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The aim of this paper is to consider the relative benefits of screening for type two diabetes mellitus in women with a previous
pregnancy complicated by gestational diabetes mellitus. Recent studies suggest that women who experience GDM are at a greater
risk of developing type 2 diabetes within 10–20 years of their index pregnancy. If considered as a stand-alone indicator of the risk
of developing type 2 diabetes, GDM is a poor diagnostic test. Most women do not develop GDM during pregnancy and of those
that do most do not develop type 2 diabetes. There is, however, a clear need for better early detection of predisposition to disease
and/or disease onset to significantly impact on this global pandemic. The putative benefits of multivariate approaches and first
trimester and preconception screening to increase the sensitivity of risk assignment modalities for type 2 diabetes are proposed.

1. Introduction

The keystone to improving disease management and health
outcomes remains the early and accurate diagnosis of the
predisposition to, or onset of, disease. Early detection of
disease risk and onset is the first step in implementing effi-
cacious treatment and improving patient outcomes. In the
context of screening for prediabetic and diabetic conditions
in asymptomatic individuals, early detection may allow the
implementation of dietary, lifestyle, and/or pharmacologic
interventions that limit or prevent the development of
disease-specific pathophysiologies. The rationale for seeking
to develop predictive tests for diabetes and other metabolic
disorders, thus, is clearly evident.

Recent studies suggest that women who experience gesta-
tional diabetes mellitus (GDM) are at a greater risk of devel-
oping type 2 diabetes mellitus (type 2 diabetes) within 10–
20 years of their index pregnancy [1]. Monitoring glycemic
control and intervention strategies to delay or prevent disease
onset have been advocated in such women. Type 2 diabetes,
however, is a disease of heterogeneous aetiology and GDM is
but one risk factor. If considered as a stand-alone indicator
of the risk of developing type 2 diabetes, GDM is a poor

diagnostic test. Most women do not develop GDM during
pregnancy and of those that do most do not develop type 2
diabetes. Postpartum monitoring of women who developed
GDM during pregnancy, nevertheless, may be of clinical
utility in this higher risk cohort. There is, however, a clear
need for better early detection of predisposition to disease
and/or disease onset to significantly impact on this global
pandemic.

For women (and their partners), pregnancy represents a
period of increased interaction with the healthcare system
and a period where changes in lifestyle may have significant
impact not only on the parents but also on the disease
susceptibility of the next generation. This period represents
an opportunity to implement more comprehensive educa-
tional, lifestyle, and disease susceptibility or onset screening
initiatives, either during first trimester or, perhaps more
effectively, in the setting of a preconception clinic. The
objectives of preconception care are to promote the health of
women (and their partners) before conception and thereby
improve pregnancy-related outcomes (both current and
future) and to reduce the risk of adult-onset disease (e.g.,
cardiovascular and metabolic) in their children. Over the
next decade, the combined effects of an increase in the
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incidence of type 2 diabetes in younger women [2] and
an increased maternal age at first delivery will result in an
increased number of pregnancies exposed to the potentially
adverse effects of undiagnosed diabetic conditions. Globally,
the number of live births each year is estimated to be
more than 134 million. Preconception programs, thus, have
the potential to specifically target more than 360 million
individuals per year (i.e., the parents and the offspring).

The aim of this paper is to consider the relative benefits
of screening for type 2 diabetes in women with a previous
pregnancy complicated by GDM. The putative benefits of
multivariate approaches and preconception screening to
increase the sensitivity of risk assignment modalities for type
2 diabetes are proposed.

2. Diabetes Mellitus

2.1. Epidemiology. Diabetes mellitus is one of the most
common chronic diseases. The number of adults with
diabetes has more than doubled over the past 30 years. Recent
reports by Danaei et al. [3] and Shaw et al. [4] estimate
the global prevalence of diabetes to be between 285 and 347
million people. By 2030, diabetes is expected to affect 552
million people. The prevalence of this disease is increasing
in most countries as changing lifestyles lead to reduced
physical activity and increased obesity [4]. Since 1980,
the age-standardised fasting plasma glucose concentration
has increased by 0.07 mmol/L per decade for men and
0.09 mmol/L per decade for women [3]. These data are con-
sistent with an overall population-based decline in glycemic
control.

