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Abstract
Fluorescence molecular tomography is a powerful tool for 3D visualization of molecular targets
and pathways in vivo in small animals. Owing to the high degrees of absorption and scattering of
light through tissue, the fluorescence tomographic inverse problem is inherently ill-posed. In order
to improve source localization and the conditioning of the light propagation model, multiple sets
of data are acquired by illuminating the animal surface with different spatial patterns of near-
infrared light. However, the choice of these patterns in most experimental setups is ad hoc and
suboptimal. This paper presents a systematic approach for designing efficient illumination patterns
for fluorescence tomography. Our objective here is to determine how to optimally illuminate the
animal surface so as to maximize the information content in the acquired data. We achieve this by
improving the conditioning of the Fisher information matrix. We parameterize the spatial
illumination patterns and formulate our problem as a constrained optimization problem that, for a
fixed number of illumination patterns, yields the optimal set of patterns. For geometric insight, we
used our method to generate a set of three optimal patterns for an optically homogeneous, regular
geometrical shape and observed expected symmetries in the result. We also generated a set of six
optimal patterns for an optically homogeneous cuboidal phantom set up in the transillumination
mode. Finally, we computed optimal illumination patterns for an optically inhomogeneous
realistically shaped mouse atlas for different given numbers of patterns. The regularized
pseudoinverse matrix, generated using the singular value decomposition, was employed to
reconstruct the point spread function for each set of patterns in the presence of a sample
fluorescent point source deep inside the mouse atlas. We have evaluated the performance of our
method by examining the singular value spectra as well as plots of average spatial resolution
versus estimator variance corresponding to different illumination schemes.

1. Introduction
Optical imaging techniques have long been popular for generating contrast representing
molecular processes in tissue. Over the past decade, their applications have extended from
microscopy to macroscopic imaging of deep-tissue optical sources by exploiting the near-
infrared (NIR) window where water, oxyhemoglobin, and deoxyhemoglobin, the primary
absorbers in tissue, have relatively low absorption coefficients allowing light to penetrate
several centimeters inside tissue (Weissleder and Ntziachristos 2003). The non-ionizing
nature of NIR light, the availability of a variety of highly specific fluorescent probes, and,
finally, low cost offer these methods some leverage over existing radiological techniques for
molecular imaging (Hebden et al 1997). However, penetration depths of only a few
centimeters are insufficient for most clinical deep-tissue imaging applications. Thus the
success of 3D optical imaging methods in clinical diagnostics is restricted to only a few
applications. These include NIR spectroscopy and diffuse optical tomography used for
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mapping brain structure and function in neonates (Koizumi et al 2003, Villringer and
Chance 1997, Hebden et al 2002) and optical mammography for breast cancer screening
(Ntziachristos and Chance 2001, Culver et al 2003). Optical tomographic methods show
great promise in preclinical research, which is a valuable translational tool between in vitro
studies and clinical applications. Fluorescence molecular tomography (FMT) and
bioluminescence tomography (BLT) have emerged as promising low-cost alternatives to
PET and SPECT for functional imaging in small animals, thus greatly impacting
diagnostics, drug discovery, and therapeutics (Ntziachristos et al 2005, Gibson et al 2005).
Although plagued by tissue autofluorescence, FMT has many advantages over BLT.
Compared to most bioluminescent probes, commonly used fluorophores emit light at longer
wavelengths (where tissues are less absorbing) consequently offering higher detected signal
strengths (Contag and Bachmann 2002, Hielscher 2005). Additionally multiple illumination
patterns can be used to generate different mappings from the source space to the detector
space making the FMT problem less ill-posed than the BLT problem (Chaudhari et al 2005).
The success of FMT can be attributed to a number of breakthroughs.

• The availability of a variety of new NIR fluorescent dyes, active or activatable
fluorescent biomarkers, and fluorescent proteins expressed by reporter genes has
enabled visualization of gene expression and several cellular and subcellular
processes in vivo (Massoud and Gambhir 2003, Shu et al 2009).

• Advances in instrumentation have led to the development of a range of imaging
systems for time-domain, frequency-domain, and continuous-wave (CW) FMT
(Kumar et al 2008, Godavarty et al 2005, Zavattini et al 2006). Some of the newer
systems feature non-contact tomographic detection using CCD cameras with free-
space detection geometries and/or innovative optics for full-surface visualization,
thus eliminating the need for optical fibers and matching fluids (Li et al 2009,
Graves et al 2003, Patwardhan et al 2005).

• Finally, a number of theoretical and computational advances have led to the
development of realistic forward models and robust inverse methods. Popular
methods employed to model photon propagation through tissue for solving the
forward problem include Monte Carlo methods (Hayakawa et al 2001, Boas et al
2002, Chen and Intes 2009) as well as analytical and numerical solutions to the
radiative transport equation (Klose et al 2002) and the diffusion equation (Rice et al
2001, Dutta et al 2008, Arridge et al 1993) subject to different boundary conditions
(Haskell et al 1994). These forward modeling schemes coupled with fast inversion
techniques (Roy and Sevick-Muraca 2001, Ahn et al 2008, Zacharopoulos et al
2009) have made it feasible to reconstruct FMT images accurately and efficiently.

