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Abstract
In this article, the authors consider the power and limitations of responsiveness-to-intervention
(RTI) for reducing the need for ongoing and intensive services for the segment of the school
population traditionally identified as having a learning disability in mathematics. To assess the
robustness of RTI, the authors describe four studies with strong demonstrations of efficacy, as
they considered the percentage of students who failed to respond, the post-tutoring achievement
gap between tutored and not-at-risk students, and the extent of transfer across components of the
mathematics curriculum. The authors then discuss implications and additional research questions
pertaining to mathematics intervention generally and within the context of RTI. They conclude
with a proposal for an expanded conceptualization of RTI.
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The use of multilevel prevention systems constitutes a major education reform of the past
decade. Commonly known as responsiveness-to-intervention (RTI), these systems
conceptualize school services in terms of a series of increasingly intensive interventions.
The first level, primary prevention, is the general education program, where screenings are
conducted periodically to identify students with risk for poor learning outcomes. These at-
risk students enter a more intensive level of the prevention system that entails one or more
tiers of intervention, often involving at least one round of small-group tutoring. This
intervention is conceptualized as time limited, cost efficient, and validated through research
to be generally effective.

The purpose of such a multilevel prevention RTI system has been the subject of debate (see
D. Fuchs, Fuchs, & Stecker, 2010). Some view its exclusive function as the prevention of
academic difficulty, with the assumption—or at least hope—that learning disabilities (and
the need for special education) will be reduced dramatically (e.g., Torgesen, 2004). Others
include a second, complementary purpose as the identification of students with learning
disabilities as nonresponders to validated intervention. This second perspective is based on a
two-part assumption. The first part is that most at-risk students will respond nicely to a time-
limited, standard form of 10–20 weeks of validated intervention and return to general
education with a stronger foundation of academic skill that permits them to thrive in the
primary prevention program without additional support. The second part of the assumption,
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however, is that some subset of at-risk students, similar in prevalence to the 5% of students
traditionally served with a learning disability, will not respond to time-limited intervention
in ways that circumvent the need for ongoing, intensive monitoring and intervention. In
some RTI systems, such intervention is conceptualized as a more intensive and ongoing
level of the prevention system, in which individualized instruction, often in the form of
special education, is provided for students with learning disabilities. As with the rest of the
RTI system, the goal is to prevent the negative long-term consequences that occur when
students exit school without the skills they need to succeed in life.

The purpose of the present article was to consider the power and limitations of RTI for
dramatically reducing the need for this intensive, ongoing service. We focused on
mathematics for four reasons. First, as with reading, poor mathematics learning in school is
associated with serious, lifelong difficulties (e.g., National Mathematics Advisory Panel,
2008; Rivera-Batiz, 1992). Second, the prevalence of mathematics difficulty is high, with
estimates of prevalence ranging between 5% and 9% (e.g., Dirks, Spyer, van Lieshout, & de
Sonneville, 2008; Shalev, Auerbach, Manor, & Gross-Tsur, 2000). Third, despite similar
prevalence and debilitating, lifelong negative consequences, mathematics learning
disabilities have received much less emphasis than reading learning disabilities. Fourth,
mathematics, more than reading, is potentially complicated by the fact that school curricula
are organized in strands within and across the grades, presumed to represent different
component skills. In reading, measurement studies (e.g., Mehta, Foorman, Branum-Martin,
& Taylor, 2005) provide the basis for five component reading skills: phonological
awareness, decoding, fluency, vocabulary, and comprehension. In mathematics,
measurement studies are yet to be conducted, but the assumption, as reflected in curricula, is
that many more component skills exist. For example, in primary school, curricular strands
include concepts, numeration, measurement, basic facts, algorithmic computation, and word
problems; in high school, algebra, geometry, trigonometry, and calculus. It is unclear
whether strengthening performance on one component skill can be expected to promote
strong performance on other components, and a failure to effect strong performance across
component skills would create additional challenges to dramatically reducing the need for
ongoing, intensive support in mathematics.

To consider the power and limitations of RTI, we described four studies with strong
demonstrations of efficacy, as we considered the percentage of students who failed to
respond, the post-tutoring achievement gap between tutored and not-at-risk students, and the
extent of transfer across components of the mathematics curriculum. We then discussed
implications and additional research questions pertaining to mathematics intervention
generally and within the context of RTI. We conclude with a proposal for an expanded
conceptualization of RTI.

Efficacy Studies, Nonresponders, Achievement Gaps, and Transfer
Recent research provides the basis for optimism about the efficacy of small-group tutoring
in mathematics. Studies show that when tutoring incorporates explicit instruction, provides
students with a strong conceptual foundation and efficient procedural strategies, and embeds
regular, strategic and cumulative practice, student outcomes improve. In this section, we
illustrate such efficacy using four large-scale randomized controlled trials. The first study
investigated the effects of first-grade tutoring on multiple components of the curriculum (L.
S. Fuchs et al., 2005); in the second study, a major focus was the efficacy of tutoring
specifically to enhance fluent and accurate performance on math facts among first graders
with risk for mathematics learning disability (L. S. Fuchs, Geary, et al., 2012); the third
focused again on math facts tutoring, this time in a population of third-grade students (L. S.
Fuchs et al., 2009); and the fourth study investigated the separate and combined effects of
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primary prevention and supplementary tutoring in the domain of word problems (L. S.
Fuchs, Fuchs, Craddock, et al., 2008).

First-Grade Tutoring on Multiple Curricular Components
Working in 41 first-grade classrooms in 10 schools, L. S. Fuchs et al. (2005) assessed the
efficacy of first-grade tutoring on multiple components of the mathematics curriculum. At
the beginning of first grade, 139 children were identified with risk for developing
mathematics difficulty based on their low incoming mathematics performance (i.e., in the
lowest quintile). These at-risk students were randomly assigned to a control condition (i.e.,
the general education program without our tutoring) or a condition in which we provided 16
weeks of tutoring three times each week in small groups. Every tutoring session comprised
two activities. The first was a 30-min tutor-led lesson with explicit, interactive instruction on
a sequence of 17 topics that focused primarily on numeration, number, and operations; each
lesson focused on the relevant concepts along with strategies for successful problem solution
on that day's topic, while incorporating manipulative activities, practice, and cumulative
review. During the final 10 min of each tutoring session, students used a computer program
that was designed to help students commit math facts to long-term memory by providing
repeated opportunities for holding associations between problem stems and answers in
working memory.

