adjustment of system

geometry. In this case, the geometry was approximate to that of

systems for image-guided radiation therapy (SAD ¼ 93.5 cm,

SDD¼ 144.0 cm, magnification¼ 1.54). An antiscatter grid

was not used. The longitudinal (z) extent of the beam was lim-

ited by collimators, ranging from �1 to �25 cm at isocenter,

corresponding to a longitudinal field-of-view (FOVz) ranging

from narrow (low-scatter conditions) to the full FOV (broad

cone-beam, high scatter conditions). The phantom (in configu-

rations detailed below) was placed on a rotation stage (Dyna-

serv; Parker-Hannifin, Irwin, PA) as shown in Fig. 1. The

entire system was operated under computer control under

pulsed-fluoroscopy in step-and-shoot mode. The data are there-

fore expected to be free of motion artifacts (i.e., azimuthal blur

due to object rotation during exposure) but are expected to con-

tain realistic correlations associated with image lag5,7,26 (i.e.,

residual signal carried over between projection frames).

Nominal CBCT image acquisition involved 320 projections

acquired at 1 frame per second across a 360� rotation, where

the technique for each projection was 120 kVp (with

2.1–5.1 mm Cu added filtration, described below) and expo-

sure varied across four levels spanning the sensitive range of

the detector—specifically, four exposure levels—0.4, 0.8, 1.6,

and 3.2 mAs, corresponding to 0.13, 0.26, 0.52, and 1.0 mR

in-air exposure per projection at the detector, respectively. The

corresponding dose to the center of a 20 cm cylindrical water

phantom at isocenter was computed from the in-air exposure

(per projection) at the detector as in Ref. 29; the in-air expo-

sure per projection was scaled to isocenter by the inverse-

square law and attenuated (Beer–Lambert law) by the radius

of the cylinder (10 cm) assuming a 120 kVp beam for comput-

ing the effective attenuation coefficient of water;30 the result

FIG. 1. Experimental setup for CBCT imaging. Left, photograph of the imaging bench, with position of the bowtie filter and cylinder indicated. Right, three

phantom configurations hypothesized to yield varying degrees of noise stationarity: (A) air-only; (B) bowtie filterþwater cylinder; and (C) water cylinder

(without a bowtie filter). The (x, y, z) coordinates of image reconstruction are shown. The relative fluence at the detector is illustrated by [I(u)/Io] for the three

configurations.
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was multiplied by the number of projections (320), the experi-

mentally determined backscatter factor (�3), and f-factor

(0.9). The resulting dose levels were �0.4, 0.7, 1.5, and 2.8

mGy, respectively. Projections were dark-flood corrected by

the mean of 50 dark-field and 50 flood-field images acquired

at �30% of sensor saturation (�1.0 mAs). Volume images

were reconstructed using the FDK algorithm using a Hann fil-

ter in combination with the ramp filter as typical in soft-tissue

imaging applications.31 Voxel size was (0.25� 0.25� 0.25)

mm3, giving (1024� 1024) voxels in the axial (x, y) plane and

longitudinal extent up to 1024 voxels (but typically �128 for

purposes of experiments below).

Three distinct phantom configurations illustrated in Fig. 1

were examined to investigate conditions hypothesized to

represent varying levels of noise stationarity in 3D recon-

structions: (A) air, (B) bowtie, and (C) cylinder. The first,

referred to as configuration “A,” involved air-only scans (no

phantom) with added filtration of 5.1 mm Cu, corresponding

approximately to the attenuation of 20 cm water. Configura-

tion A was hypothesized to yield the most stationary noise

characteristics, owing to the most uniform x-ray fluence at

the detector. The second, referred to as configuration “B,”

involved a 20 cm diameter water cylinder placed at isocen-

ter, with an aluminum bowtie filter placed near the collima-

tor as in Fig. 1. The bowtie was uniform in the z-direction

and machined to a smooth cosh shape varying from �3 mm

Al thickness at the center to �30 mm Al thickness at the

position corresponding to the projected edge of the water

cylinder. The bowtie was placed through careful trial and

error along the source-to-detector axis at a position that

yielded the most uniform x-ray fluence at the detector—i.e.,

optimally matching the attenuation of the bowtie and water

cylinder to give a nearly uniform detector signal. This con-

figuration was hypothesized to yield noise stationarity

approaching that of configuration A. The third configuration

(C) involved the same 20-cm-diameter water cylinder but

without the bowtie filter, hypothesized to give the least sta-

tionary noise characteristics, owing to the nonuniform x-ray

fluence at the detector, and expected to result in high quan-

tum noise at the center of reconstruction and lower quantum

noise near the edge of the reconstruction. For both configura-

tions B and C, added filtration of 2.1 mm Cu was used.