The incidence of diabetes has also increased dramatically
in women of reproductive age (i.e., 18–44 years). For
example, in the USA, the rate of diabetes has increased by
70% in women aged 30–39 years over the past decade. It is
estimated that 12.6 million women (or 10.8% of women over
the age of 20) have diabetes, and of these women, 90–95%
have type 2 diabetes. Death rates for women aged 25–44 years
with diabetes are more than 3 times that for women without
diabetes [5].

2.2. Aetiology of Type 2 Diabetes. The available data are
consistent with type 2 diabetes being of genetic origin;
however, its precise aetiology remains to be unequivocally
established. Behavioural, lifestyle, and environmental factors
have all been implicated as modifiers of disease risk. Recent
genome-wide screening studies have identified multiple
susceptibility variants consistent with type 2 diabetes being
of polygenic origin [6–10]. Thus, type 2 diabetes may be a
phenotypic manifestation of many different aetiologies that
simply share hyperglycemia as a common outcome [11].

A hallmark of the onset of type 2 diabetes is a progressive
decrease in insulin-stimulated glucose uptake. High circulat-
ing concentrations of glucose induce pancreatic β-cell hyper-
trophy and/or hyperplasia and increased secretion of insulin.
When the capacity of β-cells fails to compensate for the
degree of insulin resistance, insulin deficiency and ultimately
type 2 diabetes ensue [12]. Pancreatic β-cell failure displays
specificity for insulin signaling pathway; while retaining

capacity to respond to challenges (such as, β-adrenergic
agonists, amino acids, and sulfonylurea drugs), cells lose
their capacity to respond to glucose. If not adequately
managed, hyperglycaemia may induce a glucotoxicity and
lipotoxicity involving oxidative and endoplasmic reticulum
stress, overexpression of proinflammatory autacoids, and
increased rates of β-cell apoptosis [12, 13].

It is becoming increasingly evident that inflammation
plays a key role in the pathogenesis of type 2 diabetes. It
is well established that systemic markers of inflammation,
including C-reactive protein, haemoglobin, serum amyloid
A, proinflammatory cytokines and chemokines are elevated
in the blood of type 2 diabetics. The source of these media-
tors is of multiorgan origin and, at least in part, in response
to elevated concentrations of glucose and fatty acids. Both
secretagogues promote proinflammatory conditions in many
tissues (including pancreatic isLet-7 cells, adipose tissue,
liver, and muscle), induce the release of inflammatory auta-
coids, and alter redox status. Chemokines further promote
the recruitment of macrophages to affected tissues and
together with T-cell and possibly mast cells may establish
a local chronic inflammation that involves the constitutive
activation of gene transcription factors such as the nuclear
factor κB (NF-κB) family.

NF-κB is a sequence-specific family of transcription fac-
tors critically involved in inflammation and innate immune
responses. The NF-κB family comprises at least five proteins,
of which the most abundant form in unstimulated cells
occurs in the cytoplasm as a heterodimer composed of two
proteins, p50 and p65 bound to an inhibitory subunit, IκBα.
Upon stimulation, IκBα is phosphorylated by an IκB kinase
complex, thus, targeting IκBα for ubiquitin-dependent
degradation and liberates NF-κB dimers to translocate to
the nucleus where they bind to the consensus sequence
5-GGGPuNNPyPyCC-3. This κB motif has been identified
in the promoter regions of many proinflammatory medi-
ators, including adhesion molecules (ICAM-1), enzymes
(including, inducible nitric oxide synthase, phospholipase
A2s, cyclo-oxygenase-2, urokinase plasminogen activator,
metalloproteinases, superoxide dismutase), cytokines (e.g.,
IL-1β, IL-6, TNFα), and chemokines (IL-8) [14].

It is noteworthy that recent studies in breast cancer [15]
provide data implicating NF-κB, IL-6, and Let-7 micro-RNA
(miRNA) in an epigenetic switch or positive feedback loop
that resets inflammatory pathways to a heightened state of
responsiveness. In this model, a triggering event induces NF-
κB DNA binding activity and Lin28 expression and represses
Let-7 miRNA action. One of the actions of Let-7 is to
suppress IL6 formation. Thus, inhibition of Let-7 results in
higher levels of expression of IL6 than achieved by NF-κB
activation alone. IL6 activation of the STAT3 transcription
factor is necessary for neoplastic cellular transformation, and
IL6 activates NF-κB, thereby completing a positive feedback
loop.