Based on measures of math concepts, procedural calculations, word problems, and math
facts, which were administered before and after tutoring (or weekly in the case of
curriculum-based measurement), findings supported the efficacy of tutoring as an added
level of the prevention system to supplement to the primary prevention regular classroom
program. To consider the efficacy of this and other tutoring programs we consider in this
article, we rely on estimates of effect size (ES). To compute ES, we used Cohen's d, which
is a z score describing how many standard deviations one group scored higher than another
group. Cohen (1988) reluctantly defined small, medium, and large ESs as 0.2, 0.5, and 0.8,
but warned of the risk “inherent in offering conventional operational definitions of ES in as
diverse a field of inquiry as behavioral science” (p. 25). To put ES in the context of
education research, the What Works Clearinghouse generally considers an ES of 0.2 to be
small but educationally meaningful.

In the L. S. Fuchs et al. (2005) study, the weekly rate of improvement of the tutored students
on Curriculum-Based Measurement First-Grade Computation (L. S. Fuchs, Hamlett, &
Fuchs, 1990) exceeded that of the control group by an ES of 0.40, and the tutored students'
growth was comparable to that of their not-at-risk classmates (ES = 0.11). On Woodcock–
Johnson III Calculation (Woodcock, McGrew, & Mather, 2001), results were even more
impressive: Improvement for the tutored students exceeded not only that of control group
peers (ES = 0.57) but also that of not-at-risk classmates (ES = 0.61). Results were similarly
strong on the First-Grade Concepts and Applications Test (L. S. Fuchs et al., 1990), which
measures skill in numeration, concepts, geometry, measurement, applied computation,
charts and graphs, and word problems, on which tutored students improved reliably more
than controls (ES = 0.67) and not-at-risk classmates (ES = 0.45). On the Story Problems
Test (Jordan & Hanich, 2000), the improvement of tutored students exceeded that of
controls (ES = 0.70), although it was reliably lower than that of not-at-risk classmates (ES =
–0.38).

Because the tutored students manifested impressive growth on computation, story problems,
and concepts and applications relative to the control group and, on two of four measures,
relative to their not-at-risk classmates, we conclude that preventive tutoring was efficacious
when used as an added level of prevention. Yet some patterns in the findings prompt caution
about assuming that such tutoring inoculates the population of at-risk learners from
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developing future difficulty with mathematics. The first cause for concern is the lack of
universal response—as is typically the case even when results are statistically significant. To
estimate the rate of unresponsiveness, we used 16 approaches. One was low achievement at
the end of tutoring (i.e., < 10th percentile) on mathematics concepts and applications, for
which 11 of the 64 tutored students were deemed unresponsive. This translates into 5.14%
of the larger at-risk and not- at-risk students in the study. With other definitions of
unresponsiveness (i.e., focusing on different components of the mathematics curriculum;
relying on different tests; applying different decision rules), the rate of unresponsiveness
varied. For example, with low final achievement on Woodcock–Johnson III Calculation, for
which the range of items at first grade is narrow, the rate of unresponsiveness was less than
1% of the larger pool of at-risk and not-at-risk students in the study. By contrast, for low
final achievement on math facts and for low slope and low final intercept on Curriculum-
Based Measurement Computation (both with broader sampling in the first-grade range of
performance), unresponsiveness increased to 6.38% and 7.94%, respectively. This suggests
that denser sampling of items in the range of students' performance increases discriminations
among students, especially at the lower end of the distribution, and thereby increases
sensitivity to the lack of response. In any case, it appears that approximately 5% of students
may be unresponsiveness to this generally effective form of tutoring.

And a second cause for caution is that, at the end of first grade, the performance of tutored
students on every measure remained below that of not-at-risk classmates. At pretest, the ESs
contrasting the not-at-risk students against at-risk tutored students ranged from 0.60 to 1.48
standard deviations. At posttest, the gap had decreased but remained sizeable, ESs were
between 0.41 and 1.35. Of course, although the performance gap narrowed for the at-risk
tutored students, it had increased for the at-risk control children, whose end-year
performance was 0.70 to 2.04 standard deviations below not-at-risk classmates. So
preventative tutoring enhanced the rate of math development beyond what would have
otherwise occurred (as revealed by the at-risk control group), but the not-at-risk students'
continued development precluded the tutored children from catching up. The remaining end-
year performance gap suggests that, despite the efficacy of preventative tutoring, some of
the at-risk learners, perhaps even some of those who demonstrated responsiveness, will
require additional mathematics support in subsequent years.

Performance on math fact fluency was the final cause for caution. Although the performance
of the tutored group exceeded that of controls by a respectable 0.40 standard deviations, this
difference was not statistically significant. We attempted to promote fact fluency by
providing explicit tutor-directed conceptual instruction specifically on math facts in 9–15
tutoring sessions (depending on rate of mastery) and by allocating 10 min of each 40-min
session to computer-assisted practice on math facts. One of several reasons may explain the
lack of statistically significant effects. It is possible that math fact fluency represents an
especially difficult type of competence to promote. A signature feature of students with
mathematics learning disabilities is the failure to develop memory-based retrieval of facts
(Fleishner, Garnett, & Shepherd, l982; Geary, Widaman, Little, & Cormier, 1987; Goldman,
Mertz, & Pellegrino, 1988), and prior work suggests that such difficulty is persistent (e.g.,
Jordan, Hanich, & Kaplan, 2003). In reading, remediation success has occurred with
accuracy, even as fluency has proven more difficult to promote (Rashotte, Torgesen, &
Wagner, 1997, cited in Torgesen et al., 1999). Our data suggest a similar phenomenon for
mathematics learning disabilities. At the same time, it is possible that the design of the
computer program in its initial form, which did not provide pictorial representations for
promoting understanding (INSERM Cognitive Neuroimagery Unit, 2003) or follow-up
paper-and-pencil practice for promoting transfer, could be improved. Still another
explanation for the lack of effects is that our fact fluency measures, which represent fact
families to 12, may have failed to sample performance where the tutored students improved.
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On the computer, students mastered an average of 12.71 families; among the first 20
problems on our math fact fluency measures, only 4 items provided opportunities for
students to demonstrate this acquired knowledge.