Despite their tremendous potential and increasing popularity, fluorescence tomographic
techniques are confounded by high degrees of absorption and scattering of photons
propagating through tissue, making the FMT problem ill-posed. One approach for
alleviating this problem and improving source localization is to harness spectral variations
of tissue optical properties by using multispectral illumination and/or detection (Zacharakis
et al 2005, Chaudhari et al 2009). Another approach is to exploit the degree of freedom
offered by external illumination in FMT and design a set of spatial illumination patterns that
improve the conditioning of the forward model matrix (Dutta et al 2009), and that is the
focus of this paper.

FMT setups typically acquire data-sets corresponding to different surface illumination
patterns. These patterns generate different excitation fields over the volume, which tune the
system matrix. FMT setups available today employ illumination schemes chiefly guided by
the availability and simplicity of the light source. Several of these use laser sources with
focusing or diffuser lenses to generate point or distributed patch patterns (Graves et al 2003,
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Zavattini et al 2006, Li et al 2009). Other approaches include raster scanning (Patwardhan et
al 2005, Joshi et al 2006) and structured light or spatially modulated illumination patterns
(Lukic et al 2009). Most of these approaches are ad hoc. Although various performance
metrics could be used to theoretically compare these standard approaches, it is impossible to
make an exhaustive set of comparisons, since, for a given number of illumination patterns
being used for an experiment, infinitely many designs exist. Therefore, the question we
address in this paper is as follows: given a fixed number of illumination patterns, how do we
design these patterns so as to maximize the information in the acquired data?

With the availability of Texas Instruments Digital Light Processor (DLP®) chips (Hornbeck
1996, Dudley et al 2003) which work in the near-infrared range and give us precise control
over the spatial intensity distribution, it is feasible to generate any set of spatial illumination
patterns with grayscale intensity variation (Gardner et al 2010, Bassi et al 2008, Konecky et
al 2009, Bélanger et al 2010). The focus of this paper is to compute the set of illumination
patterns for CW FMT that maximize the information content in the data by improving the
conditioning of the Fisher information matrix. We formulate our problem as a constrained
optimization problem that minimizes a cost function derived from the Fisher information
matrix and computes the parameterized set of optimal spatial patterns.

Section 2 of this paper provides a description of the CW FMT problem. The formulation of
the optimization problem that generates the optimal set of patterns is presented in section 3.
In section 4, we describe the methods used to solve the forward and inverse problems, the
optimization procedure, and the performance metrics used to evaluate different illumination
schemes. Section 5 presents optimal patterns on a cylinder, a cuboidal tissue phantom, and a
mouse atlas along with performance comparisons of illumination schemes for the atlas.
Finally, a discussion of the results is presented in section 6.

2. Background
2.1. The forward problem

In continuous wave fluorescence molecular tomography (CW FMT), the 3D biodistribution
of the fluorophore inside an animal volume is computed from the steady-state surface
fluorescence photon density measured using a CCD camera. With the diffusion
approximation, the CW FMT problem can be described by a set of coupled partial
differential equations (PDEs) (Hutchinson et al 1995, Milstein et al 2004, Pogue and
Patterson 2006):

(1)

(2)

Here  is the diffusion coefficient and μa (r, λ) and ,
respectively, are the absorption and reduced scattering coefficients at a position r and a
wavelength λ. For a surface illumination pattern w(r, λex) at an excitation wavelength λex,
the corresponding excitation field, Φ(r, λex), over an animal volume, Ω, can be computed by
solving (1). For a known fluorophore distribution q(r) and emission spectral coefficient
η(λem), the emission field, Φ(r, λem), can be computed by solving (2) for the previously
computed excitation field. In FMT, we assume prior knowledge of the animal surface

geometry and tissue optical properties, μa (r, λ) and . The diffusion approximation is

valid under the condition . This assumption is valid for most tissue types at near-
infrared wavelengths, except near boundaries and in non-scattering parts of some organs
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(e.g. ventricles in the brain and alveolar sacs in the lungs) (Dehghani et al 1999).
Appropriate boundary conditions must be imposed while solving (1) and (2) (Haskell et al
1994, Aronson 1995). The Robin boundary condition, for example, requires that the total
inwardly directed photon current at the boundary be zero:

(3)

(4)

Here ν̂ denotes the outward unit normal at position r on the boundary, ∂Ω, while G depends
on the refractive index mismatch at the boundary (Schweiger et al 1995).