We propose that a similar mechanism may induce
a sustained inflammatory response, activation of NF-κB-
regulated genes, and insulin resistance in type 2 and gesta-
tional diabetes. That is, that a primary pathophysiological
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insult (Figure 1, e.g., obesity, metabolic stress, hypergly-
caemia, or hyperlipidaemia) may activate NF-κB-mediated
gene expression and proinflammatory regulatory pathways.
Subsequent secondary or repetitive insults may induce a per-
sistent, heightened response, the positive feedback loop being
established via the induction of the RNA-binding protein
Lin28 that suppresses Let-7 microRNA family members. Let-
7 miRNA suppresses interleukin-6 expression (binding IL-6
mRNA though its 3′ UTR) and other growth and metabolic
mediators. The resulting positive feedback loop between NF-
κB and, in particular, IL-6 and the inhibitory effects of Lin 28
and IL-6 on Let-7 is sufficient to result in sustained elevation
and responsiveness of these pathways.

In support of this hypothesis, Zhu et al. [16] recently
reported that the Lin28/Let-7 axis plays a role in the repro-
graming of glucose metabolism in malignancy. Lin28a and
Lin28b were reported to promote insulin-sensitivity and
resistance to high-fat-diet-induced diabetes. Furthermore,
muscle-specific inhibition of Lin28a or overexpression of
Let-7 results in insulin resistance and impaired glucose
tolerance. These effects were mediated, in part, via Let-7
repression of the insulin-PI3K-mTOR pathway, including the
insulin receptor, insulin receptor substrate 2, and insulin-like
growth factor 1 receptor. In normal adult individuals, Lin28
expression is low and, thus, Let-7 represses the expression
of a cassette of gene pathways associated with growth,
cell migration, and catabolic metabolism. Under conditions
where Lin28 is induced (e.g., via activation of NF-κB re-
sponse pathways), Let-7 repression of these genes is removed.
In the case of type 2 diabetes, triggers such as obesity, oxida-
tive stress, and inflammatory mediators may initiate aberrant
activation of the NF-κB pathway and initiate a feedback loop
that sustains and progressively increases insulin resistance.

2.3. Management and Intervention. The available data sup-
port the contention that the adverse sequelae of diabetes
(including microvascular, cardiovascular, and renal disease)
can be, at least, ameliorated by adequate glycaemic control
[17]. Recent trials have established the benefits of inter-
ventions to prevent or delay diabetes and reduce diabetes-
related complications and/or associated risk factors [18–
21]. Intensive lifestyle modification to promote weight loss
and increase physical activity resulted in a 58% reduction
in the risk of type 2 diabetes in adults with impaired
glucose tolerance [21]. Early diagnosis of predisposition to
type 2 diabetes and implementation of effective intervention
represent a strategy to abate the incidence of type 2 diabetes
and its associated health care burden.

3. Gestational Diabetes Mellitus

3.1. Epidemiology. GDM is glucose intolerance with onset or
first recognition during pregnancy [22]. GDM affects ∼5%
of all pregnancies and its incidence is increasing in parallel
with the global increase in obesity and type 2 diabetes. In
the USA, GDM affects 135, 000 pregnancies per year. GDM
has been associated with not only acute increased risk for
complications of pregnancy but also long-term disease risks
for both mother and baby (Australian Institute of Health and
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Figure 1: Diabetes-related triggers may initiate a positive feedback
loop resulting in heighten responsiveness of the NF-κB by the inhi-
bition of miRNA repressors by NF-κB-induced RNA binding
proteins.

Welfare, 2010). Perinatal morbidity includes hyperinsuli-
naemia, macrosomia, hypoglynaemia, hyperbilirubinaemia,
and respiratory distress syndrome which in turn may
generate subsequent complications. Longer-term morbidity
for the offspring includes obesity and diabetes independent
of genetic factors [23–26]. GDM in the mother is associated
with increased risk of overt diabetes later in life. A higher risk
of developing metabolic and cardiovascular disease has been
reported for women who develop GDM during pregnancy.