First-Grade Tutoring to Build Fluent and Accurate Math Facts Performance
We attempted to address these limitations in a later first-grade study (L. S. Fuchs, Geary, et
al., 2012), in which a major focus was the efficacy of tutoring specifically to build fluent and
accurate math facts performance among students with risk for mathematics learning
disability. The overall purpose of this study was to examine the role of domain-general
abilities versus basic numerical competencies (sometimes referred to as “number sense”;
e.g., Berch, 2005; Gersten, Jordan, & Flojo, 2005) in the development of competence with
math facts (see L. S. Fuchs et al., 2010; L. S. Fuchs et al., 2010). In this study, we randomly
assigned at-risk students at the beginning of first grade to three conditions. One third were
assigned to the control condition (no tutoring from us); two thirds were assigned to one of
two conditions in which children received 16 weeks of tutoring three times per week, 30 min
per session. Both tutoring conditions included the same 25 min of work on number
knowledge. The assumption was that the major determinant of competence with math facts
is number sense (L. S. Fuchs et al., 2012), which we operationalized as basic numerical
competencies such as counting, numeration, and the quick apperception and manipulation of
small quantities (Butterworth, 1999; Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004;
Geary, 2007). The second, 5-min component of the session differed across the two tutoring
conditions. Our goal was to experimentally test the contribution of domain-general abilities
to the development of competence with math facts. At the end of the session, students in the
“untimed practice” tutoring condition played games that emphasized the math concepts just
covered. In the timed practice tutoring condition, students instead completed 5 min of
“timed pratice” designed to compensate for their potential weaknesses in the domain-general
abilities associated with difficulty with math facts: inattentive behavior, processing speed,
phonological processing, working memory, and reasoning ability (see Fuchs, Fuchs,
Stuebing et al., 2008; L. S. Fuchs et al., 2010).

In terms of intervention, therefore, the major distinctions between this more recent first-
grade study and L. S. Fuchs et al. (2005) include the following: (a) fewer topics in the
mathematics curriculum were covered, with a greater emphasis on the concepts
underpinning math facts (which may also underpin other components of mathematics skill),
and (b) practice in the timed practice condition was more strategic, conducted directly by
tutors rather than computers, and designed to compensate for the cognitive weaknesses
associated specifically with inadequate development of fluent performance with math facts.
In addition, the more recent study had some methodological advantages over Fuchs et al.,
including additional measures of math fact performance.

Findings indicate that math fact outcomes for children in both tutoring conditions reliably
exceeded those of the control group. The performance of the timed practice condition,
however, was reliably stronger than that of the untimed practice condition, and the ES
contrasting the timed practice group against the control group (i.e., nearly one standard
deviation) was substantially larger than in Fuchs et al. In corresponding fashion, a greater
percentage of students in the untimed than in the timed practice condition failed to respond,
16.2% versus 8.3%, respectively, denoting unresponsiveness as below the 25th percentile of
not-at-risk students in terms of the amount of math facts improvement. On number
knowledge, by contrast, both tutoring groups learned comparably and reliably more than the
control group. This would be expected given that both groups received the same focus on
number knowledge; however, the ESs on number knowledge were smaller than for math
facts, suggesting number knowledge may be more difficult to promote. As with L. S. Fuchs
et al. (2005), the post-tutoring gap between tutored and not-at- risk students remained
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substantial on number knowledge. Yet, the timed practice students made ground in catching
up to not-at-risk classmates, whereas untimed practice students did not.

In terms of transfer to components of the mathematics curriculum that received relatively
little emphasis during tutoring, findings indicate superior performance on procedural
calculations, on which both groups performed reliably stronger than the control group, but
outcomes were stronger for timed practice than for untimed practice. This suggests that the
number knowledge focus of tutoring promoted stronger procedural calculation skill, and that
enhanced math facts performance transferred to procedural calculation skill. In terms of
transfer to word problems, the pattern of effects was the same as for number knowledge.
Thus, findings suggest that transfer occurred from number knowledge to word problems, but
not from math facts to word problems.

Acquisition and Transfer Effects of Third-Grade Math Facts Tutoring
We addressed the issue of transfer from math facts to word problems more analytically in L.
S. Fuchs et al. (2009) within a randomized field trial in Nashville and Houston. It
incorporated two tutoring conditions, one of which focused exclusively on math facts. In the
second condition, tutoring focused primarily on word problems, although it did allocate a
small amount of time to foundational skills, including counting strategies to help students
efficiently answer math facts (needed to solve word problems). The study had three
purposes. The first was to assess the efficacy of the two tutoring protocols, which were
evaluated against each other and against a no-tutoring control group. By including a control
group, we controlled for maturation, historical effects, and business-as-usual schooling. By
incorporating two tutoring conditions, we controlled for tutoring time when considering the
effects of one protocol against the other. Our second purpose was to explore whether
tutoring was differentially efficacious depending on students' difficulty status: mathematics
difficulty alone versus mathematics difficulty with concomitant reading difficulty. Third, we
assessed the transportability of the tutoring protocols, hence the two sites, one of which was
distal to the developers.

Our final purpose, most pertinent to the present article, was to assess transfer from math
facts tutoring to word-problem outcomes (we could not do the reverse because word-
problem tutoring taught counting strategies for deriving answers to math facts). Third-grade
students (n = 162) were stratified on site and the nature of their difficulty (math difficulty
alone or with reading difficulty) and were then randomly assigned to a control group or one
of the two tutoring conditions. In both active conditions, tutoring time was held constant,
with 20–30 min per session, and 48 sessions were delivered three times per week for 16
weeks; instruction was interactive and explicit; and the programs relied on the same
structured system for ensuring on-task behavior and hard work.