The PDEs (1) and (2) can be decoupled and solved subject to conditions (3) and (4),
respectively, by replacing the source terms on the right-hand sides of (1) and (2) by point
sources (delta functions) at different locations. In a discretized domain with nd detector
nodes on the animal surface and ns point source locations distributed inside the volume, the
excitation forward model at an excitation wavelength λex can be expressed as a matrix Aex

∈ ℝns×nd, with the j th column of this matrix representing the excitation field caused by
illuminating the j th surface node. Similarly the emission forward model at an emission
wavelength λem can be expressed as a matrix Aem ∈ ℝnd×ns. The j th column of this matrix
represents the surface fluorescence pattern due to the j th internal point source. For a set of p
illumination patterns, we discretize the intensity distribution at the surface, w(r, λex), as a
set of vectors wk ∈ ℝnd, where k = 1: p. The solution to the forward problem is a system
matrix dependent on Aex, Aem, and all the wk vectors.

The block of the system matrix corresponding to the kth illumination pattern can be obtained
by diagonally scaling the emission forward model matrix by the excitation intensities at each
internal point:

(5)

Here  is a diagonal matrix representing the excitation field due to wk and is
given by

(6)

where  is the ith component of the vector dk computed from

(7)

The full system matrix, A ∈ ℝpnd×ns, is obtained by vertically concatenating the individual
forward model matrices for a set of p different illumination patterns:

(8)

Here the prime symbol (′) represents matrix transpose.
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2.2. The inverse problem
The measured steady-state surface fluorescence patterns corresponding to p different
illumination patterns can be stacked up as a single data vector, b ∈ ℝpnd. The unknown
fluorophore distribution, q ∈ ℝns, can be computed by solving the following linear system of
equations:

(9)

CW FMT setups commonly employ one or more mirrors that make the entire surface of the
object (animal or phantom) visible in a single CCD camera image (Li et al 2009, Dutta et al
2008, Chaudhari et al 2005). Such setups require CCD cameras with a high dynamic range.
Mapping of this data from the CCD image space to the object space requires knowledge of
the object surface as well as calibration for various geometric and radiometric mapping
parameters (Li et al 2009). The data vector, b, is obtained by interpolating CCD pixel-wise
intensity values onto the surface mesh of the animal or phantom being imaged using the
calibrated mapping scheme. Its size, therefore, depends on the mesh density.

We pose the image reconstruction problem as an optimization problem that seeks to
minimize a regularized least-squares cost function:

(10)

Here q̂ is the reconstructed 3D fluorescent source distribution and α is the Tikhonov
regularization parameter (Tikhonov and Arsenin 1977). The first term is a data-fitting term,
while the second term is a regularization or a penalty term that smooths the reconstructed
image. The problem in (10) can be solved analytically using singular value decomposition
(SVD) or using a variety of iterative methods, the former being the approach adopted in this
paper. Given the SVD, A = UΣV′, of the system matrix, this problem can be solved using
the regularized pseudoinverse method:

(11)

The system matrix, A, is typically very large in size, with many more rows (pnd) than
columns (ns). It is often infeasible to store this large matrix in computer memory. To obtain
the solution in (11), it is sufficient to compute A′A and A′b as follows:

(12)

(13)

Here ‘○’ represents the Hadamard (entrywise) product and  and dk can be computed
from (6) and (7), respectively. The matrix A′A ∈ ℝns×ns is of the same size irrespective of
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the number of illumination patterns and/or the number of illumination/detection
wavelengths. Its SVD, A′A = VΣ2V′, can be used in (11).

3. Formulation of the optimization problem
According to the Cramér Rao inequality, the inverse of the Fisher information sets a lower
bound on the variance of an unbiased estimator (Kay 1993). This establishes a reciprocity
between the variance and the information content of an estimator. For a scalar estimator, the
Fisher information is a scalar, and the estimator variance can be minimized by maximizing
the scalar Fisher information. However, when we are dealing with a vector estimator, the
Fisher information is a matrix of elements, and there is no single scalar optimality criterion.
In the field of optimal design of experiments, a variety of different functionals of the
eigenvalues of the Fisher information matrix (FIM) are traditionally used as optimality
criteria. For example, A-optimality minimizes the trace of the inverse of the FIM, D-
optimality maximizes the determinant of the FIM, and E-optimality maximizes the smallest
eigenvalue of the FIM (Pukelsheim 1993). The approach that we present here is inspired by
E-optimality. Our goal is to tune the FIM so that its singular value spectrum approaches that
for the perfectly conditioned case. Our method raises the entire spectrum in reference to the
largest singular value. Then, for the same regularization parameter, a greater number of
singular values (and the corresponding singular vectors) will affect the solution in the
optimal case, leading to improved resolution characteristics.

In principle, an unlimited number of illumination patterns can be used. However, this would
lead to lengthy data acquisition times (during which the animal needs to remain
anesthetized), large data volumes, slow reconstruction, and possible redundancy in collected
data, all of which are undesirable in practice. Therefore, we fix the number of patterns and
seek to determine the optimal set for this given number.