In 2011, the American Diabetes Association (ADA) and
the International Association of Diabetes and Pregnancy
Study Groups (IADPSG) revised recommendations regard-
ing GDM. It is now recommended that patients at increased
risk for type 2 diabetes be screened for diabetes using
standard diagnostic criteria at their first prenatal visit. High-
risk women are defined as having impaired fasting plasma
glucose levels of 5.6 mmol/L to 6.9 mmol/L [100 mg/dL
to 125 mg/dL]) or impaired glucose tolerance (2-hour
OGTT values of 7.8 mmol/L to 11.0 mmol/L [140 mg/dL to
199 mg/dL]). Women with an HbA1c of 5.7% to 6.4% are
also considered at increased risk. In these patients, confirmed
fasting glucose levels of ≥7.0 mmol/L (126 mg/dL) or ran-
dom glucose levels≥11.1 mmol/L (200 mg/dL) are also diag-
nostic of diabetes. The ADA and the IADPSG recommended
that such high-risk women with diabetes diagnosed on the
basis of standard diagnostic criteria receive a diagnosis of
overt rather than gestational diabetes.

At 24 to 28 weeks of gestation, all women not known to
have diabetes (including high-risk women if the initial testing
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was normal) should undergo a 75 g OGTT, with diagnosis of
GDM based upon the finding of 1 abnormality, rather than
the previously recommended 2.

3.2. Aetiology. Normal pregnancy is attended by significant
changes in maternal metabolism [27] that are induced, at
least in part, by the release of placenta-derived autacoids
[28–30]. Early pregnancy is anabolic and associated with
the accretion of maternal fat. Late pregnancy is catabolic
and characterised by increasing insulin resistance, lipolysis,
hyperinsulinaemia, hyperglycaemia, increased postprandial
fatty acid concentrations, and declining maternal fat reserves.
The net effect of these late gestation changes are increased
availability of energy and anabolic substrates to sustain the
growth of the feto-placental unit, increased utilisation of
glycolytic energy production, and increased free fatty acid
availability [31]. Late pregnancy is also associated with a
decreased ability to produce glucose via gluconeogenesis,
glycogenolysis and lipolysis. This is in part a consequence
of an attenuation of hypoglycaemia to induce glucagon,
norepinephrine and cortisol.

It has been suggested that GDM and type 2 diabetes may
share common pathogenic mechanisms, however, pregnancy
may serve to unmask disease in those women who are
predisposed and destined to develop type 2 diabetes later in
life. Similar to type 2 diabetes, GDM is manifested by the
inability of pancreatic β-cell insulin release to compensate for
pregnancy-induced insulin resistance resulting in maternal
hyperglycaemia and hyperinsulinaemia. Moderate hyperin-
sulinaemia is considered adaptive during normal pregnancy
and a response to increased energy utilisation and demand
by the developing fetus. In GDM, the adaptive changes in
insulin resistance extend beyond those normally observed
[32, 33]. For example, during normal pregnancy, insulin-
stimulated glucose transport by skeletal muscle fibers is
reduced by ∼40%. In women with GDM, glucose transport
has been reported to be reduced by up to 65% [34]. Environ-
mental (modifiable) risk factors, including, preconception
conditioning, maternal diet and exercise, and other lifestyle
factors, may impact on the severity of its manifestation. In
most cases, however, symptoms of metabolic dysfunction
disappear postpartum following the withdrawal of placental
autacoid mediators.

The effects of hyperglycaemia on pregnancy outcome are
underpinned by experimental studies that identify putative
effector pathways by which exposure to high glucose con-
centrations may alter placental and maternal adipose tissue
phenotype and responsiveness [35–37]. Similar to type 2
diabetes, the role of inflammatory mechanisms in disease
progression is evident. Increased biomarkers of oxygen
radical damage and an impairment of antioxidant defense
have been identified in individuals with type 2 diabetes
[38] and in women with GDM [37, 39–41]. Previously,
we demonstrated that the placentae of women with GDM
display a reduced capacity to respond to oxidative stress in
terms of 8-isoprostane and tumour necrosis factor α (TNF
α) release [35]. We concluded that GDM placenta may be
preconditioned by transient intracellular oxidative stress.

The role of oxidative stress in the aetiology of GDM has
recently been reviewed [42].