III.B. Estimating RDFT from sample measurements

The ideal method to estimate the off-diagonal elements of

RDFT is to collect many realizations of the noise and to aver-

age over noise realizations for each subvolume. This proce-

dure would avoid assumptions of local stationarity and

would provide a spatially varying estimate of RDFT. In this

work, we have taken a different approach arising from meth-

odology that is closer to current experimental methods for

estimating the NPS. Specifically, two images were collected

and subtracted from each other to estimate a zero mean

image of the noise (with twice the variance; because of this

we divided the resulting NPS by 2). From these noise

images, we obtained 21 subvolumes (realizations) per radius

of size 633 voxels placed along 3 radii ranging from 40 to

80 mm. The subvolumes were obtained by placing the center

of each equally spaced on circles with radii of 40, 60, and

80 mm, as illustrated in Fig. 4(a). At 80 mm, this resulted in

no overlap between subvolumes, but at 40 mm there was a

maximum overlap of 20% [see Fig. 4(a)]. Consistent with

the methods of Bartlett (nonoverlapping) and Welch (over-

lapping with a rect window), no correction was applied for

the overlap in the realizations. Note that the overlap (or non-

overlap) in subvolumes does not affect the mean of the NPS

estimate; rather, it affects the relationship between the num-

ber of subvolumes and the variance in the resulting measure-

ments (inversely proportional for the case of nonoverlapping

ROIs).32 The implicit assumptions are that the off-diagonal

elements at a fixed radius have local wide-sense stationarity

and that realization overlap has minimal effect on covariance

estimation. The NPS and the off-diagonal elements of the

RDFT were computed from exactly the same data by simply

summing over different indices [Eqs. (2) and (3)].

Estimation of the NPS from periodograms is always

accompanied by a choice of window (or tapering) func-

tion—e.g., a rectangular window if none is explicitly

applied. We hypothesized that the choice of window func-

tion has distinct effect not only on the NPS estimate (usually

a small effect, since quantum noise NPS is typically free of

sharp correlations that may be subject to “leakage”) but also

on off-diagonal elements (ODEs) of the RDFT. Specifically,

since application of a window function in the spatial domain

implies convolution of the RDFT with the Fourier transform

of the window function, we anticipated the usual effects of

“window carpentry” in analysis of off-diagonal elements.

The Fourier transform of the rectangular window in three

dimensions has a narrow central peak and long tails. An

alternate window (e.g., Hann) has a broader central peak but

short tails. We performed a complete analysis based on both

windows, and results below are reported for the rectangular

window, as it better estimated ODEs close to the NPS.33,34

To study the variability in NPS and RDFT associated with

angular direction (which is typically averaged out in the pro-

cedure described above), we alternatively rotated the subvo-

lume realizations using cubic interpolation such that the

coordinate system was always in the radial (and perpendicu-

lar-to-radial—i.e., azimuthal) direction. Although this alterna-

tive reference frame/coordinate system was not the focus of

this study, a representative result is shown in the Appendix to

illustrate the effect on correlations that can arise in the NPS.

III.C. Off-diagonal elements of RDFT

Investigating the off-diagonal elements of RDFT is a challeng-

ing task for three-dimensional images, introducing not only a

potentially large computational load but also a variety of ways in

which the complex RDFT can be visualized and analyzed. One

way of constructing the covariance matrix for an individual sub-

volume realization with 633 elements would be to arrange the

elements in a 1D vector. This leads to a covariance matrix of

size 633� 633 (�6.3� 1010 elements) for each subvolume.