3.1. Fisher information matrix
For an unknown vector q and an observed data vector b with probability density p(b), the
FIM is given by (Kay 1993)

(14)

We assume an additive white Gaussian noise model with the noise vector  and

the data vector b = Aq + n. Without loss of generality, we ignore the constant multiple, ,
in the covariance. Using (5) and (8), the Fisher information matrix for this system can be
expressed as

(15)

Using (6), (7), and (15) the FIM can be expressed as a function of the set of illumination

patterns, W = [w1w2 ··· wp], where W ∈ ℝnd×p. We denote the ith row vector of Aex by 
and the ith column vector of Aem by . Then the ijth term of the FIM is given by
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(16)

where we have used the notations . This implies that the FIM
can be conveniently represented as a Hadamard matrix product of two matrices, one
dependent on the emission model and the other on the excitation model and the illumination
patterns:

(17)

Introducing the notation Fem = [(Aem)′Aem] and Gex = [AexWW′(Aex)′], we can rewrite
(17) as

(18)

3.2. Optimization problem formulation
For the system matrix, A = UΣV′, to have a perfect condition number of 1, the diagonal
matrix Σ of singular values should be σ I where σ is a singular value. Note that the singular
value σ does not affect the condition number. Then the FIM for the ideal system is

(19)

Thus, for perfect conditioning, F should approach Fideal. We would like to find a set of
illumination patterns, W, which minimizes the relative difference of the resultant FIM, F
(W), and the ideal one, Fideal:

(20)

where F (W) is defined in (17) and ||·||F represents the Frobenius norm. The minimizer, (Ŵ,
σ̂), of the cost function, Θ(W, σ), with the nonnegativity constraint W ≥ 0 is not unique,
since for any γ, Θ(γ Ŵ, γσ̂) = Θ(Ŵ, σ̂). We therefore first solve a simpler optimization
problem:
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(21)

Then we determine the scaling factor by imposing a power constraint, ||W||F = β, on the
illumination patterns. The final solution is given by

(22)

In practice, the illumination is scaled to exploit the maximum available source power and
thus ensure a high signal-to-noise ratio. Since the optimal solution, Ŵ, which minimizes Θ,
is simply a scaled version of the solution W opt, we now focus on the simpler problem given
in (21).

3.3. Dimensionality reduction
The formulated problem in (21) is fourth-order and non-convex with respect to the patterns
W. W is of size nd ×p, which is typically large, and hence solving this problem is
computationally intensive (Dutta et al 2008). Additionally, the solutions are not necessarily
spatially smooth. Smooth patterns are convenient for experimental implementation since
calibration errors in mapping intensities from the light source to the object surface are likely
to affect the accuracy of the forward model less. They are also desirable because an optimal
set of patterns computed for a mouse atlas can be meaningfully warped to any given mouse
shape, as discussed later in section 6. To allow smooth solutions and to enable speedier
computation, we parameterize the illumination patterns using a small number of spatially
smooth basis functions. The transformation from the basis function domain to the spatial
pattern domain is given by

(23)

Here yk ∈ ℝm is a vector of the linear coefficients of the basis functions for the kth
illumination pattern, L ∈ ℝnd×m is a matrix whose columns are the basis vectors, and Y ∈
ℝm×p with Y = [y1 y2 ··· yp], m being the number of basis vectors used to encode each spatial
pattern. Then, the FIM can be represented in terms of Y as follows:

(24)

3.4. Modified optimization problem
With the inclusion of basis functions for dimensionality reduction, the modified
optimization problem is as follows:

(25)
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A gradient-based approach can be used to solve the optimization problem in (25). Our cost
function as a function of the argument yk, where k = 1: p, is as follows:

(26)

where δij is the Kronecker delta function and Ψij is given by

(27)

The gradient, ∇k Φ, of the cost function with respect to the kth argument vector, yk, is given
by

(28)

 in (28) can be computed as follows:

(29)

Substituting (29) in (28), we have

(30)

3.5. Extension to multispectral detection
Our formulation can be extended for application to multispectral detection. We assume that,
for each illumination pattern, fluorescence data are collected over s wavelength bins. The
fluorescent dye is assumed to have an emission spectral coefficient ηl at the lth wavelength
bin. Then the block of the system matrix corresponding to the kth illumination pattern is
given by

(31)

The Fisher information matrix for this case is
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(32)

where . The FIM retains the Hadamard product form with the
illumination-dependent matrix Gex unchanged. This implies that, once the multispectral
emission model-dependent Fem−ms matrix is precomputed, the optimization problem can be
solved for the multispectral emission case without any additional computational cost.

4. Methods
The optimization problem formulated in section 3 can be solved to obtain the optimal set of
patterns for a given number of patterns, p. This problem is first solved for an optically
homogeneous symmetric solid shape—a cylinder—to gather geometric intuition. Next, we
solve this problem for an optically homogeneous cuboidal phantom set up in the
transillumination mode with the top face illuminated and the bottom face used for detection.
Finally, we solve the same problem for an optically inhomogeneous and realistically shaped
mouse atlas. We perform source localization studies using the optimal patterns on the mouse
atlas and evaluate the performance of the patterns based on appropriate metrics.