4. Screening for Diabetes

4.1. Screening for GDM. Currently, GDM is diagnosed in
the late second or early third trimester of pregnancy. Any
pathology is probably already established by this time and
reversal of the potential adverse perinatal outcomes may
be limited. The lack of a reliable early test for GDM has
hampered the development of useful intervention therapies
that may impact not only on the acute but long-term health
outcomes (Figure 2). Thus, there is a need to diagnose and
predict GDM earlier so that appropriate management can be
initiated and tailored to the needs of the patient in order to
minimise perinatal complications and their sequelae.

GDM is currently diagnosed by an In Vitro Diagnostic
(IVD) Oral Glucose Tolerance Test performed at 24–28
weeks of gestation. A glucose load (75 g) is administered
to fasting individuals, and blood glucose concentration is
determined at 1 hour and 2 hours [43, 44]. The Third Inter-
national Workshop-Conference on GDM emphasised the
critical importance of developing new diagnostic criteria
that are based on the potential to detect pregnancies at
risk for adverse perinatal outcome as a result of maternal
hyperglycaemia, rather than placing primary emphasis on
the identification of mothers at risk for progression to
diabetes outside of pregnancy. With the obesity epidemic
well entrenched in the Western world and with more women
delaying pregnancy and the associated increase in pre-
pregnancy body mass index (BMI), the incidence of GDM
is increasing irrespective of the diagnostic criteria used.

First trimester pregnancy and preconceptional risk-
factors for GDM have been identified including family
history of GDM and/or diabetes [45], maternal pregnancy
weight gain [46, 47], fasting plasma glucose [48], 1-hour
glucose challenge test [49], oral glucose tolerance test
[50], and haemoglobin A1c [51] adiponectin [52, 53], C-
reactive protein [54], serum triglycerides [55], sex hormone-
binding globulin [56], placental growth factor [57] leptin
[58], oxidised DNA [59], and follistatin-like-3 levels [60].
Although some have been able to provide a good negative
predictive measure for subsequent GDM [61], most tests
suffer from poor positive predictive values and are of limited
efficacy.

It is now widely acknowledged that single biomarkers are
unlikely to deliver significant incremental gain in sensitivity
and specificity that will be required for the development of
effective screening and classification tests requisite for the
implementation of personalised medicine. New approaches
based upon the measurement of multiple biomarkers of
disease risk afford opportunity to increase diagnostic test
sensitivity and specificity. Even the use of two biomarkers can
deliver improved performance [62]. The use of modelling
algorithms to combine multiple known biomarkers (e.g.,
candidate-based approaches) similarly may increase diag-
nostic efficiency and deliver classification models of clinical
utility [63–66]. Both candidate-based applications (i.e., in
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Figure 2: GDM disease progression. GDM is currently diagnosed (Clinically Overt) in 3rd trimester (24–28 weeks of gestation) following an
oral glucose tolerance test (OGTT). Using this diagnostic threshold, there is no opportunity to prevent pathological changes (accumulated
damage) that may occur during 1st and 2nd trimester (Undiagnosed Period). The implementation of screening tests during early pregnancy
or the preconception period affords opportunity to identify women at risk of disease and to evaluate intervention strategies on pregnancy
outcome and the long-term health of both mother and baby.

which the identity of the analytes being measured are well-
established [67]) and signature profiling applications (i.e., in
which characteristic patterns or motifs within a signal profile
are identified, see [68]) may be utilised in the development
of multivariate modelling strategies for the delivery of more
informative diagnostic tests [69].

