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Abstract
We describe and analyze a longitudinal diffusion tensor imaging (DTI) study relating changes in
the microstructure of intracranial white matter tracts to cognitive disability in multiple sclerosis
patients. In this application the scalar outcome and the functional exposure are measured
longitudinally. This data structure is new and raises challenges that cannot be addressed with
current methods and software. To analyze the data, we introduce a penalized functional regression
model and inferential tools designed specifically for these emerging types of data. Our proposed
model extends the Generalized Linear Mixed Model by adding functional predictors; this method
is computationally feasible and is applicable when the functional predictors are measured densely,
sparsely or with error. An online appendix compares two implementations, one likelihood-based
and the other Bayesian, and provides the software used in simulations; the likelihood-based
implementation is included as the lpfr() function in the R package refund available on CRAN.
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1 Introduction
Traditionally, longitudinal studies have collected scalar measurement on subjects over time.
As technologies for the collection and storage of larger measurements have become widely
available, longitudinal studies have begun to collect functional or imaging observations on
subjects over several visits. One example is our current dataset, in which diffusion tensor
imaging (DTI) brain scans are recorded for many multiple sclerosis patients over several
visits with the goal of assessing the impact of neurodegeneration on disability. Adequately
relating functional predictors to accompanying scalar outcomes requires longitudinal
functional regression models, which are not currently available. We address this problem by
introducing a generally applicable regression model that adds subject-specific random
effects to the well-studied cross-sectional functional regression model. We also develop
inferential techniques for all parameters in this new model, and implement these methods in
computationally efficient and publicly available software available in the refund R package.

1.1 Data Description
Our application explores the relationship between cerebral white matter tracts in multiple
sclerosis (MS) patients and cognitive impairment over time. White matter tracts are made up
of myelinated axons: axons are the long projections of a neuron that transmit electrical
signals and myelin is a fatty substance that surrounds the axons in white matter, enabling the
electrical signals to be carried very quickly. Multiple sclerosis, an autoimmune disease
which results in axon demyelination and lesions in white matter tracts, leads to significant
disability in patients.
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DTI is a magnetic resonance imaging (MRI) based modality that traces the diffusion of
water in the brain. Because water diffuses anisotropically in the white matter and
isotropically elsewhere, DTI is used to generate images of the white matter specifically
(Basser et al., 1994, 2000; LeBihan et al., 2001; Mori and Barker, 1999). Several
measurements of water diffusion are provided by DTI, including fractional anisotropy and
mean diffusivity. Continuous summaries of white matter tracts, parameterized by distance
along the tract and called tract profiles, can be derived from diffusion tensor images.

By collecting longitudinal information about patient cognitive function and about disease
progression via DTI, researchers hope to better understand the relationship between MS and
disability. From this study, we have densely sampled mean and parallel diffusivity
measurements from several white matter tracts. Our dataset consists of 100 subjects, 66
women and 34 men, aged between 21 and 70 years at first visit. The number of visits per
subject ranged from 2 to 8, with a median of 3, and were approximately annual; a total of
340 visits were recorded. At each visit full DTI scans were obtained and used to create tract
profiles, accompanied by several tests of cognitive and motor function with scalar outcomes.

In Figure 1 we display a functional predictor and cognitive disability outcome for two
subjects over time. We stress that this data structure, with high-dimensional predictors and
scalar outcomes observed longitudinally, is increasingly common. Moreover, we emphasize
that our methods are motivated by this study, but are generally applicable. A single-level
analysis of these data was presented in Goldsmith et al. (2011).

1.2 Proposed Model
More formally, we consider the setting in which we observe for each subject 1 ≤ i ≤ I at each
visit 1 ≤ j ≤ Ji data of the form [Yij, Wij1(s), …, WijK(s), Xij], where Yij is a scalar outcome,
Wijk(s) ∈ ℒ2[0, 1], 1 ≤ k ≤ K, are functional covariates, and Xij is a row vector of scalar
covariates. We propose the longitudinal functional regression outcome model

(1)

where “EF(μij, η)” denotes an exponential family distribution with mean μij and dispersion
parameter η. Here Xijβ is the standard fixed effects component, Zijbi is the standard random

effects component,  are subject-specific random effects, and the

 are the functional effects. Both the functional coefficients γk(s) and the
scalar coefficients β are population-level parameters, rather than subject-specific effects, and
do not vary across visits.

Model (1) is novel in that it adds subject-specific random effects to the standard cross-
sectional functional regression model; from another point of view, this model adds
functional predictors to generalized linear mixed models. The latter viewpoint is particularly
instructive in that ideas familiar from traditional longitudinal data analysis can be transferred
seamlessly to longitudinal functional data analysis. As an example, many different structures
of random effects bi, including random intercepts and slopes, will be needed in practice and
can be implemented by appropriately specifying the random effect design matrices and
covariance structures. For expositional clarity we use a single vector of subject-specific
random effects and assume that these random effects are independent, but more complex
structures can be included. In practice the Wijk(s) are not truly functional but are observed
on a dense (or sparse) grid and often with error; moreover, the predictors are not necessarily
observed over the same domain. In fact, while the measurement error is negligible in our
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application, there are some missing values in the functional predictor in Figure 1, and the
mean and parallel diffusivity functional predictors have different domains. We point out that
solutions to these problems are well known (Di et al., 2009; Ramsay and Silverman, 2005;
Staniswalis and Lee, 1998; Yao et al., 2003), and do not discuss them here.

