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Abstract

In this study, the synergistic effect of 6-[4-(1-cyclo-
hexyl-1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2(1H )-qui-
nolinone (cilostazol) and Ginkgo biloba extract (GbE) 
was examined in apolipoprotein E (ApoE) null mice. 
Co-treatment with GbE and cilostazol synergistically 
decreased reactive oxygen species (ROS) production 
in ApoE null mice fed a high-fat diet. Co-treatment re-
sulted in a significantly decreased atherosclerotic le-
sion area compared to untreated ApoE mice. The in-
flammatory cytokines and adhesion molecules such 

as monocyte chemoattractant-1 (MCP-1), soluble vas-
cular cell adhesion molecule-1 (sVCAM-1), and VCAM-1 
which can initiate atherosclerosis were significantly 
reduced by the co-treatment of cilostazol with GbE. 
Further, the infiltration of macrophages into the intima 
was decreased by co-treatment. These results suggest 
that co-treatment of GbE with cilostazol has a more po-
tent anti-atherosclerotic effect than treatment with cil-
ostazol alone in hyperlipidemic ApoE null mice and 
could be a valuable therapeutic strategy for the treat-
ment of atherosclerosis.
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Introduction

Atherosclerosis is a chronic inflammatory disease 
of blood vessels characterized by slow thickening 
of arterial walls due to the build-up of fatty material 
(Chen et al., 2003; Park et al., 2008). During the 
early stages of atherosclerosis, cholesterol accumu-
lation in the intima induces endothelial cells in the 
arteries to express adhesion and chemoattractant 
molecules, such as vascular cell adhesion mole-
cule-1 (VCAM-1) and monocyte chemoattractant 
protein-1 (MCP-1) (Otsuki et al., 2001; Lee et al., 
2005; Yun et al., 2009). Reactive oxygen species 
(ROS), including superoxide, are implicated in the 
cellular response to a variety of inflammatory stim-
uli, including atherosclerosis (Zhou et al., 2000; 
Altiok et al., 2006; Rhein et al., 2010).
    6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3,4-di-
hydro-2(1H)-quinolinone(cilostazol) is a selective 
phosphodiesterase III inhibitor that increases the 
intracellular cyclic adenosine monophosphate (cAMP) 
concentration (Kim et al., 2002, 2006; Lim et al., 
2009). Cilostazol inhibits cytokine-induced nuclear 
factor-κB (NF-κB) activation via AMP-activated 
protein kinase activation in vascular endothelial 
cells (Nakamura et al., 2005; Hattori et al., 2009). 
Besides anti-platelet and anti-vasoconstrictive prop-
erties (Wang et al., 2003; Mohamed, 2009), cil-
ostazol promotes cholesterol efflux by regulating 
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Figure 1. GbE increases the anti-oxidant activity of cilostazol. DHE fluo-
rescence image of aortic root area from vehicle (n = 5), 0.1% cilostazol 
(n = 9), 0.05% cilostazol + 0.04% GbE (n = 9) and 0.1% cilostazol +
0.08% GbE treated groups (n = 12 each). Quantitative data in the lower 
graph represent arbitrary units for fluorescence intensity. L, lumen. 
Yellow arrows indicate superoxide-positive areas. Scale bars, 200 μm. 
**P ＜ 0.01 and ***P ＜ 0.001 compared with vehicle; and ###P ＜
0.001 compared with cilostazol alone.