Math facts tutoring comprised five daily activities. In the first, flash card warm up, students
answered flash cards, addressing the pool of 200 math facts for 2 min. For errors, students
“counted up” to derive correct answers using the “min” strategy was addition and the
“missing addend” counting strategy for subtraction. The second activity, which lasted 10–15
min, was conceptual and strategic instruction, in which tutors (a) introduced or reviewed
concepts and strategies underpinning that session's math facts set using the number line and
manipulatives and (b) taught and reviewed strategies in which students were encouraged to
“Know It or Count Up.” In the third activity, tutors conducted lesson-specific flash card
practice for 1 min (e.g., if a lesson focused on the 5 set, lesson-specific flash cards were
math facts with sums or minuends of 5). Again, students counted up to fix errors, and tried
to beat the first session's score on that topic. In the fourth activity, students completed
computerized practice to build fluency with math facts and to assess mastery with the
session's math facts set. This program was a revision of L. S. Fuchs et al. (2005), which

Fuchs et al. Page 6

J Learn Disabil. Author manuscript; available in PMC 2012 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



added number line representations of math facts. Each session addressed 10 lesson-specific
and five review facts. A fact flashed on the screen for 1.3 s. Students rehearsed the fact
while it briefly appeared; when it disappeared, students retyped the entire math fact (e.g.,
addends and answer). If the fact was correct, the student heard applause and earned a point.
If incorrect, the student had another chance to enter it correctly. Computerized practice
ended when the student answered each of the 10 lesson-specific math facts correctly two
times or after 7.5 min. Then students completed a paper-and-pencil review, in which they
had 1 min to complete 15 lesson-specific facts and another minute to complete 15 review
facts.

As already explained, we contrasted this math facts tutoring to a business-as-usual control
group and to a word-problem tutoring condition, which was based on schema theory. The
word-problem tutoring program included a small focus on math facts, which was limited to
three activities: (a) a single lesson in which the counting strategies were taught and
practiced, (b) a daily 2-min warm-up flash card activity (identical to the first activity in math
facts tutoring), and (c) a correction procedure that required students to count up whenever a
math fact error occurred within word problems.

Results demonstrated the efficacy of both tutoring protocols for third-grade students. On
math facts, both tutoring conditions effected superior improvement compared to the control
group, with no significant difference between tutoring conditions. Compared to the control
group, the ES for math facts tutoring was 0.55, and the ES for word-problem tutoring was
similar: 0.62. The comparability of outcomes for the two tutoring conditions is notable
because math facts tutoring allocated dramatically more time to math facts over the 16-week
intervention. On this basis, we concluded that teaching students efficient counting strategies,
while providing frequent but small amounts of timed practice to gain efficiency in using
those strategies and while contextualizing the use of the strategies within word problems,
results in comparable outcomes to an expanded tutoring protocol devoted entirely to math
facts.

In terms of procedural calculations, both tutoring conditions again produced superior
outcomes compared to the control group. In this case, the ES compared to the control
condition was 0.27 for math facts tutoring but almost double that for word-problem tutoring
(0.53). This difference was not statistically significant; yet based on these ESs, word-
problem tutoring might achieve differential efficacy compared to math facts tutoring with
larger samples. Such a finding would not be surprising because only word-problem tutoring
allocated direct, albeit limited, time to procedural calculations (i.e., one direct lesson to
review procedural calculations; 2 min of paper-and-pencil practice at the end of each
session; and completion of procedural calculations while solving word problems, with
corrective feedback). It is however interesting that even without direct work on procedural
calculations, math facts tutoring resulted in better outcomes on procedural calculations
compared to the control group, indicating that transfer occurred.

This is theoretically important because math facts are viewed as a signature, bottleneck
deficit for students with mathematics disability (Fleishner et al., 1982; Geary et al., 1987;
Goldman et al., 1988). The hypothesis is that with a fixed amount of attention, students with
math facts deficits allocate available resources to deriving answers to these simple problems
instead of focusing on the demands of the more complex mathematics into which math facts
are embedded (see Ackerman, Anhalt, & Dykman, 1986; Goldman & Pellegrino, 1987). If
math facts represent a signature deficit, performance on more complex mathematics tasks
should improve simply as a function of math facts tutoring, just as decoding intervention has
been shown to sometimes improve reading comprehension (Blachman et al., 2004; Torgesen
et al., 2001). We found support for this hypothesis in the transfer we observed from math
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facts remediation to procedural calculation outcomes, suggesting that math facts may in fact
serve as a “bottleneck” deficit, at least with respect to procedural calculations. This provides
support for the notion that transfer may have occurred from math facts to procedural
calculations in the first-grade L. S. Fuchs et al. (2012) study.

By contrast, we found no evidence to support this hypothesis on word-problem outcomes.
Word-problem tutoring resulted in strong word-problem outcomes, compared to both
contrasting conditions, with large ESs. With math facts improvement but in the absence of
word-problem tutoring, however, students evidenced no word-problem improvement. This
suggests that the source of their difficulty is not diverting attention from the complex
mathematics to the math facts embedded in those word problems, but rather failing to
comprehend the relations among the numbers embedded in the narratives or to process the
language in those stories adequately. This also suggests that math facts are not the
bottleneck for word-problem performance. Instead, it indicates a more complicated pattern
of difficulty, implicating language—as has been suggested elsewhere (e.g., Fuchs et al.,
2008; L. S. Fuchs et al., 2005; L. S. Fuchs et al., 2006; L. S. Fuchs et al., 2010; L. S. Fuchs
et al., in press). Given these contradictory findings about transfer from math facts tutoring,
in which effects transferred to procedural calculations but not word problems, future work
should continue to explore this issue focusing on word problems as well as other
components of the mathematics curriculum.