Instead of following that approach, we pursued a simpler, more

computationally tractable approach in order to more simply
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gauge and quantify the magnitude of off-diagonal elements of

the RDFT in comparison to the diagonal (NPS). We computed

the first off-diagonal elements in each of the three frequency

directions and performed the same processing as done to obtain

the NPS. We then analyzed the absolute value of each of these

off-diagonal elements and divided by the NPS to obtain the rela-

tive magnitude of the first off-diagonal elements: (jKxj þ jKyj
þ jKzj)/3NPS, where Kx, Ky, and Kz are the radially averaged

first off-diagonal elements [for example, Kx¼K(fx, fx þ dfx)] in

each of the three directions. The results were plotted as a func-

tion of spatial location and spatial frequency, showing the de-

pendence of the magnitude of ODEs on various factors affecting

stationarity and probing the extent to which the diagonal of the

covariance matrix of the DFT (i.e., the NPS) captures a complete

description of the noise characteristics.

IV. RESULTS

IV.A. Variance maps

A simple characterization of the noise in reconstructed

images is a map of the variance. In Fig. 2, we see the antici-

pated behavior in the variance maps for the three phantom

configurations due to the variability in the transmitted x-ray

fluence. Namely, the more x-ray photons pass through a

region to the detector, the smaller the variance in the recon-

structed images.1 The change in the variance across the field

of view is a characterization of the nonstationarity of the sys-

tem. The variance maps for (A) air and (B) bowtieþ cylinder

exhibit a similar degree of (low) variability as a function of

radius, with air having a lower overall variance. The water

cylinder case (C) exhibits the most pronounced decrease in

variance as a function of radius. The effect is due to both the

increased fluence transmitted to the detector and increased

image lag (which tends to increase with detector signal26),

and careful inspection of the variance map in case (C) shows

the expected correlation in the angular direction. A third fac-

tor in the variance maps is related to view sampling, most

evident in case (A), where the variance at the edge of the

field of view is increased by streak artifacts.

IV.B. 3D noise-power spectrum

The Fourier domain analog of the variance is the NPS

(the variance of the DFT coefficients). We collected sample

realizations at fixed radii to obtain a radially averaged esti-

mate of the NPS. As seen in Fig. 3, the same type of nonsta-

tionarity seen in the variance maps of Fig. 2 is evident in the

3D NPS. Specifically, for (A) air and (B) bowtieþ cylinder,

the NPS are nearly equivalent at radii of 40, 60, and 80 mm.

For the cylinder case (C), however, the NPS decreases with

FIG. 2. Variance maps for three phantom configurations: (A) air, (B) bowtieþ cylinder, and (C) cylinder alone (without bowtie). Images correspond to high-

scatter conditions (full FOV in the z-direction) at a dose level of 1.6 mAs per projection. As expected, the variance maps demonstrate the highest uniformity

for (A) air and (B) bowtieþ cylinder compared to (C) cylinder. The radially averaged variance plotted at left is normalized to the value near the center of the

phantom (i.e., at R¼ 40 mm, where noise is reasonably uniform and uncorrupted by ring artifacts that can arise near the center of reconstruction). The dotted

line of the radially averaged variance represents the edge of the cylinder.

FIG. 3. The axial NPS for three phantom configurations shows that noise magnitude and correlation vary radially in a manner consistent with the variance maps

of Fig. 2. The water cylinder [case (C)] has significantly larger variability than (A) air or (B) bowtieþ cylinder, with the NPS amplitude decreasing as a function

of radius (enhanced online) [URL: http://dx.doi.org/10.1118/1.4705354.1] [URL: http://dx.doi.org/10.1118/1.4705354.2] [URL: http://dx.doi.org/10.1118/1.

4705354.3].
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radius due to a greater transmission of x-rays to the detector

(higher exposure at greater radius).

Illustration and visualization of the change in the axial

NPS throughout the central axial plane is illustrated in videos

available as electronic content associated with this paper.

Each movie shows the axial, sagittal, and coronal NPS as a

function of position in a spiral trajectory in the axial plane.

The videos illustrate not only the reduction in NPS at greater

radius as in case (C) of Fig. 3 but also the angular dependence

of noise correlations evident as “horns” in the NPS. A com-

posite frame of the movie is shown in Fig. 4.