cholesterol uptake- or efflux-related genes, such as 
scavenger receptors (e.g., SR-A and CD36) (Shin 
et al., 2004; Gomez and Qureshi, 2009) and ABCA1/ 
ABCG1 (Nakaya et al., 2010) in macrophages. 
Cilostazol inhibits NAD(P)H oxidase-dependent su-
peroxide formation and cytokine release con-
comitant with the suppression of atherosclerotic 
plaque formation in LDL receptor-null mice (Yun et 
al., 2009).
    Ginkgo biloba extract (GbE), a Chinese herbal 
medicine extracted from leaves of the Ginkgo bilo-
ba tree (Chen et al., 2003), has increasingly been 
shown to have a variety of beneficial effects in cer-
ebral and peripheral arterial diseases, especially 
dementia and claudication (Wei et al., 1999; Lee et 
al., 2001; Wang et al., 2003; Sethi and Arora, 2008). 
GbE contains flavone glycoside and 6% terpene 
lactones (ginkolides, bilobalide), known free radical 
scavengers (Kampkotter et al., 2007; Ou et al., 
2009). GbE also exerts an anti-phlogistic effect on 
inflammatory cells by suppressing active oxygen 
and nitrogen species production (Ou et al., 2009). 
For example, the terpene lactone component in 
GbE inhibits nitric oxide (NO) production in macro-
phages infiltrating a Candida albicans-mediated ar-
thritic inflammation site (Lippi et al., 2007). 
Recently, GbE was shown to reduce the formation 
of atherosclerotic nanoplaques (Rodriguez et al., 
2007), attenuate oxLDL-induced oxidative func-
tional damage in endothelial cells (Ou et al., 2009), 
and decrease the levels of highly atherogenic lip-
oprotein (Lippi et al., 2007; Rodriguez et al., 2007; 
Siegel et al., 2007). Thus, GbE may at least parti-
ally have an anti-inflammatory effect, and supple-
mentation with GbE may have clinical value in pa-
tients at risk for increased serum concentrations of 
lipoprotein (Lippi et al., 2007).
    The combination of cilostazol and probucol, 
another potent lipid-soluble antioxidant, displayed 
a synergistic effect on the suppression of ROS and 
inflammatory markers in human coronary artery 
endothelial cells (Park et al., 2008). Moreover, GbE 
may potentiate the anti-platelet effect of cilostazol 
without prolonging bleeding or coagulation times 
(Ryu et al., 2009). Although the anti-atherogenic 
effects of both cilostazol and GbE have been 
suggested in previous studies, the synergistic 
effect of these two compounds on atherosclerosis 
has not been investigated.
    Here, we show that combination therapy consist-
ing of cilostazol and GbE may exert enhanced an-
ti-atherogenic effects compared to treatment with 
cilostazol alone. 

Results

GbE increases the anti-oxidant activity of cilostazol

Both cilostazol and GbE reduce ROS production in 
a variety of cell types (Wei et al., 1999; Kim et al., 
2002; Kampkotter et al., 2007) and have a 
synergistic effects in treating atherothrombosis 
without adverse side effects such as the prolongation 
of bleeding time or coagulation time (Liu et al., 
2009). Therefore, we postulated that combinative 
treatment of an atherosclerotic mouse model with 
GbE and cilostazol would decrease superoxide 
production in atherosclerotic plaque more than 
treatment with cilostazol alone. Superoxide production 
in the plaque lesion of the aortic root was 
decreased in all the treated groups, and also was 
lower in the high dose co-treatment group than 
cilostazol alone (Figure 1). This suggests that 
co-treatment of cilostazol with GbE synergistically 
inhibits ROS production in the development of 
atherosclerosis.
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Figure 2. GbE with cilostazol syn-
ergistically decreases the athero-
sclerotic lesion size in aortic root 
area of ApoE null mice fed a high-fat 
diet. High dose of cilostazol (0.1%) 
and GbE (0.08%) treatment reduced 
fatty streak lesions in ApoE null 
mice. (A) Oil red O-stained frozen 
section of aortic sinus from vehicle 
(n = 5), 0.1% cilostazol (n = 7), 
0.05% cilostazol + 0.04% GbE (n =
7) and 0.1% cilostazol + 0.08% GbE 
(n = 7) treated groups. (B) Aortic en 
face view of vehicle (n = 5), 0.1% 
cilostazol (n = 7), 0.05% cilostazol +
0.04% GbE (n = 9) and 0.1% cil-
ostazol + 0.08% GbE (n = 5) treated 
groups. Representative Oil red O 
staining of atherosclerotic lesions in 
each group is shown. Quantitative 
data in the lower graph represent 
plaque area. *P ＜ 0.05 compared 
with vehicle.