In terms of the present discussion, however, results again suggest that, as with the two
previously discussed studies, intervention on one component of the mathematics curriculum
may not carry over to other components, at least with respect to math facts and word
problems. This is problematic for prevention efforts because the mathematics curriculum
comprises many components, with new components routinely introduced as student progress
through school. For example, fractions, which is not a major component of the curriculum in
the primary grades, represent a strong focus in at the intermediate grades. Moreover, whole-
number logic may actually interfere with students' understanding of fractions (e.g., one
eighth is not greater than one fourth, even though eight is greater than four; see Hecht, Vagi,
& Torgesen, 2007). In addition, although language is not implicated in whole-number
procedural calculations, it is a unique predictor of students' development of competence with
rational number computation across third through fifth grades (Seethaler, Fuchs, Star, &
Hamlett, 2010). As this illustrates and in line with the absence of transfer from math facts
tutoring to word-problem outcomes in L. S. Fuchs et al. (2009) and in L. S. Fuchs et al.
(2012), prevention activities in mathematics may present challenges to enduring effects; this
issue may be less salient in reading. And as with any generally efficacious instructional
intervention and as already demonstrated with L. S. Fuchs et al. (2005), not all students who
received tutoring responded. To designate unresponsiveness, we set a cut point below the
16th percentile on end-year performance of a representative sample of third graders. This
resulted in 6.8% of students in math facts tutoring designated as nonresponders in terms of
their math facts outcomes, 4.8% of students in word-problem tutoring in terms of their math
facts outcomes, and 3.7% of students in word-problem tutoring in terms of their word-
problem outcomes.

Separate and Combined Effects of Primary Prevention and Supplementary Tutoring on
Word Problems

Another randomized controlled trial, Fuchs, Fuchs, Craddock, Hollenbeck et al., (2008), also
illustrates how generally efficacious mathematics intervention does not denote universal
response, this time while considering how tutoring interacts with classroom instruction. We
were interested in the issue of whether tutoring for at-risk learners is more effective when
conducted with high-quality classroom instruction to help guide schools in designing their
RTI systems: If tutoring is differentially efficacious when combined with validated
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classroom instruction, then both levels of the prevention system are critical, and classroom
instruction needs to be designed deliberately with at-risk students in mind, even when they
receive tutoring. By contrast, if tutoring promotes comparable outcomes regardless of the
classroom instructional context, then tutoring might occur as a replacement for, rather than
as a supplement to, classroom instruction. Tutoring as replacement for classroom instruction
would make RTI prevention systems more feasible and efficient and would permit resources
to be infused at the tutoring level.

Stratifying to represent classroom conditions in a balanced way in each school, we randomly
assigned 40 classrooms to control and 80 classrooms to validated schema-broadening word-
problem instruction (i.e., Hot Math; L. S. Fuchs et al., 2003). Control classrooms received 3
weeks of researcher-designed general math problem-solving instruction plus 13 weeks of
teacher-designed math problem-solving instruction. Validated instruction involved the same
3 weeks of researcher-designed general math problem solving; however, the 13 weeks of
word-problem instruction was researcher designed.

Although all students participated in their classroom condition, we selected a representative
sample of 1,200 students to enter the study as research participants, from whom we
designated 288 with risk for poor word-problem outcomes. These at-risk students were
assigned to tutoring conditions (validated schema-broadening tutoring vs. no tutoring from
us), while stratifying by classroom condition. In this way, some at-risk students received no
validated instruction (neither in their classrooms nor via tutoring), some received validated
instruction in their classrooms but not via tutoring, some received validated instruction via
tutoring but not in their classrooms, and some received validated instruction both in their
classrooms and via tutoring.

Results showed an interaction between the two levels of the prevention system: Tutoring
was significantly and substantially more effective when it occurred in combination with
validated classroom instruction than when tutoring occurred with conventional classroom
instruction, with an ES of 1.34. This suggests that two levels are better than one level of
prevention and indicates the importance of providing at-risk students validated instruction in
the classroom and then supplementing that instruction with validated tutoring. We note,
however, that in this study, the two levels of instruction were closely aligned, both
addressing the same types of word problems at the same time and both relying on the same
theoretical and operational approach to instruction. It is possible that when the two levels of
instruction are less well aligned, as is often the case, results would differ. (It is also possible
that aligning primary prevention and tutoring instructional content may differ as a function
of academic domain. For this reasons, future studies should assess the value added of
validated classroom instruction that is more and less aligned with tutoring in different
academic content.)

In terms of the present discussion, in which we consider the durability of prevention
activities for long-term success with mathematics, it is also interesting to consider the
performance of at-risk students against not-at-risk peers. When at-risk students received
validated tutoring, but with conventional classroom instruction, at-risk tutored students
improved more than their not-at-risk classmates, narrowing the achievement gap: At
preintervention, the ES was 1.09; at postintervention, only 0.13. On the other hand, with two
levels of the prevention system (i.e., validated classroom and tutoring), at-risk tutored
students and not-at-risk peers achieved comparably (ES = 0.14), with the achievement gap
remaining sizable (at preintervention, 1.29; at postintervention, 0.72). On the other hand,
when at-risk and not-at-risk students received the same, single level of validated classroom
instruction, without tutoring for the at-risk learners, the achievement gap remained the same
or grew: The preintervention ES was 1.30; at postintervention, it was 1.55.
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Together, findings indicate that validated tutoring is essential for at-risk learners. Without it,
the gap between at-risk and not-at-risk students continues to widen, even when not-at-risk
students suffer the disappointing effects of conventional problem-solving classroom
instruction. Accordingly, results highlight the importance of validated problem-solving
instruction in the primary prevention regular classroom and suggest that tutoring occur as a
supplement to, not a replacement for, classroom instruction. When at-risk students receive
tutoring combined with validated classroom instruction, their learning exceeds that of
students who receive tutoring without validated classroom instruction—by a practically
important ES of 1.34 standard deviations.

Even with these impressive results, as with the other efficacy studies already discussed in
this article, preventative tutoring did not ensure individual student response. We
operationalized responsiveness with a widely used tool for identifying mathematics
disability in the schools, Woodcock–Johnson III Applied Problems (Woodcock et al., 2001).
This measure operationalizes math problem solving broadly to include counting, telling time
or temperature, and word problems. Using the 15th percentile as a cut point, 12.8% of at-risk
tutored students (or 3.9% of the at-risk and not-at-risk participants) were deemed
unresponsive. (Using the same method, 26.6% of at-risk students who did not receive
validated tutoring, or 6.8% of the at-risk and not-at-risk participants, met this criterion of
unresponsiveness. It is also important to note that validated classroom instruction, in the
absence of tutoring, did not reduce the rate of unresponsiveness.)