A recent trend in the development of more efficient diag-
nostic tests has been the use of algorithm-based multivariate
index assays (IVDMIAs). With the development of this new
class of IVD, the discipline has sought new biostatistical
approaches for assessing and quantifying incremental gains
in diagnostic efficiency. Traditionally, the area under the
receiver operator characteristic curve (AUC) has been used
as a measure and comparator of diagnostic efficiency. Several
investigators have argued that this measure alone may be
imperfect and inefficient for comparing the true clinical
usefulness of alternative marker panels [70, 71]. These
authors reviewed several biomarker studies and observed
that when evaluating improvement in risk assignment of
biomarkers, very large odds ratios were often associated with
very small increases in the AUC. This feature of the receiver
operator characteristic curve analysis limits its utility in iden-
tifying putative beneficial contributions of new biomarkers
to algorithm-based models. Pencina et al. [72] therefore,
proposed the use of two new methods for evaluating the
diagnostic efficiency of biomarkers. These two methods
are (i) Net Reclassification Improvement (NRI) and (ii)
Integrated Discrimination Improvement (IDI). The NRI is
based on counts of the number of true positives showing an
increase in probability of an event and the number of true
negatives showing a decrease in probability of an event. The
IDI is based on the integral of sensitivity and specificity of
all possible thresholds. These new biostatistical approaches
may facilitate the development of biomarker panels with
improved diagnostic efficiency and aid in the screening and
earlier detection of diabetic conditions.

IVDMIA approaches are being developed for risk assign-
ment modalities for use in the first trimester of pregnancy,
including the evaluation of multiple candidate-based profil-
ing of blood-borne biomarkers. For example, we measured
multiple plasma biomarkers at 11 weeks of gestation in
women who subsequently experienced a normal pregnancy

outcome and women who subsequently developed gesta-
tional diabetes [73]. Of the biomarkers considered, algo-
rithms that included adiponectin, insulin, and random blood
glucose delivered the greatest diagnostic efficiency when
compared to individual biomarkers alone. The IVDMIA
increased AUC by more than 10%. This simple example
demonstrates the putative benefit of a multimarker approach
for improving diagnostic efficiency.

4.2. Screening for Type 2 Diabetes after GDM. As discussed
above, GDM may unmask a predisposition to type 2 diabetes
and, as such, GDM may be diagnostic for type 2 diabetes.
A recent meta-analysis [74] reviewed 20 studies conducted
between 1960–2009 to estimate the relative risk of developing
type 2 diabetes following GDM. The combined cohort
involved more than 675,000 pregnancies of which 31,867
cases of GDM were identified (i.e., 4.7% of all pregnancies
included in the analysis). Of these cases of GDM, 10,859
incident cases of type 2 diabetes were identified. The relative
risk for type 2 diabetes following GDM was estimated to
be 7.43 (compared to women who had normoglycaemic
pregnancies). Bellamy et al. [74] suggested that increased
awareness of the risk of type 2 diabetes after GDM could
provide an opportunity to test and use dietary, lifestyle, and
pharmacological interventions that might prevent or delay
the onset of type 2 diabetes.

While the conclusion that GDM is a risk factor for type
2 diabetes is supported by the available data, it is pertinent
to note that more than 95% of women in the cohort did
not develop gestational diabetes and that more that 64% of
women who have had GDM do not have type 2 diabetes 20
years postindex pregnancy. The prevalence of type 2 diabetes
in women 10–20 years after index pregnancy is estimated
to be ∼5%; thus, in a cohort of 675,000, ∼33,700 incidence
cases would be expected, that is, 22,841 cases in this cohort
were not associated with a previous GDM pregnancy (i.e.,
a false positive rate of 0.659). The positive predictive value
of GDM as a diagnostic test for type 2 diabetes is only 34%
(sensitivity = 0.322 and specificity of 0.967).

Similarly, Göbl et al. [75] recently reported results of a
small prospective cohort (n = 110) with 10-year followup of
women who experienced GDM in which 78.7% of women
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did not develop type 2 diabetes. Of the 21.3% who did
progress to type 2 diabetes, a multivariate analysis identified
2-hour oral GTT concentration, HDL cholesterol, and age
as the best predictors. Women with two or more risk factors
were at a higher risk than women with only one.

It has further been proposed that women with a previous
GDM pregnancy should be followed up by OGTT postpar-
tum and, if positive, intervention and monitoring strategies
implemented. While this may be appropriate, it does not
assist the ∼68% of women who develop type 2 diabetes in
the absence of GDM complicated pregnancies. Specifically
targeting and monitoring women with a previous GDM
pregnancy is an aid in identifying predisposition to type 2
diabetes but is a poor stand-alone diagnostic test for type 2
diabetes in women. Alternative strategies for early detection
screening, intervention, and prevention are requisite to
reducing the overall burden of type 2 diabetes at a commu-
nity level.