GbE synergistically increases the anti-atherogenic 
effect of cilostazol

To determine how the anti-oxygenic effect of these 
two compounds affects the development of athero-
sclerosis, we analyzed atherosclerotic lesions in 
ApoE null mice fed a high-fat diet for 16 weeks. 
Sections of the aortic root from untreated mice 
showed a large plaque lesion area in the vessel 
walls. As expected, mice treated with cilostazol 
(0.1%) and GbE (0.08%) showed a significant re-
duction in the size of the atherosclerotic lesion in 
the aortic root (0.48 ± 0.06 mm2 vs 0.56 ± 0.05 
mm2 in 0.1% cilostazol, 0.08% GbE treatment 
group and vehicle treatment group, respectively; P  =
0.04; Figure 2A). Plaque area in the aortic arch 
and descending aorta was also reduced in mice 
treated with cilostazol (0.1%) and GbE (0.08%) 
compared with control mice (9.26 ± 0.57% vs 
11.78 ± 2.5% in 0.1% cilostazol, 0.08% GbE treat-
ment group and vehicle treatment group, re-
spectively; P = 0.05; Figure 2B). Total cholesterol 
and triglyceride levels in serum were significantly 
decreased in mice treated with 0.1% cilostazol 
alone, however co-treatment of cilostazol and GbE 
showed no significant changes (data not shown). 

Co-treatment with cilostazol and GbE decreases 
pro-inflammatory cytokine production

Next, we investigated whether these two compounds 
can affect the production of pro-inflammatory mole-
cules in blood. The monocyte chemoattractant-1 

(MCP-1) level was significantly decreased in mice 
treated with cilostazol alone and also in those 
co-treated with a high dose of cilostazol and GbE. 
The expression level of soluble vascular cell adhe-
sion molecule (sVCAM-1) was significantly de-
creased in the co-treatment group. However, inter-
leukin-6 (IL-6) levels were not changed in the 
co-treatment group (Table 1). To confirm the 
changes of these molecule expressions in the pla-
que area, we performed immunohistochemistry. 
Compared with the control group, co-treatment of 
cilostazol with GbE decreased the expression of 
MCP-1 (Figure 3A) and VCAM-1 (Figure 3B).

Co-treatment with cilostazol and GbE inhibits 
macrophage infiltration

We measured infiltrated macrophages in the athe-
rosclerotic plaque area in order to determine if the 
production of MCP-1 and VCAM-1 lead to a de-
crease in macrophage infiltration into the aortic 
intima. Macrophage infiltration was lower in the 
high dose co-treatment group than cilostazol alone. 
These data suggest that co-treatment of cilostazol 
with GbE exerts a synergistic effect on the in-
hibition of macrophage infiltration into the arterial 
walls (Figure 4).

Discussion

In this study, we show that co-treatment of cilostazol 
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　 Vehicle 0.1% cilostazol 0.05% cilostazol + 0.04% GbE 0.1% cilostazol + 0.08% GbE
Mice, n 
IL‐6 (pg/ml)
MCP‐1 (pg/ml)
sVCAM (ng/ml)

11
       35.7 ± 17.6
       93.8 ± 28.4
     828.5 ± 32.6

10
         22 ± 5.3
      67.9 ± 12.7*
    825.3 ± 53.3

12
                26.6 ± 11.2
                84.1 ± 15.1 
              745.8 ± 23.5**

12
                   29 ± 25.3
                70.5 ± 16.8*
              605.8 ± 11***

Data are expressed as mean ± SEM. *P ＜ 0.05, **P ＜ 0.01, ***P ＜ 0.001 compare to vehicle group. IL‐6, interleukin‐6; MCP‐1, monocyte chemo-
attractant protein‐1; sVCAM‐1, soluble vascular cell adhesion molecule‐1.