IV.C. Off-diagonal elements of RDFT

The magnitude of the first ODE in the x, y, and z directions

quantifies in part the extent to which the NPS (i.e., the diago-

nal) describes the image noise. As shown in Fig. 5, plotting

this quantity as a function of radius and spatial frequency

shows that the average relative magnitude of the ODEs is

found to be less than �1% of that for the NPS for all three

phantom configurations. The relative error is independent of

location and object, meaning that the relative error in the co-

variance matrix estimation is fairly constant. Although the

NPS depends strongly on position as illustrated in previous

figures, the relative size of the first off-diagonal elements does

not appear to vary as strongly with radius or with the type of

object. To justify that 21 subvolumes were enough to estimate

the off-diagonal elements, Fig. 5 was reproduced (not shown)

with 11 subvolumes resulting in similar results (but increased

statistical error in the spectral estimate).

A more complete picture of the off-diagonal elements can

be seen in the axial slices of RDFT in Fig. 6 and coronal slices

FIG. 4. (a) One quadrant of acquisitions at the three radii (40, 60, and 80 mm). The angular spacing between each acquisition was 18� leading to a total of 21 subvo-

lumes per radius. (b) The change of the NPS with radius and angle is clearly visualized in movies available as electronic content associated with this paper. The

NPS is seen to vary both radially and in angle, with large horns arising in the NPS at large radii due to angular sampling and small horns due to lag. The composite

frame shown above is from case (C), cylinder without bowtie and shows several characteristics of the images. Detector lag and view aliasing effects are visible in

the noise at large radii. The axial space-frequency plot shows reduction in the NPS as a function of radius. The surface plots of the axial, sagittal, and coronal slices

show the structure of the 3D NPS, including horns that “rotate” depending on the position of the noise realization along the spiral trajectory seen in the axial NPS

(enhanced online) [URL: http://dx.doi.org/10.1118/1.4705354.1] [URL: http://dx.doi.org/10.1118/1.4705354.2] [URL: http://dx.doi.org/10.1118/1.4705354.3].

FIG. 5. The average relative magnitude of the first off-diagonal element in all three spatial frequency directions. For each phantom configuration, the average

first ODE is less than about 1% of the NPS at that frequency.
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of Fig. 7, each showing the NPS (diagonal) as well as first,

second, and tenth ODE. In these figures, we see that the

structure of the ODEs mimics that of the NPS with a

decrease in magnitude by a factor of 10. The decrease is 1

order of magnitude instead of the two seen in Fig. 5 because

the radial averaging of the ODEs further reduces their size

compared to the NPS since the real and imaginary parts of

the ODEs change signs. This implies that there are multiple

ways of looking at the relative size of the off-diagonal

elements.

Finding a simple summary metric that captures the rela-

tive size of the off-diagonal elements with respect to the

NPS is challenging. From a task-based perspective the

appropriate metric should involve the task.9–19 A simple

metric describing the relative size of the off-diagonal ele-

ments of the RDFT is

XxyzðnÞ ¼
1

3

Kx;n

� ��� ��
NPSh i þ

Ky;n

� ��� ��
NPSh i þ

Kz;n

� ��� ��
NPSh i

� �
; (8)

where Xxyz(n) is a measure of the relative size of the nth off-

diagonal elements (in x, y, and z directions) with respect to

the NPS. The expected values are interpreted as the sample

mean over all frequencies in the subvolume realization.

Figure 8 plots Xxyz as a function of n, where each point is the

average over the 21 realizations at a particular radius. At the

smaller radius (R¼ 40 mm), we observe a steep decline by 2

orders of magnitude from the diagonal [Xxyz(n¼ 0)¼NPS]

to the first off-diagonal element [Xxyz(n¼ 1)] for all three

phantom configurations. At the higher radius (R¼ 80 mm),

we again see a steep decline between the diagonal and the

first ODE, but there is a measurable, systematic difference

between the three phantom configurations. Specifically, Xxyz

is highest for the cylinder (case C), followed by the

bowtieþ cylinder (case B) and air (case A)—which follows

the rank order of nonstationarity observed in the local NPS

results above. This systematic trend is strongest at the first

ODE and persists out to the second or third ODE. While all

cases demonstrate that the magnitude of the off-diagonal ele-

ments is fairly small (less than �1% of the NPS), the trends

are consistent with the hypothesis that various phantom con-

figurations imparting different levels of noise stationarity

impart different magnitudes of off-diagonal elements in

RDFT.