The objectives of any disease screening program are to

(1) identify asymptomatic individuals at higher risk of,
or predisposition to disease,

(2) afford the opportunity for treatment or prevention of
disease thus limiting severity,

(3) reduce disease burden in the community.

A number of opportunities for developing screening
applications that target women of reproductive age exist,
including the development of preconception screening.

4.3. Preconception Conditioning and Screening. The concept
that information defining contemporary environmental con-
ditions is coded in maternal physiology and is sensed and
informs and adapts the development of the fetus is not
novel [76, 77]. This tenet is the basis of epigenetics and
the developmental origins of adult disease [78]. Modifiable
maternal and environmental factors reported to affect preg-
nancy outcome and/or disease risk in the offspring include
BMI [79, 80], weight gain during pregnancy [47], diet [81–
83] physical activity [84, 85], preexisting diabetes [86, 87],
and alcohol consumption [88]. The placenta functions as an
environmental sensor for the embryo and not only integrates
information encoded within the maternal milieu but its own
ontogenic development and function may be altered by such
information. Known modifiers of the placental epigenome in
human and animal models include micronutrients [89, 90],
diet [91], smoking [92], bacterial infection [93], obesity [94],
stress [95], diabetes [96], and hypertension [97, 98].

Based upon the available data, a sound case can be made
for the implementation and evaluation of preconception
care programs that attempt to optimise or, at least, improve
general health, life style, and conditioning of women and
their partners before conception. The premise underpinning
promoting preconception in addition to prenatal care is
that for some maternal conditions and exposures, altered
programing and/or damage can occur before prenatal care
begins. To promote normal placentation and reduce risks
of complications of pregnancy, education and appropriate

interventions must be identified and implemented prior to
conception.

In 2006, the Centers for Disease Control and Prevention
(CDC) published a report of the CDC/ATSDR Preconcep-
tion Care Work Group and the Select Panel on Preconception
Care [99, 100]. The panel identified four primary objectives:

(1) improve knowledge, attitudes, and behaviors of men
and women related to preconception health,

(2) assure that all women of childbearing age receive
preconception care services that will enable them to
enter pregnancy in optimal health,

(3) reduce risks identified by a previous poor pregnancy
outcome through interventions during the inter-
conception period, which can prevent or minimize
health problems for a mother and her future children,

(4) reduce disparities in adverse pregnancy outcomes.

The actual benefits of preconception care programs
remain to be established as there is a paucity of randomised
control data on the health outcomes and economic ben-
efit of attempts to improve preconception maternal (and
paternal) health. Several studies, however, have reported
some evidence of positive financial returns for preconception
counseling for women with diabetes, based on savings in
hospitalisation costs [101, 102]. Similarly, case control stud-
ies on the health care costs associated with maternal obesity
provide further support, reporting that the cost of prenatal
care was 5 times higher in mothers who were overweight
before pregnancy than in normal-weight control women
[103]. More recently, Moos and Bennett [104] reviewed the
evidence supporting preconception care for diabetic women.

The implementation of preconception care programs
afford opportunity for more broadly based screening for
prediabetic conditions and early intervention to reduce the
incidence of type 2 diabetes. The efficacy of screening this
cohort has yet to be established it would, however, afford
opportunity for longitudinal monitoring of biomarkers.
Longitudinal monitoring is an approach that has proved
effective in increasing the diagnostic performance of oncol-
ogy diagnostics [105, 106]. It is likely that such an approach
would also improve the positive predictive value for the
diagnosis of type 2 diabetes.

5. Conclusion

Type 2 diabetes is a “communicable disease” that is transmit-
ted between individuals and intergenerationally by the adop-
tion of societal and lifestyle behaviors—behaviours that chal-
lenge fundamental energy homeostasis. The juxtaposition of
a susceptible genetic background with the ability to access
a surfeit of energy dense foods without counterpoise energy
expenditure predisposes to obesity and failure of glycaemic
control. Modifiable risk factors have been identified that may
reduce disease severity. Early identification of individuals
at higher risk of developing type 2 diabetes will play a
critical role in improving disease management and health
outcomes. Of significant promise is the development and
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implementation of high performance IVDMIAs and their use
in longitudinal monitoring programs.

Abbreviation

IVDMIA: In Vitro Diagnostic Multivariate Index Assay.
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