Implications and Additional Research
The set of studies described in this article provides the basis for conclusions about the power
as well as the limitations of RTI for dramatically reducing the need for ongoing and
intensive intervention in the area of mathematics. We focus first on the power. As all four
studies reveal, it is possible to design tutoring programs to enhance the outcomes of students
who are at risk of poor mathematics development. Across interventions, these programs
incorporate explicit instruction, provide students with a strong conceptual foundation and
efficient procedural strategies, and embed regular, strategic, and cumulative practice. It is
interesting that we found that teaching students efficient counting strategies for deriving
answers to math facts, while providing frequent but small amounts of timed practice to gain
efficiency in using those strategies and while contextualizing the use of the strategies within
word problems, produces comparable outcomes to an expanded tutoring protocol devoted
entirely to math facts. Given the ever-changing nature of the mathematics curriculum, this
argues for efficient methods for addressing multiple components of the mathematics
curriculum. Such an integrated approach may, at least partly, address the challenges to
transfer we observed in the four efficacy trials described in this article. We note that
additional research is needed to identify methods for such integration, even as studies
investigate whether subgroups of students, perhaps those with co-occurring reading and
mathematics difficulties, require more expanded intervention on individual mathematics
skills (L. S. Fuchs, 2010).

In any case, across studies, results clearly demonstrate that students at risk for poor
mathematics development suffer reliably and substantially less positive mathematics
outcomes if left in the general education program without such tutoring (as represented in
the control conditions in these studies). Moreover, when at-risk students do not receive these
preventative tutoring services, the gap between their level of mathematics performance and
that of not-at-risk classmates grows, making it increasingly difficult for these children to
profit from classroom instruction. By contrast, at-risk students as a group, who receive high-
quality tutoring, make progress toward catching up to their classmates, and, for some of
these children, the scaffolding provided through such short-term validated tutoring creates a

Fuchs et al. Page 10

J Learn Disabil. Author manuscript; available in PMC 2012 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



strong foundation for them to experience long-term success with their mathematics
schooling. Clearly, reliable screening of risk to identify students for 15–20 weeks of
accurately implemented, validated tutoring, as represented in the secondary prevention level
(typically at Tier 2 or Tier 3) of the RTI system, is a valuable and important service.

At the same time, it is important for policy makers and schools to recognize the limitations
of RTI for dramatically reducing the need for ongoing and intensive services for some
segment of the school population. We highlight four such limitations: the lack of universal
response, the variability in the groups of students designated unresponsive as a function of
the method used to determine response, the sizeable post-tutoring mathematics achievement
gap between tutored and not-at-risk students, and questions about transfer across the
components of the mathematics curriculum.

In terms of lack of universal response, each of the four studies described in this article
illustrates that we cannot expect, even with generally efficacious tutoring programs, all
students will respond. Across the four studies, the modal rate of unresponsiveness on the
components of the curriculum targeted for intervention approximated 4% of the general
population. This is similar to the prevalence of learning disabilities in the United States
when IQ–achievement discrepancy is used as the method of identification (although research
indicates that the groups of students identified via RTI methods of identification versus the
IQ–achievement discrepancy differ; D. Fuchs, Fuchs, Compton, Fuchs, & Davis, 2008; L. S.
Fuchs et al., 2005). This rate of unresponsiveness suggests the limitations of RTI
preventative services for dramatically reducing the need for ongoing, intensive services for
students traditionally identified as having a learning disability. This is the case when 15–20
weeks of small-group tutoring is provided. If it were possible to provide a longer duration of
tutoring or deliver that tutoring individually, it would perhaps be possible to reduce the rate
of unresponsiveness further. Of course, with longer runs of one-to-one tutoring, services
begin to resemble the level of intensity expected within special education, which prompts
concerns about due process and how schools might fund such a level of intensity without
special education resources.

It is also important to consider, however, that the rate of unresponsiveness documented in
these four studies probably underestimates the actual percentage when RTI is practiced in
the schools. This is the case not only because, in these randomized controlled trials, we
ensured that validated tutoring procedures were implemented with strong fidelity but also
because the estimates of unresponsiveness were based on performance immediately
following tutoring. In actual practice, it is likely that fidelity of implementation will be
lower, with reduced effects. In addition, as students continue in school, the effects of
tutoring can be expected to diminish, and without additional support, some responders will
reemerge with difficulty.

It is also interesting to consider implications of the variability in the rates of
unresponsiveness as well as in the groups of students so designated, within and across
studies. This occurs at least in part as a function of the method by which response is
designated. The most prominent methods for determining response within RTI systems, at
least as represented in research, are low final achievement at the end of tutoring or low rate
of improvement (i.e., slope or posttest vs. pretest performance) during tutoring or some
combination of low final status and low improvement. In L. S. Fuchs et al. (2005), we
explicitly contrasted these options. For methods based on low final achievement, the groups
of students labeled unresponsive manifested uniformly severe difficulty compared to that of
responders, with ESs between these groups between 0.75 and 1.03. The prevalence of
unresponsiveness was, however, unrealistically low when designating response based on the
Woodcock–Johnson III subtests (less than 1% of at-risk and not-at-risk students). On the
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other hand, estimates for Curriculum-Based Measurement (CBM) Computation and for
Addition Facts Fluency were disturbingly high (9.40% and 6.38%, respectively). The one
math measure where a realistic prevalence rate (5.14%) was combined with severe difficulty
(ES = 0.92 contrasting students with and without response) was First-Grade Concepts/
Applications.

Of course, relying on low final achievement to denote unresponsiveness identifies some
students as responsive even though they make strong improvement during tutoring. This
may occur when initial achievement is very low. It seems unfortunate to categorize these
children as unresponsive— hence, an index of improvement as the primary basis for
denoting response. L. S. Fuchs et al. (2005) contrasted three identification methods based on
improvement (all using CBM Computation, which was collected weekly and thereby
permitted the calculation of slope). The first approach, as proposed by Vellutino et al.
(1996), sets a cut point for unresponsiveness as the median slope for tutored students. This
requires 50% of tutored students to be identified as unresponsive, which was not in line with
any other method (and resulted 38.67% of not-at-risk children designated as unresponsive).