Although not investigated directly, the effects of image

lag are also evident in the measured NPS and RDFT. As noted

above and in Refs. 5 and 7, image lag is expected to impart

two primary effects on the NPS—a reduction in NPS magni-

tude (owing to temporal correlation and modulation by the

bandwidth integral associated with the temporal MTF) and

FIG. 6. Slices of representative off-diagonal elements in the axial plane at a fixed radius of 80 mm (the radius at which the highest nonstationarity in the NPS

was observed). The images to the left are the axial NPS for each of the three objects (air, bowtie, and cylinder). For each object, we show slices of the first, sec-

ond, and tenth off-diagonal elements in the x-direction. For example, the images of the first off-diagonal elements show the correlation between that frequency

and a frequency one bin higher in the x-direction. Note that the images are zero-padded to be the same size. (i.e., the images for the tenth off-diagonal elements

do not contain data for the last 10 frequencies in the x-direction.) The grayscale is the magnitude of an element of the NPS or off-diagonal elements of the

RDFT. The scales for the NPS are the same for each phantom configuration, and the scales for the ODEs are all 1 order of magnitude smaller to enhance visibil-

ity but allow comparison with the NPS.
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correlation of the noise in the azimuthal direction (i.e., per-

pendicular to radial, as in the “comet” artifact of Ref. 26).

To the extent that image lag exhibits a dependence on detec-

tor signal (which is usually the case, typically increasing at

higher signal level), one may expect nonstationarity in the

NPS magnitude and correlation associated with variations in

image lag throughout the image. This effect can be observed

as horns in the axial NPS that are seen to rotate in the movies

associated with Fig. 4 in relation to the position (angle) of

the ROI for case A and in Fig. 9.

The large horns effect seen in the movie and in Fig. 9 for

case C are explained by the streak artifacts caused by view

sampling. The radial correlations in the noise are dominant

in the cylinder with no bowtie because of the large differ-

ence in fluence for views at different angles (say 0� and 90�).
The pattern of spokes manifests itself as peaks in the azi-

muthal (angular) frequency.

As mentioned in Sec. III, additional experiments were

performed in which images of the three phantoms were

acquired as a function of dose and level of x-ray scatter. At

various dose levels, the results were consistent with those

reported above, and over the range of linear detector

response, the level of stationarity reflected by the local NPS

and off-diagonal elements of RDFT was consistent with

FIG. 7. Slices of off-diagonal elements of the RDFT in the coronal plane at a fixed radius of 80 mm. Details are the same as in Fig. 6.

FIG. 8. The relative size of the off-diagonal elements with respect to the NPS. (a) Xxyz(n) at a radius of 40 mm. (b) Xxyz(n) at a radius of 80 mm. The error bars

represent 1 standard deviation based on 21 sample realizations at a fixed radius. In each case, we observe a steep drop between the diagonal and first off-

diagonal element. The magnitude of Xxyz(n) for the three phantom configurations agrees with the hypothesized effect of the three phantom configurations on

the RDFT.
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expectations and the results summarized above. Specifi-

cally, the NPS varied in inverse proportion to mAs (dose)

and did not change in shape or degree of (non)-stationarity.

At various levels of x-ray scatter (controlled through

adjustment of the longitudinal field), images exhibited dis-

tinct nonstationarity in the mean voxel value—viz., shading

artifacts at higher levels of x-ray scatter.35 However,

because the NPS and RDFT concern the second-order statis-

tics of the image distribution, and because the image sub-

traction technique was effective in removing background

“trends,” there was no significant effect on the stationarity

characteristics as described by the local NPS or ODEs of

the RDFT.