Table 1. Analysis of serum inflammatory molecules in ApoE null mice fed high fat diet supplemented with each compounds

Figure 3. Co-treatment of cilostazol and GbE decreases pro-inflammatory cytokine production. The effect of co-treatment of cilostazol and GbE on 
MCP-1 (A) and VCAM-1 (B) levels in the atherosclerotic lesion of vehicle (n = 7 or 9), 0.1% cilostazol (n = 7 or 9), 0.05% cilostazol + 0.04% GbE (n = 6 or 
9), and 0.1% cilostazol + 0.08% GbE treated groups (n = 8 or 10). Representative immunohistochemical staining for MCP-1 and VCAM-1 in each group is 
also shown. Quantitative data in the lower graph represent positive stained area in the plaque. L, lumen. Yellow arrows indicate MCP-1 and VCAM-1-pos-
itive areas. Scale bars, 200 μm. *P ＜ 0.05 and **P ＜ 0.01 compared with vehicle; ##P ＜ 0.01 compared with cilostazol alone.

with GbE reduces superoxide production following 
decreased atherosclerotic plaque formation. Co-treat-
ment of cilostazol with GbE also lowered sVCAM-1 
and MCP-1 levels in serum, and reduced macro-
phage infiltration into the aortic intima. Our ob-
servations indicate that cilostazol and GbE exert 
synergistic anti-atherosclerotic effects. Indeed, we 
have demonstrated that co-treatment of cilostazol 
with GbE induced a reduction in atherosclerotic 
lesion.
    Increased ROS generation such as superoxide 
may be involved in the development of athero-
sclerosis (Dandona et al., 2010). ROS-dependent 

mechanisms can increase the expression of adhe-
sion molecule such as VCAM-1, leading to in-
flammatory cell recruitment and infiltration into the 
intima region (Chen et al., 2003; Lee et al., 2005; 
Ou et al., 2009). In atherosclerotic conditions, 
treatment with either cilostazol or GbE markedly at-
tenuates ROS production by a distinct mechanism. 
Cilostazol blocks ROS production via inhibition of 
NADPH oxidase (Shin et al., 2004; Yun et al., 
2009). It also reduces CD36 or SR-A expression in 
murine macrophages via inhibition of NADPH oxi-
dase-derived ROS production, which leads to re-
duced foam cell formation (Okutsu et al., 2009; 
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Figure 4. Co-treatment of cilostazol and GbE inhibits macrophage 
infiltration. Representative immunostaining for macrophages in the aortic 
root area from vehicle (n = 5), 0.1% cilostazol (n = 10), 0.05% cilostazol +
0.04% GbE (n = 8), and 0.1% cilostazol + 0.08% GbE treated groups (n
= 8). Quantitative data in the lower graph represent positive stained area 
percentage of total plaque area. L, lumen. Yellow arrows indicate a mac-
rophage-positive area. Scale bars, 200 μm. **P ＜ 0.01 compared with 
vehicle; #P ＜ 0.05 compared with cilostazol alone.

Yun et al., 2009). A recent study also showed that 
cilostazol inhibited oxidative stress and subsequent 
cellular senescence by enhancement of NO pro-
duction in HUVECs. Cilostazol can induce NO pro-
duction by eNOS activation via a cAMP/PKA- and 
PI3K/Akt-dependent mechanism, thereby delaying 
endothelial cellular senescence. Cellular sen-
escence of endothelial cells has been proposed to 
be involved in endothelial dysfunction and athero-
sclerosis (Ota et al., 2008). 
    Inflammation is involved in the initiation, rupture, 
and thrombosis of atherosclerotic plaques (Lee et 
al., 2005). Some studies have suggested that cil-
ostazol and GbE have anti-inflammatory effects 
(Lippi et al., 2007; Mohamed, 2009; Aoki et al., 
2010). GbE contains high levels of terpene, and 
this biflavonoid decreases the levels of IL-6, IL-8, 
and tumor necrosis factor (TNF)-alpha through the 
down-regulation of NF-κB DNA binding activity in 
patients with pulmonary interstitial fibrosis (Lippi et 