Given the unrealistically high prevalence rate for an RTI method using a median cut on
tutored students' slopes, we considered CBM slope discrepancy, another method for
designating response based on improvement. In this case, using a cut point of below the 10th
percentile, the percentage of nonresponders was still high (8.16%). As argued elsewhere (L.
S. Fuchs & Fuchs, 1998), however, improvement alone may be an inadequate basis for
designating response because it permits students with low slopes, who begin and complete
first grade with respectable achievement standing, to be identified as unresponsiveness. For
this reason, we also considered a dual discrepancy, which permits classification as
unresponsive only when students experience a low slope over the course of tutoring and
complete tutoring with low final achievement. This approach reduced the rate of
unresponsiveness to 4.43%, while retaining a moderate degree of severity in mathematics
difficulty with an average ES of 0.62.

Looking across these methods for designating response, L. S. Fuchs et al. (2005) concluded
that low final achievement on First-Grade Concepts/Applications and CBM dual
discrepancy appear promising. Yet additional research with other samples and other forms
of preventative tutoring is clearly warranted (for some studies in reading, see Barth et al.,
2008, and D. Fuchs et al., 2008). The larger point for the present discussion, however, is the
variability itself. Findings suggest that, as in reading, different methods for designating
response to mathematics tutoring yield different sets of students designated as unresponsive,
with varying prevalence rates and fluctuations in the severity of students' mathematics
difficulty. Research on RTI may benefit from agreement on a small number of uniformly
applied strategies for designating response, which would facilitate comparisons in the
literature about the degree of unresponsiveness.

To further complicate this issue, it is possible that many schools determine responsiveness
without any formal measurement of the construct, relying instead on informal judgments
about response. Research is needed to determine what methods schools use and how well the
resulting judgments of responsiveness correspond to students' future trajectories and long-
term outcomes. One important reason for the emergence of RTI as an education reform was
the 2004 reauthorization of the Individuals with Disabilities Education Act, which permits
states to use unresponsiveness to evidence-based practices for the purpose of identifying
learning disabilities. Yet as documented in the present article and as just discussed, varying
methods for operationalizing response will yield different sets of students identified with
learning disabilities and will result in varying rates of prevalence, with fluctuations in the
severity academic difficulty. Such heterogeneity in the learning disabled population may
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plague RTI methods of identification, as occurred with the IQ–achievement discrepancy
approach to identification. Therefore, work is needed to provide the field guidance about
how to determine which students are and are not responding to preventative tutoring.

At the same time, to date, all methods for determining responsiveness rely on norm-
referenced criteria (i.e., a percentile cutoff on final achievement, improvement, or both). As
the normative reference group changes, however, so will the groups of students identified as
nonresponsive. The field of learning disabilities has struggled in the past about whether local
or national reference groups are more defensible. A local normative framework provides the
basis for providing intensive services to students who are discrepant with respect to their
classroom peers and to the level of instruction provided in those classrooms. On the other
hand, local norms increase heterogeneity in the groups of students designated for intensive
intervention across districts and states. This raises questions about the tenability of the
learning disability construct itself, even as it creates practical problems for schools: As
students move to new locations, those who required service in one context may be capable
of profiting from a new level of classroom instruction (or vice versa). An alternative to
reliance on norms entirely may, however, exist. Some minimum level of academic
competence is required for a successful school and life experience, and students who
perform below such a criterion after secondary prevention in the RTI system clearly require
more long-term and intensive intervention. Such a criterion-referenced approach for
designating response, which would preserve meaning across districts and states, may
provide a more rationale basis for identifying students for intensive intervention. The
research base for deriving such a criterion in mathematics (and reading) does not presently
exist, and important questions arise concerning whether such criteria change with
development and whether they must be framed separately for different components of the
curriculum. A research program on the development of such criteria seems timely.

The results of these randomized controlled trials also illustrate that even with efficacious
tutoring programs, where students improve reliably and substantially better than control
group at-risk students (or those in competing tutoring groups), the post-tutoring mathematics
achievement gap between tutored and not-at-risk students remains substantial. Depending on
the mathematics outcome and the tutoring group, the post-tutoring gap ranged from 0.41 to
1.35 standard deviations in L. S. Fuchs et al. (2005), from 0.54 to 1.35 in L. S. Fuchs et al.
(2012), and from 0.13 to 0.72 in Fuchs, Fuchs, Craddock, Hollenbeck et al., (2008). (We did
not have a strong basis for estimating this in L. S. Fuchs et al., 2009.) These achievement
gaps prompt caution about whether at-risk students derive sufficient benefit from tutoring to
transition back to the general education with long-term mathematics success. Research is
needed to identify the long-term outcomes of students who receive validated tutoring
programs.

The final issue that represents a potential challenge to preventing long-term mathematics
difficulty with small-group tutoring concerns questions about transfer across components of
the mathematics curriculum. As the studies described in this article illustrate, although
transfer may occur from math facts tutoring to procedural calculations, there is no basis to
presume that math facts tutoring enhances word-problem performance, even when those
word problems require students to answer math facts to derive solutions. Mathematics, more
than reading, is potentially complicated by the fact that the school curriculum comprises
multiple components within and across the grades. In the primary grades, the focus is on
whole numbers, with students expected to develop competence with (among other things)
concepts, numeration, measurement, math facts, procedural calculations, and word
problems. By the intermediate grades, the focus shifts dramatically to rational numbers,
which, as already discussed, requires students to move beyond whole-number logic. In the
United States, the majority of students, not just those who labor with the primary-grade
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curriculum, suffer from poor understanding of and procedures with fractions (Mullis et al.,
1997). For example, half of eighth-grade students cannot order the magnitude of three
fractions (National Council of Teachers of Mathematics, 2006), and most fifth graders
cannot determine whether .274 or .83 is greater (Rittle-Johnson, Siegler, & Alibali, 2001).
Moving to high school, however, creates new and even greater challenges. Although some
speculate that competence with fractions provides the scaffolding needed for success with
algebra (e.g., National Mathematics Advisory Panel, 2008), research to document this
possibility is lacking. Moreover, over the course of high school, the components of the
mathematics curriculum, which include geometry, trigonometry, calculus, as well as algebra,
diverge more dramatically than in earlier grades.