V. DISCUSSION AND CONCLUSIONS

Characterization of the noise correlations for 3D CT

from experimental measurement of the full RDFT is cur-

rently a computationally daunting task because of the high

dimensionality of the problem. Methods for dimensionality

reduction, such as the use of a discrete Fourier transform,

carry inevitable assumptions and limitations but have none-

theless proven very useful in a broad spectrum of work in

CT image quality analysis, including new and evolving

standards for CT image quality, acceptance testing, and

QA. The work reported above begins to investigate those

limitations through analysis of the RDFT “neighborhood”

about the diagonal while also seeking to identify experi-

mental methods and system configurations that improve the

validity of NPS-based analysis techniques. Analysis of

changes in the local NPS as a function of location in 3D

CT reconstruction demonstrates the dependence of such

assumptions on the system configuration—specifically in

terms of the phantom and bowtie configuration. It is hoped

that such investigation will help promote methodologies

that make simple, practical Fourier methods of characteriz-

ing noise correlations more practical and valid while also

beginning to answer the challenge to look beyond the diag-

onal of the RDFT and explore more complete spatial domain

methods which may avoid some of the assumptions of Fou-

rier domain methods.

The variability of the NPS in characterizing noise prop-

erties of reconstructed images is dependent on the recon-

struction algorithm. While the results above pertain to

filtered backprojection (FBP), a broad variety of nonlinear

reconstruction algorithms becoming more prevalent in CT

would almost certainly involve noise (and NPS) characteris-

tics that are different from what we have shown. Depending

on freely variable parameters governing the regularization

of spatial resolution and variance within such nonlinear

reconstruction techniques, the noise characteristics may be

more stationary or less stationary than in FBP. The methods

described above for analyzing the stationarity of noise char-

acteristics, the off-diagonal elements of RDFT, and the local

NPS may be useful tools in understanding the noise behav-

ior of such reconstruction methods. With the increased clin-

ical implementation of iterative reconstruction algorithms,

therefore, one could add a fourth bullet point to our list of

sources of nonstationarity—viz., the reconstruction algo-

rithm. Investigation of the experimental variability of the

NPS for different reconstruction algorithms is an interesting

area for future study.

Perhaps the best estimate of the local NPS would be

gained from acquisition of a large number of noise vol-

umes—for example, to match the statistical error of results

reported above: 42 volumes subtracted to give 21 noise-only

images, or alternatively 21 volumes subtracted by the mean

over the same 21. Alternatively, one could envision N vol-

umes from which the mean volume is subtracted from each

individual volume (and a correction applied depending on

N). For a large number of volumes, we would be able to

obtain NPS estimates for each location of the field of view

with a variance in the estimates that would be inversely pro-

portional to the number of images. This would allow for

both more accurate and location-specific assessment of the

variability of the NPS. In the work reported here, we simply

used two volumes, subtracted to give a single noise-only

image from which the local NPS and RDFT were analyzed

from subvolume realizations as a function of location within

the volume. Practical considerations of image acquisition

time and file storage motivated this conservative approach.

The manner in which one should average over subvolumes

for NPS and RDFT estimation depends somewhat on the

noise correlations of primary interest. If the primary interest

is to characterize the noise at a fixed radius, it makes sense

to average over angle. Of the various forms and directional-

ity of nonstationarity in cone-beam CT (namely, radius,

angle, and height), averaging over the angle at a fixed radius

(R) and height (z) is a reasonable approach. On the other

hand, if angular correlations are of primary interest, then

rotating the subvolume realizations as shown in the Appen-

dix is a better method. For a proper quantification, one

should correct for the associated interpolation/resampling.

Finally, if nonstationarity in z is the effect of primary interest

(e.g., the null cone “cone-beam” artifact), then realizations

at fixed R and/or angle but varying in distance from the cen-

tral axial plane are appropriate. Recognition that all of these

choices yield a local estimate of the NPS is equally

important.

The choice of window function for the periodogram esti-

mates of the RDFT was made primarily focusing on the first

few ODEs. A rectangular window was chosen in the work

reported above, since it has the highest spectral resolution

close to the rapidly declining region of spectral density near

the diagonal. Analysis with the Hann window gave results

similar to Figs. 6 and 7, but the results analogous to Fig. 8

showed clear leakage from the NPS to the first few ODEs—

i.e., the Fourier domain convolution associated with the spa-

tial domain tapering window “blurred” the diagonal across

the first few ODEs (washing out the rank order among the

three phantoms). The choice of window therefore depends

somewhat on what “region” of the RDFT is of interest. For

the work herein, we were primarily concerned with the

ODEs immediately adjacent to the diagonal; for ODEs

farther from the diagonal, a Hann or similar data tapering

window may be the appropriate choice.
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An interesting aspect in our results suggested by Fig. 5 is