4.1. Computation of the forward model
The finite element method (FEM) was used to solve the coupled PDEs (1) and (2) subject to
boundary conditions (3) and (4), respectively, to precompute the excitation and emission
forward model matrices Aex and Aem.

4.1.1. Tessellated cylinder—The cylinder is chosen since it is a regular geometrical
shape without corners and elongated like a real mouse. The idea of this study is to ensure
that the numerical scheme for computing the patterns preserves the natural symmetries
expected in a regular geometrical shape when no spatial constraints have been imposed. For
these simulations, we use a tessellated cylinder of height 40 mm and diameter 20 mm with
2373 tetrahedrons and 588 tessellation nodes. A set of 361 detector nodes on the surface are
used for illumination and detection and 1564 point source locations on a uniform,
volumetric grid with a 1.5 mm spacing are used for source localization. We use
monochromatic excitation at λex = 650 nm and monochromatic detection at λem = 730 nm.
Optical properties are assumed to be homogeneously distributed and are assumed to
resemble those for muscle tissue (Alexandrakis et al 2005).

4.1.2. Tessellated cuboidal phantom—We simulate a cuboidal phantom of dimensions
40 mm × 30 mm × 20 mm. The phantom is set up in the transillumination mode, a planar
imaging mode where the illumination source and the CCD camera are placed on opposite
sides of the object (Ntziachristos 2006). The tessellated phantom contains 40 742
tetrahedrons and 7940 nodes. For generating the patterns, we illuminate over the 474 nodes
on the top surface (z = 20 mm), detect over the 477 nodes on the bottom surface (z = 0 mm),
and use 1155 internal grid points with a uniform 2.5 mm grid spacing for source
localization. We use monochromatic excitation at λex = 650 nm and multispectral detection
at 710 nm, 730 nm, and 750 nm. We assumed homogeneous optical properties similar to
muscle tissue (Alexandrakis et al 2005). We use the emission spectrum of the Alexa Fluor
700 dye, with an emission peak at 719 nm, for computing the forward model.
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4.1.3. Digimouse atlas—For more realistic simulations, we use the Digimouse atlas
(http://neuroimage.usc.edu/Digimouse.html) (Dogdas et al 2007, Stout et al 2002), a labeled
atlas, based on co-registered CT and cryosection images of a 28 g normal male nude mouse.
Tissue optical properties are assumed to be spatially inhomogeneous and assigned organ-
wise, for 17 different organs, according to published values (Alexandrakis et al 2005). The
tessellated atlas volume consists of 306 773 tetrahedrons and 58 244 nodes. For generating
the patterns, 810 surface nodes and 1129 internal grid points with a uniform 2.4 mm grid
spacing are used. We assume that all surface nodes except those lying on the limbs and the
tip of the snout are used for illumination. The Alexa Fluor 700 dye (emission peak 719 nm)
is used as the fluorophore. Accordingly, we use an excitation wavelength of λex = 650 nm
and perform multispectral detection at 710 nm, 730 nm, and 750 nm.

4.2. Optimization procedure
Since our cost function in (26) is continuous and its gradient is computable using (30), we
adopt a gradient-based approach for optimization. We use fmincon, an inbuilt function for
constrained optimization in MATLAB® (The Mathworks Inc., Natick, MA, USA). This
function chooses the active set method for optimization (Gill et al 1982). The non-convex
nature of the cost function implies that several local minima could exist, and our gradient-
based optimization approach could get stuck in one of these. Hence, we use a multi-start
approach with random initializations. This is a heuristic but straightforward approach to the
global minimization problem in which the local minimization algorithm is run from many
different starting points, and then the best solution is picked (Liberti and Maculan 2009).

For dimensionality reduction, we define basis functions on the cylinder and atlas surfaces by
treating them as smooth 2D manifolds. We use as our basis set eigenfunctions of the
Laplace–Beltrami operator (Qiu et al 2006, Joshi 2008, Grenander and Miller 2007). The
Laplace–Beltrami operator is a generalization of the Laplace operator on Riemannian and
pseudo-Riemannian manifolds. These basis functions allow us to generate a spatially smooth
solution. Their orthonormality allows efficient representation of the solution. Since the
eigenvalues of a spatial differential operator are measures of the spatial rate of change of the
corresponding eigenfunctions, the smaller the eigenvalue the smoother is the corresponding
eigenfunction. Therefore, eigenfunctions corresponding to the m = 20 smallest eigenvalues
of the operator were used as basis functions. Figure 1 shows front and back views of the
tessellated cylinder, top views of the cuboidal phantom, and top and bottom views of the
Digimouse atlas with the basis functions displayed on them.

4.3. Inverse solution and performance metrics
The inverse problem is solved using the regularized pseudoinverse in (11). The illumination
patterns on the Digimouse surface are interpolated onto a denser surface mesh with 3234
nodes. For source localization studies, a uniform grid of 9192 point sources with a 1.2 mm
spacing is used. Our simulation setup uses surface data from all nodes on the atlas surface
except those lying on the limbs and the tip of the snout.