Research on the connection among these many components of the mathematics curriculum,
which is only beginning to emerge, engenders caution that the cognitive abilities
underpinning competence in different components of the mathematics curriculum may
differ. Three previous large-scale investigations, for example, considered the role of a large
battery of cognitive abilities for more than one mathematics outcome. Assessing 353 first
through third graders, Swanson and Beebe-Frankenberger (2004) found that working
memory contributed to competence with both math facts and word-problem skill, but unique
abilities as a function of math component were also identified: for math facts, phonological
processing; for word problems, math facts and fluid intelligence and short-term memory.
Swanson (2006) then followed these students' development of math fact and word-problem
skill over the next school year. He identified controlled attention, vocabulary knowledge,
and visuospatial working memory as predictors of math facts, but the executive control
component of working memory for word problems. With 312 third graders, L. S. Fuchs et
al. (2006) examined the concurrent cognitive correlates of math facts versus word problems,
this time controlling for the role of number combination skill in word problems. Teacher
ratings of inattentive behavior correlated with both components of the mathematics
curriculum, but the remaining abilities differed: for math facts, phonological decoding and
processing speed; for word problems, nonverbal problem solving, concept formation, and
language. Across studies, some findings recur; others are idiosyncratic. But together, results
suggest that different combinations of cognitive abilities underlie the development of
different forms of mathematical competence. This raises questions about whether we can
expect students who profit from tutoring in one component of the curriculum to necessarily
thrive in the general education program, as the curriculum takes its twists and turns.

In the present review, we considered transfer only from math facts to procedural calculations
and to word problems. Findings were encouraging for transfer to procedural calculations but
not to word problems, and little is known about transfer across other components of the
mathematics curriculum. Such research is needed. In the meantime, we can hope that
preventative tutoring strengthens students' foundation for benefiting from the general
education classroom mathematics program and, in this way, inoculates students from further
difficulty. For some students, this is undoubtedly the case. Yet for other students, it is
unlikely that preventative tutoring on a limited set of components in the mathematics
curriculum can be expected to promote strong performance on other components.

Concluding Thoughts on Reenvisioning RTI
Preventative small-group tutoring, when conceptualized, designed, and delivered well, is a
valuable resource that permits many students to gain sufficient ground to enjoy a “new start”
in the general education classroom and experience long-term success there. At the same
time, we identified four sources of concern about whether RTI, as presently conceptualized,
can eliminate the need for ongoing and intensive services for some portion of the population.
Therefore, in this final section, we consider a reenvisioned RTI that incorporates rather than
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excludes special education (as is often argued; see D. Fuchs et al., 2010), that reenvisions
special education as part of the continuum of prevention services. The idea is to use the RTI
umbrella to build a more comprehensive prevention system that not only addresses the needs
of the at-risk “responder” population, as is presently the case, but also is designed to prevent
the long-term failure of the “nonresponders.”

This more inclusive RTI system incorporates three levels of intensity. Primary prevention is
restricted to the instructional practices general education teachers should be expected to
conduct independently and with competence: the core program, with classroom routines that
provide opportunities for instructional differentiation, with accommodations that permit
access for all students, and with motivational strategies to engage students who have
relevant skills but opt against using them. Most core programs are designed using
instructional principles derived from research, but few are validated because of the
challenges associated with conducting controlled studies of complex, multicomponent
programs. Secondary prevention, by contrast, involves some type of intervention, which
may include one or more round of the kinds of tutoring described in this article: time-limited
runs of small-group instruction that relies on a validated tutoring program to specify
instructional procedures along with the duration (typically 10 to 15 weeks of 20- to 40-min
sessions) and frequency (3 or 4 times per week) of tutoring. The intensity of secondary
prevention is distinguishable from primary prevention because secondary prevention is
empirically validated (whereas primary prevention is research principled) and because an
adult delivers secondary prevention in a standard manner to small groups of students
(whereas primary prevention relies primarily on whole-class instruction with or without
differentiated activities, which that may involve peer tutoring or independent learning
centers). When a validated tutoring program is used at secondary prevention with fidelity,
most students are expected to benefit—as revealed in the responsiveness rates we described.
In this way, validation provides a basis for two critical, interrelated assumptions. First, a
student's unresponsiveness to a validated protocol is not the result of poor instruction but
rather child characteristics (that may involve a disability). Second, students who do not
benefit from secondary prevention demonstrate a need for nonstandard instruction. As
written in federal law, students who have a disability and display a need for nonstandard
instruction are entitled to special education.

Hence, a comprehensive evaluation follows to confirm the presence of a disability, making
tertiary prevention synonymous with special education. Tertiary prevention differs from
secondary prevention in that (a) in tertiary prevention, teachers establish clear, individual,
and ambitious year-end goals in instructional material that match the student's needs and (b)
tertiary instruction is individualized (because the student has demonstrated insufficient
response to standard forms of instruction at primary and secondary prevention). To
individualize, the teacher begins with a more intensive version of a standard protocol (e.g.,
longer sessions, smaller group size), but instead of assuming it will meet the student's needs,
the teacher uses frequent progress monitoring to quantify the effects of the protocol. When
the rate of improvement forecasts the student will not achieve the year-end goal, the teacher
revises the protocol while monitoring the effects of those revisions. In this way, the teacher
inductively and recursively designs an effective, individualized instructional program.

To make special education a meaningful component of the RTI prevention system, however,
two innovations are required. First, special educators must be afforded the time and
resources to implement the kinds of individualized and intensive intervention just described.
Second, tertiary prevention needs to be conceptualized as a level of service that students
with learning disabilities enter and exit on a flexible basis to address their present needs.
When a student shows strong response at tertiary prevention, he or she returns to secondary
or primary prevention, even as the special educator continues to monitor that student's
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progress. With ongoing monitoring, the teacher can detect renewed difficulty as soon as it
occurs, pinpoint the area in which difficulty is occurring, and move the student to the
appropriate level of the prevention system for efficient remediation. Schools might designate
a required period of long-term success in the general education program that dictates the
termination of the IEP, at which time the monitoring is limited to the RTI system's regular
screening mechanism. When special education is reconceptualized as an individualized,
intensive service that moves students flexibly between the levels of the prevention as
needed, it can serve as an integral component of the RTI system, with the goal of preventing
the long-term failure of students who prove unresponsive to a more limited RTI system.
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