that the relative size of the first off-diagonal elements with

respect to the NPS does not depend on the radius or type of

object. This highlights how different metrics can lead to dif-

ferent conclusions of stationarity based on RDFT. The RDFT

is a high-dimensional object which is difficult to characterize

and summarize in terms of simple metrics. The Xxyz metric

in Fig. 8 demonstrates the expected rank order consistent

with the experimental hypothesis of noise stationarity for

various phantom configurations. This metric characterizes

the magnitude of the nth off-diagonal element of the RDFT

relative to the NPS by averaging over the ODEs at a distance

of n elements from the diagonal in the x, y, and z directions.

Other metrics could certainly be derived. For example, the

choice of the order of the absolute value is somewhat arbi-

trary—i.e., taken of the expectation value of Kxyz,n as in Eq.

(8) or taken of the quotient of Kxyz,n/NPS—and would not

necessarily yield the same trends observed in Fig. 8. While

the Xxyz metric demonstrates the magnitude of off-diagonal

elements of the RDFT and supports the hypothesis of nonsta-

tionarity under various experimental conditions, it is not

intended as a standard measure of the off-diagonal elements.

Such lies to future work in probing the RDFT, and the most

meaningful way to understand the relative importance of the

off-diagonal elements is ultimately by relating to a task-

based approach.

The work reported above highlights a number of practical

considerations for CT system design, evaluation, and image

quality QA.

• Phantoms. Air is a reasonable phantom for NPS analysis

in a laboratory CT system and best obeys assumptions of

noise stationarity. Recognizing that air scans can be prob-

lematic for diagnostic CT scanners that may behave in

unexpected (proprietary) ways under high fluence (i.e., in

the unattenuated beam), the next best choice is a water cyl-

inder well matched to a bowtie filter. The water phantom

also offers more straightforward relation to dose and

noise-equivalent quanta. A water cylinder without a bowtie

filter (or a water cylinder of diameter poorly matched to

the shape of the bowtie) is subject to strong NPS

nonstationarity.
• Bowtie filters. The degree of noise stationarity depends on

how well matched the bowtie filter is to a particular diame-

ter of water cylinder. Since different CT scanners have

bowtie filters that differ in shape and material, a single

water cylinder diameter will not perform equally well on

various scanners. A given cylinder may demonstrate a

high degree of stationarity on one make of scanner but ex-

hibit poorer stationarity on a different scanner solely due

to the different bowtie. The same caveats hold for NPS

analysis at different kVp (on the same or different scan-

ners), since a given bowtie is not expected to give ideal

matching to a given cylinder phantom at all kVp.
• Nonstationarity. The 3D NPS varies throughout the 3D

image. The central portion of the axial plane tends to be

dominated by quantum noise, whereas the edge is domi-

nated by view sampling and detector lag effects. For

detectors with appreciable lag (and dependence of lag on

detector signal), effect on both the NPS magnitude and azi-

muthal correlation can be expected. The very center of the

axial plane is often cluttered by ring artifacts, and although

clinical scanners likely have superior ring artifact correc-

tion than the prototype scanner in this work, such artifacts

will have a major effect on the local NPS. For most pur-

poses of NPS characterization (i.e., evaluation of quantum

noise and noise-equivalent quanta), the very center of the

reconstruction is probably best avoided, with ROIs

selected at a specified radius.
• NPS reporting. For NPS characterization across various