al., 2007). Previous studies have reported that 
cAMP selectively suppresses expression of VCAM-1 
and endothelial leukocyte adhesion molecule-1 
(ELAM-1) (Pober et al., 1993). Moreover, VCAM-1 
plays a major role in the initiation of atherosclerosis 
(Cybulsky et al., 2001). Given the role of cilotazol 
as a cAMP activator, these previous findings are in 
agreement with our results. In addition, MCP-1 is a 
crucial factor for the development of atherosclerosis. 
Whereas VCAM-1 exerts a dominant role in the ini-
tiation of atherosclerosis, increased MCP-1 ex-
pression was demonstrated to mediate chronic 
inflammation. Both preferentially contribute to mon-
ocyte adhesion (Lee et al., 2005; Choi et al., 2011). 
We show that elevated macrophage infiltration is 
accompanied by high expression of VCAM-1 and 
MCP-1 in serum and the atherosclerotic plaque 
region. Although MCP-1 levels in serum appear to 
be mainly affected by cilostazol in our study, the 
level of MCP-1 in atherosclerotic plaque was de-
creased by co-treatment with cilostazol and GbE, 
but not cilostazol alone. These findings all show 
that atherosclerosis is significantly reduced by 
co-treatment with cilostazol and GbE compared to 
treatment with cilostazol alone.
    Taken together, the our data support the hypothesis 
that the anti-atherosclerotic effect of cilostazol and 
GbE can be attributed to reduced superoxide 
generation, macrophage infiltration, and expression 
of pro-inflammatory molecules such as VCAM-1 
and MCP-1. The major finding of the present study 
is that co-treatment of cilostazol with GbE significantly 
decreased atherosclerotic plaque in the aorta of 
ApoE null mice fed a high-fat diet, compared to 
treatment with cilostazol alone. In conclusion, we 
show that combinative therapy of cilostazol with 
GbE might exert an enhanced anti-atherogenic 
effect compared to treatment with cilostazol alone. 

Methods

Animals and diets

ApoE null (C57BL/6J background) male mice were pur-
chased from Jackson Laboratories (Bar Harbor, ME) and 
acclimated to the facility for at least 2 weeks before begin-
ning the experiments. Mice were housed five to six per 
cage and maintained on a 12-h light/12-h dark cycle with 
water ad libitum. Eight-week-old male ApoE null mice were 
randomly divided into five groups including: normal chow 
(n = 5), vehicle (n = 11), cilostazol (n = 10) and both 
co-treatment groups (n = 12 per group). The animals were 
fed a high-fat diet (20% fat, 0.15% cholesterol, Research 
Diets, New Brunswick, NJ) supplemented with 0.1% cil-
ostazol, or both 0.05% cilostazol and 0.04% GbE, or both 
0.1% cilostazol and 0.08% GbE for test groups (0.1% lac-
tose for vehicle group) for 16 weeks respectively. Control 
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mice were fed ordinary normal chow diet (PMIⓇ Nutrition 
International, LLC Certified Rodent LABDIETⓇ 5002, 
Purina Mills, Richmond, IN). Body weights were monitored 
every week. All animal study protocols were approved by 
the Institutional Animal Care and Usage Committee of the 
Ewha Womans University (Seoul, Korea).

Genotyping

Genotyping was performed to confirm ApoE deficiency. 
Genomic DNA was extracted from mouse tails. For PCR of 
ApoE, the forward and reverse primers for the wild type al-
lele were 5'-AGAACTGACGTGAGTGTCCA-3' and 5'-GTT 
CCCAGAAGTTGAGAAGC-3' (expected product -300 bp), 
respectively. For the null allele, the same forward primer 
was used and the reverse primer was 5'-GCTTCCTCGTG 
CTTTACGGTA-3' (expected product -200 bp). PCR was 
carried out with all three primers in the same reaction mix. 
PCR conditions were: 94oC, 45 s; 58oC, 45 s; and 72oC, 45 
s for 30 cycles.