In order to comparatively assess different illumination schemes, we need to establish
appropriate performance metrics. We use two approaches for comparing the performance of
different illumination patterns. The first approach is to examine the conditioning of the
system matrix corresponding to a specific illumination pattern by looking at its singular
value distribution. The second approach is to look at average resolution–variance curves to
examine the behavior of the inverse solution.

4.3.1. Condition number—The condition number of a matrix is given by the ratio of its
largest to its smallest singular value. Although this is a good figure-of-merit for the
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robustness of the system, the point spread functions (and, hence, the reconstruction results
for any source distribution) depend on the singular values as well as the singular vectors
(Chaudhari et al 2005). So in addition to looking at the condition number, we analyze
properties of the point spread functions corresponding to different source locations inside
the animal volume.

4.3.2. Resolution–variance analysis—The mean squared error of an estimator can be
decomposed as a sum of the squared bias and the variance. As the regularization parameter
is increased, the estimator variance decreases while the estimator bias increases (resolution
worsens) and vice versa. Resolution–variance curves, which signify this inherent tradeoff,
are commonly used to assess image reconstruction quality (Qi and Leahy 1999, Meng et al
2003, Chaudhari et al 2009). These curves are obtained by sweeping the regularization
parameters over a range of values, computing the variance and resolution of the point spread
functions, and plotting these two quantities against each other for the different values of the
regularization parameter. A lower lying curve implies superior resolution for the same noise
variance for the estimator corresponding to an illumination scheme. Since the regularized
pseudoinverse operator in (11) is a linear operator, it can be completely characterized in
terms of its point spread functions.

When the regularized pseudoinverse method is used for reconstruction, the spatial resolution
and noise variance of the estimator can be computed in a closed form, thus eliminating the
need for computationally expensive Monte Carlo simulations. For a true source distribution
q, the mean value of the estimator for a regularization parameter α can be expressed in terms
of the SVD, A = UσV′, of the system matrix as

(33)

We would like to compute the spatial resolution from the point spread function, PSFj, for the
j th unit point source. For this source, q = ej, where ej is a unit vector with 1 as the j th
element. Then PSFj can be computed by substituting q = ej in (33):

(34)

The spatial resolution is measured as the full width at half maximum (FWHM) computed
from PSFj. Then the average spatial resolution over n different point source locations inside
the object is a function of the regularization parameter, α:

(35)

For an additive white Gaussian noise model with the covariance , the estimator variance
for the j th unit point source, q = ej, is given by

(36)
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For fair comparison of illumination schemes involving different numbers of illumination
patterns, we assume that the total acquisition time is always the same irrespective of the
number of patterns used. This implies that, for a scheme with p patterns, the acquisition time
per pattern is p times shorter than that for a scheme with 1 pattern. As a result, the individual

data-sets are noisier by a factor of p. In other words, the data noise covariance is . With
this compensation for acquisition time, the estimator variance averaged over n point source
locations is given by

(37)

Using (35) and (37), the resolution and the variance for any illumination scheme (and hence
any system matrix) averaged over different point source locations inside the volume can be
computed for different values of α. The curves of resolution versus variance are obtained by
plotting the two quantities against each other for different values of α. Comparison of these
curves for different illumination patterns throws light on the relative magnitudes of mean
squared error for estimators corresponding to different illumination patterns. It must be
noted that (35) and (37) depend on only V and Σ and not on U. Therefore, as described in
section 2.2, it is sufficient to compute the SVD A′A = VΣ2V′.

5. Results
By solving the optimization problem described in section 3, one can determine an optimal
set of illumination patterns for a given number of patterns, p. We generated optimal sets of
patterns for the tessellated cylinder, the cuboidal phantom, and the Digimouse atlas
described in section 4.1. Optimal sets of patterns for the atlas were generated for different
values of p. The performance of these sets of patterns was then comparatively evaluated
using the metrics described in section 4.3.

5.1. Patterns on the cylinder
For the study using the tessellated cylinder, we set the number of patterns, p, to 3. The
resulting set of three optimal patterns computed for the optically homogeneous tessellated
cylinder is shown in figure 2. It is assumed that only the curved surface is used for
illumination. The patterns are displayed on the curved surface by laying it out flat. We
observe that the pattern (b) can be shifted by 120° (one-third of a full circle) right or left to
obtain patterns (a) and (c), respectively. The sum of the three patterns in (d) looks quite
uniform overall and additionally indicate rough bilateral symmetry about the horizontal
plane cutting the cylinder lengthwise midway. Thus the optimal set of patterns exhibits
radial and bilateral symmetries, characteristic of the cylindrical shape.