systems, it may be most useful to analyze the NPS at a

fixed, specified radius in a region between those dominated

by quantum noise and view aliasing—the “sweet spot” evi-

dent in the region R¼ 40–60 mm in images above. The

NPS for volumetric CT is intrinsically a 3D quantity, and

methods seeking to simplify representation of such to 2D

surfaces and 1D plots must consider the correlations intrin-

sic to the data. Analysis of the NPS from 2D slices

“extracted” from the 3D volume is fraught with error: it

yields incorrect units for a fully 3D image NPS, and it is

not simply related to the 3D NEQ.5 While one may con-

sider correcting such correlations in 2D analysis (i.e.,

dividing by the bandwidth integral associated with out-of-

plane correlation), the most straightforward analysis is to

employ a 3D Fourier transform of the 3D data to yield a

3D NPS. Reduction to 2D axial or sagittal/coronal repre-

sentations of the NPS or 1D plots is then a matter of data

simplification/visualization, for example, 2D central axial,

sagittal, and coronal slices of the full 3D NPS; and reduc-

tion to 1D plots by a radial average of the axial NPS to

yield NPS(fr), as above.
• So. . . is the NPS an appropriate metric? The work

reported here was motivated in part by the challenge

issued by prominent practitioners of spatial domain image

quality characterization8,21–24,36 to check assumptions on

NPS analysis, balanced by the recognition of the utility of

the NPS and related Fourier metrics to practitioners of CT

system design and practical, clinical medical physics. The

work suggests that the NPS is the dominant feature of the

RDFT and that the first off-diagonal element is lower by 2

orders of magnitude. Note that this observation pertains to

uniform objects (with no anatomical variability) for assess-

ment of the NPS in relation to quantum noise; characteris-

tics of the RDFT for “anatomical clutter” [for example,

following a power-law noise characteristic as invoked in

mammography and breast CT (Refs. 37 and 38)] are yet to

be investigated. However, the results also suggest broad

tails in the ODEs, such that the tenth off-diagonal element

has nearly the same magnitude as the first—namely, �1%

of the NPS and the results are likely to be different for

objects with anatomical structure.14,17,18 There are many

ways in which one could quantify the error in the underly-

ing assumption that the noise is stationary in CBCT. For

example, one could compute the detectability of an object

or quantify the difference in the spatial covariance matrix

at various locations in the imaging volume. We have
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examined off-diagonal elements of the Fourier domain co-

variance matrix primarily to understand the magnitude of

the elements of RDFT currently ignored in NPS analysis

under different experimental conditions. A better under-

standing of the local nature of the NPS will hopefully lead

to more accurate estimates of noise correlation and more

standardized reporting in prevalent Fourier methods. Since

such metrics are tied directly to metrics such as NEQ (e.g.,

in system design and optimization) and also to radiation

dose (the importance of which cannot be overstated), the

importance of such improved understanding is clear. Look-

ing beyond the NPS to a fuller appreciation of the com-

plete RDFT could shed additional understanding with only

the tip of the iceberg suggested in the analysis of the first

through tenth off-diagonal elements and various summary

metrics in this work. Ultimately, such characterization can

be tied to spatial domain methods for characterization of

the noise and, ultimately, to task-based detectability in

helping to identify the factors that govern image quality.
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APPENDIX: NPS AND RDFT IN A ROTATED
COORDINATE SYSTEM

To reduce statistical error in the measurements, the NPS

reported in imaging system characterization is typically an

average over NPS estimates obtained from ROI realiza-

tions—e.g., at a fixed radius). When performed in the (x, y)

coordinate system, this leads to averaging out structures

which may be present in the angular (azimuthal) direction

(i.e., perpendicular to the radial direction). We consider a

rotated coordinate system (r, /) where each subvolume real-

ization is rotated to align with the radial direction. Because

the data are discrete, this method requires interpolation and

resampling, but it preserves the correlations in the angular

direction that may be otherwise averaged over (i.e., “washed

out”). Figure 9 shows that in the rotated coordinate system,

the streaking effects (and “horns of the NPS” of Fig. 4)

clearly appear in the NPS of the cylinder image (case C) as

FIG. 9. NPS and off-diagonal elements of the RDFT analyzed from subvolume realizations rotated as a function of angle to align with the radial direction. We

used 21 subvolumes averaged at the radius of 80 mm. Analysis in the rotated coordinate system better distinguishes the horns of the NPS associated with radial

correlation that is washed out in Fig. 3. These correlations are evident in the movie files (electronic content associated with Fig. 4), but the horns are seen to

rotate in the axial NPS exactly with the angle of the realization. The large peaks appearing in the NPS for the cylinder are in the 6f/ direction which is consist-

ent with the streak artifact arising from view sampling effects.
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enhanced side lobes of the NPS. These effects were not

apparent in the off-diagonal elements of the RDFT. In the

NPS image for air (case A), we observe small peaks in the

6fr direction representing azimuthal correlations (comet ar-

tifact) which we attribute to detector lag. These small horns

can also be seen in the NPS movies.
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