Atherosclerosis quantification

After mice were euthanized, hearts and aortas were per-
fused with phosphate-buffered saline (PBS) through the left 
ventricle. The aortas were dissected from the proximal as-
cending aorta to the bifurcation of the iliac artery, and ad-
ventitial fat was removed. After aortas were opened longi-
tudinally, these were pinned onto a flat black silicone plate 
with 2 cm needles. The hearts and pinned aortas were 
fixed with 10% neutral buffered formalin solution for 16 h. 
For lesion quantification in the aortic root, the hearts were 
removed at the proximal aorta and the upper portion was 
embedded in OCT compound (Tissue-Tek) and frozen at 
-70oC. Ventricular tissue was sectioned into 10 μm sec-
tions by a cryostat microtome (Leica CM18050 XL). 
Sections and fixed aortas were immersed in absolute pro-
pylene glycol (Duchefa Biochemie) for 1 min and stained 
with oil red O (Sigma Aldrich) for 16 h. The samples were 
immersed in 85% propylene glycol for 2 min, washed with 
PBS, and then digitally photographed at a fixed magnification. 
The area occupied by the lesion in the aortic root was 
measured using Axiovision AC (Carl Zeiss, Germany). To 
quantify en face lesions, the lesion area was evaluated as 
a percentage of total aortic area.

Blood and cytokine analysis

Blood was collected from the retro-orbital sinus into 
non-heparinized capillary tubes (Scientific Glass, Inc). 
Thereafter serum was obtained by centrifugation at 13,000 
g for 10 min at 4oC and stored at -70oC before analysis. 
Total cholesterol, triglyceride, HDL, and LDL cholesterol 
levels were measured. To quantify cytokines in serum, 
MCP-1 and sVCAM-1 levels were estimated using ELISA 
kits (R&D Systems).

Measurement of superoxide in situ.

The frozen sections of aortic root in the slide were dried for 
2 h at 37oC and washed with distilled water for 5 min. The 
samples were incubated to expose antigen with PBS +

0.1% Triton X-100 (Juncei Chemical Co., Ltd.) for 15 min 
and then incubated with 5 μM dihydroethidium (Molecular 
Probes, Eugene, OR) in a light-shielded state to estimate 
superoxide levels. The washing step was performed with 
PBS + 0.1% Triton X-100 buffer at least three times for 5 
min per wash. After treatment of DAPI solution (Sigma 
Aldrich) for 30 min, images were observed using a fluo-
rescence microscope (Axiovert 200 Basic Stand, Carl 
Zeiss, Inc.). The quantitative analysis is expressed as a 
percentage of DHE-stained area per total lesion area in the 
aortic root using Axiovision AC (Carl Zeiss, Inc.).

Immunohistochemistry

Cryosection slides were used in immunohistochemical 
studies. The aortic root was fixed in 10% neutral buffered 
formalin and then cut into 10-μm-thick sections. Briefly, af-
ter dehydration, antigen retrieval was carried out with PBS
+ 0.1% Triton X-100 for 15 min at room temperature (RT) 
and the blocking step was performed with Ultra V block 
(Thermoscientific) for 5 min at RT. Fixed tissue was in-
cubated with primary antibodies against MOMA-2 (Serotec), 
VCAM-1 (R&D Systems), and MCP-1 (Santa Cruz 
Biotechnology) for 16 h at 4oC. Except the fluorescein la-
beled primary antibody, chicken anti-goat, anti-rabbit Alexa 
488, 594 (Invitrogen) antibodies were used as a second 
step to visualize the antigen. After mounting, images were 
observed using a fluorescence microscope (Axiovert 200 
Basic Stand, Carl Zeiss, Inc.). Quantitative analysis of the 
stained area in the aortic root was measured using 
Axiovision AC (Carl Zeiss Inc.). 

Statistical analysis

Statistical significance was determined by the Student’s 
t-test and Mann-Whitney U Test. A value of P ＜ 0.05 was 
considered significant.
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