5.2. Patterns on the cuboidal phantom
We generated a set of p = 6 patterns for the cuboidal phantom placed in the transillumination
mode with illumination from the top and detection from the bottom. The resulting set of
optimal illumination patterns on the top surface of the phantom is shown in figure 3. For
reference, we generated another transillumination setup where 6 evenly spaced points on the
top face (z = 20 mm) are illuminated. The point locations are (10, 10, 20), (20, 10, 20), (10,
20, 20), (20, 20, 20), (10, 30, 20), and (20, 30, 20), where all positions are in millimeters.
The singular value spectra for the optimal scheme and the point illumination scheme
compared in figure 4 show that the former is more well conditioned than the latter.
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5.3. Patterns on the Digimouse atlas
Optimal sets of patterns for the Digimouse atlas were generated for different numbers of
patterns, p. We picked the values p = 1, 3, 6, and 12 and looked at the corresponding optimal
sets of patterns. The average computation times for sets of 1, 3, 6, and 12 patterns were 5
min, 16 min, 2 h, and 20 h, respectively, on a 2.33 GHz quad-core Intel Xeon® processor.
The optimal illumination schemes for the chosen numbers of patterns are shown in figure 5.
For each set of patterns, the intensities are normalized with respect to the maximum intensity
value for that set for display purposes. Unlike the cylinder, the mouse atlas is of an optically
inhomogeneous, irregular shape. Accordingly, the patterns do not exhibit any clear
symmetry.

5.3.1. Point source localization—We reconstructed a sample deep source inside the
trunk of the mouse at a depth of 10.4 mm below the top surface and 7.6 mm from the bottom
surface. The PSFs were generated using (34) for the optimal sets of patterns computed for p
= 1, 3, 6, and 12. Figure 6 shows coronal slices of the Digimouse atlas displaying the point
spread functions for the optimal illumination schemes for different values of p. For
reference, we have studied a set of p = 3 patterns each of which uniformly illuminates one of
three different longitudinal sections of the mouse. To generate these PSFs, we picked values
of the regularization parameter that equalize the estimator variances as computed using (37)
for the different illumination schemes. These values were 4.90×10−11, 3.26×10−12,
1.23×10−13, and 8.35×10−16, respectively, for optimal illumination schemes with p = 1, 3, 6,
and 12, and 10−13 for the p = 3 uniform illumination scheme. We observe improvement in
the measured FWHM from the cases p = 1 through 12. The FWHMs of the PSFs for the
different cases are provided in table 1. Also, figure 6 and table 1 indicate that the
reconstructed point source for the p = 3 optimal case appears to have better resolution than
the p = 3 uniform case for the same estimator variance.

5.3.2. Performance evaluation—We used the performance metrics described in section
4.3 to investigate the benefit of having larger numbers of patterns in the optimal illumination
scheme and to compare the optimal scheme for a set of three patterns with the uniform
illumination scheme described in section 5.3.1.

Figure 7 shows the singular value distributions for the different illumination schemes. The
singular values are plotted in descending order and normalized with respect to the largest
singular value. The condition numbers of the system matrices are provided in table 2. The
condition numbers clearly improve as p is increased from 1 through 12. The optimal
illumination pattern for p = 3 is observed to generate a better conditioned system matrix than
the p = 3 uniform illumination scheme.

The plots of average resolution versus average variance for the different illumination
schemes are shown in figure 8. These are obtained by averaging resolution and variance for
n = 250 randomly picked sources on the uniform source grid for different values of the
regularization parameter. The regularization parameter was swept over values within the
range 10−30–10−4. The best possible FWHM is 1.2 mm, which is the grid spacing. As
explained in section 4.3.2, the idea underlying these curves is the trade-off between
resolution and variance, which implies that, a decrease in estimator variance is accompanied
by an increase in FWHM and vice versa. The intensities of the different sets were
normalized to ensure that all sets of patterns have the same average intensity. As expected,
as p goes from 1 to 12, the curves lie lower. In other words, the resolution–variance
properties improve. Also, figure 8 indicates that, for the same average variance, the p = 3
optimal illumination pattern offers better average resolution than the p = 3 uniform
illumination scheme.
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6. Discussion
We have developed an optimization framework for generating optimal spatial illumination
patterns for CW FMT based on an approach that seeks to improve the condition number of
the Fisher information matrix. We formulated our problem as a constrained optimization
problem which, for a given number of patterns, can be solved to compute the set of optimal
patterns which maximize the information content in the acquired data. Our formulation
assumes an i.i.d. Gaussian noise model. The fourth-order, non-convex cost function was
minimized in the presence of a non-negativity constraint using a gradient-based approach. A
multi-start method with random initializations was used to ensure global convergence. The
dimensionality of the optimization problem was reduced using a set of geometrical basis
functions defined on the 2D manifold representing the surface of the object being imaged.
Eigenfunctions of the Laplace–Beltrami operator were used as basis functions owing to their
spatial smoothness and orthogonality. To ensure that this numerical approach is
geometrically meaningful, we looked at optimal patterns generated for an optically
homogeneous tessellated cylinder and observed radial and bilateral symmetries that are
intrinsic to the cylindrical shape. We then applied this method to compute optimal patterns
for an optically homogeneous cuboidal phantom in the transillumination mode. We
compared this scheme with an evenly spaced point illumination scheme by examining the
singular value spectra and showed that the optimal scheme is more well-conditioned than the
point illumination scheme. Finally, we used our method to compute optimal patterns for the
optically inhomogeneous and realistically shaped Digimouse atlas. The obtained patterns
look smooth and physically realizable. For the same number of patterns, p = 3, the optimal
set was shown to perform better than a uniform illumination scheme on the basis of
condition number and average resolution versus variance curves. Since typical FMT
experimental setups use a larger number of illumination patterns, we have generated optimal
patterns for up to p = 12 and presented their singular value spectra and average resolution–
variance characteristics. For fair comparison, the variance was computed based on the
assumption of equality of total data acquisition times for different values of p.

In our simulations, we have assumed that the entire surface of the mouse except for the
limbs and the tip of the snout is being illuminated. However, in an experimental setting, it
may not be feasible to illuminate the entire mouse surface at one go. For such applications,
our formulation can be easily modified to introduce spatial constraints on the illumination
patterns. Another useful modification of our formulation would be its extension to include
multispectral excitation. Owing to the larger variability of tissue optical properties at the
excitation wavelengths of commonly used fluorescent dyes and proteins, for the same
number of wavelength bins, multispectral excitation typically leads to a better conditioned
system matrix than multispectral detection (Chaudhari et al 2009). We, therefore, believe
that optimal illumination coupled with multispectral excitation will allow us to pack more
information into the acquired data for a given number of illumination patterns and a given
number of wavelengths.

Currently, the main limitation of our method is the large computation time required to
generate large numbers of patterns. We, therefore, would like to explore more efficient
numerical implementations that will enable us to compute larger sets of patterns. This will
also allow us to investigate the benefits of using large (say > 20) sets of patterns and, in the
process, determine the minimum number of patterns that can be used without making the
acquired data overly redundant.

The framework for generating optimal patterns assumes prior knowledge of mouse surface
topography and tissue optical properties and requires the forward problem to be solved prior
to the optimization procedure. It might not be feasible to repeat the optimization procedure
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for each animal in between the surface profiling and fluorescence data acquisition steps of
an experiment. An alternative approach would be to use the atlas as a surrogate and to warp
its surface to match that of the target mouse being imaged (Joshi et al 2009), and, in doing
so, we can warp the optimal patterns onto the surface of the target.
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Figure 1.
(a) Front and back views of a tessellated cylinder (flattened for display purposes with the
cylinder axis aligned horizontally), (b) top views of the cuboidal phantom, and (c) top and
bottom views of the Digimouse atlas showing eigenfunctions corresponding to the 20
smallest eigenvalues of the Laplace–Beltrami operator. The index k varies from 1 to 20
sorting the eigenvectors in an ascending order of eigenvalues. The basis functions are
orthogonal and, therefore, have both positive and negative values at various points.
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Figure 2.
A set of three optimal patterns on a tessellated cylinder. The individual patterns are
displayed in (a), (b), and (c). The sum of the three patterns, displayed in (d), shows rough
overall uniformity of illumination. Only the curved surface of the cylinder was used for
illumination. For ease of display, this surface is laid out flat so that the vertical axis
represents the height of the cylinder and the horizontal axis represents the transverse angle.
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Figure 3.
A set of six optimal patterns on the top surface (z = 20 mm) of a tessellated cuboidal
phantom set up in the transillumination mode.
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Figure 4.
Singular value spectra for the optimal illumination scheme and evenly spaced point
illumination scheme for the cuboid in the transillumination mode. Both schemes use a set of
six illumination patterns.
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Figure 5.
Projections of the top and bottom surfaces of the Digimouse atlas showing optimal patterns
for (a) p = 1, (b) p = 3, (c) p = 6, and (d) p = 12.
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Figure 6.
Point spread functions for (a) optimal patterns for p = 12, (b) optimal patterns for p = 6, (c)
optimal patterns for p = 3, (d) uniform patterns for p = 3, and (e) optimal pattern for p = 1.
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Figure 7.
Singular value distributions for different illumination schemes.
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Figure 8.
Average resolution versus variance curves for different illumination schemes.
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Table 1

Full width at half maximum of point spread functions in figure 6.

Pattern type FWHM (mm)

Optimal, p = 12 1.20

Optimal, p = 6 1.20

Optimal, p = 3 1.63

Uniform, p = 3 3.02

Optimal, p = 1 5.91
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Table 2

Condition numbers of the system matrix for different illumination schemes.

Pattern type Condition number

Optimal, p = 12 2.5575 × 109

Optimal, p = 6 1.3466 × 1010

Optimal, p = 3 7.1619 × 1011

Uniform, p = 3 2.8376 × 1012

Optimal, p = 1 3.3014 × 1013

Phys Med Biol. Author manuscript; available in PMC 2012 June 03.