Our proposed approach is based on the single-level functional regression model developed
in Goldsmith et al. (To Appear) but is extended to the scientifically important longitudinal
setting. Strengths of this approach are that: 1) it extends functional regression to model the
association between outcomes and functional predictors when observations are clusted into
groups or subjects; 2) it casts a novel functional model in terms of well-understood mixed
models; 3) it is applicable in any situation in which the Wijk(s) are observed or can be
estimated, including when they are observed sparsely or with error; 4) it can be fit using
standard, well-developed statistical software available as the lpfr() function in the refund R
package; 5) from a Bayesian perspective, it allows the joint modeling of longitudinal
outcomes and predictors; and 6) it provides confidence or credible intervals for all the
parameters of the model, including the functional ones. We emphasize this final point, as
confidence intervals are rarely discussed in the functional regression literature, and in
penalized approaches to functional regression they are typically bootstrap or empirical
intervals. The connection to mixed models provides a simple, statistically principled
approach for constructing confidence or credible intervals.

1.3 Existing Methods for Functional Regression
We contrast the setting of this paper with the large body of existing functional regression
work. Foremost, existing functional regression work (Cardot et al., 1999, 2003; Cardot and
Sarda, 2005; Cardot et al., 2007; C et al., 2009; Ferraty and Vieu, 2006; James, 2002; James
et al., 2009; Marx and Eilers, 1999; Müller and Stadtmüller, 2005; Ramsay and Silverman,
2005; Reiss and Ogden, 2007) deals only with cross sectional regression. Here, we are
focused on longitudinally observed functional predictors and outcomes, which necessitates
the addition of random effects to the standard functional regression model. To the best of
our knowledge, this setting has not been considered previously. Moreover, the addition of
random effects increases the complexity of the functional regression model, requiring new
methodology implemented in efficient software.

Additionally, we point out that several alternative penalized approaches to single-level
functional regression exist (Cardot et al., 2003; Cardot and Sarda, 2005; Reiss and Ogden,
2007), but that each of these incorporates a computationally expensive cross-validation
procedure. How and whether such methods would extend to fitting longitudinal models of
type (1) remains to be elucidated. The additional complexity of a longitudinal model may
increase the computational burden, perhaps prohibitively. Low-dimension approaches to
single-level functional regression (Müller and Stadtmüller, 2005), in which the smoothness
of γk(s) depends on the dimension of its basis, are less automated than penalized approaches
but are, notably, generalizable to the longitudinal setting. In fact, such models are a special
case of the method we propose in Section 2.

It is also important to distinguish the proposed longitudinal functional regression model
from the well developed Functional ANOVA models (Brumback and Rice, 1998; Guo,
2002). Here, one observes functions organized into groups; the goal is to express the
functions as a combination of a group mean, a subject-specific deviation from the group
mean, and possibly a subject-visit-specific deviation. Much of this work has focused on the
estimation of and inference for the group means, and has employed penalized splines in
expressing these functions. A scalar-on-function regression that incorporates random effects
to account for group effects, as proposed in this paper, is not considered; we however point
out that the work in FANOVA suggests that numerous datasets necessitating such a model
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exist and are under investigation. Others (Di et al., 2009; Greven et al., 2010) have extended
functional principal components analysis to the multilevel and longitudinal settings,
emphasizing parsimonious and computationally efficient methods for the expression of
subject-visit specific curves. While these methods are the state of the art in describing the
variability in observed multilevel and longitudinal functions, they do not consider
accompanying longitudinal outcomes.

Finally, we highlight the distinction between the treatment of scalars observed longitudinally
as sparse functional covariates (Hall et al., 2006; Müller, 2005; Yao et al., 2005) and the
current setting, in which functions are observed longitudinally.

The introduction of a longitudinal functional regression model, therefore, fills a gap in the
functional data analysis literature. While the proposed approach is based on the framework
described in Goldsmith et al. (To Appear) and arises naturally therein, the longitudinal
extension developed here defines a broadly useful class of functional regression models.
Moreover, computationally feasible software for the estimation and inference related to
longitudinal functional regression models is freely available online.

The remainder of this manuscript is organized in the following way. Section 2 describes the
proposed general method for longitudinal functional regression. In Section 3 we pursue a
simulation study to examine the viability of the proposed method and in Section 4 we apply
our method to the DTI data. We end with a discussion in Section 5. Implementations of the
method proposed in Section 2, provided in both likelihood-based and Bayesian frameworks
and accompanied by a discussion of the the advantages and disadvantages of each, are
available in an online appendix which also contains all software used in the simulation
exercise.

2 Longitudinal Penalized Functional Regression
The longitudinal penalized functional regression (LPFR) method builds on an approach to
single-level functional regression in which the penalization is achieved via a mixed model
(Goldsmith et al., To Appear). Briefly, the two steps in this method are: 1) to express the
predictors using a large number of functional principal components obtained from a smooth
estimator of the covariance matrix estimator; and 2) to express the function coefficient using
a penalized spline basis. The addition of random effects to this model arises naturally and
with a minimal increase in complexity. In the following, we will use i to index subject, j to
index visit, k to index functional predictor, l to index objects associated with PC bases, and
m to index objects associated with spline bases.

Specifically, given data of the form [Yij, Wij1(s), …, WijK(s), Xij] for subjects 1 ≤ i ≤ I over
visits 1 ≤ j ≤ Ji, we model the functional effect in the following way. First, express the
Wijk(s) in terms of a truncated Karhunen-Loève decomposition. That is, let ΣWk (s, t) =
Cov[Wijk(s), Wijk(t)] be the covariance operator on the kth observed functional predictor;
thus ΣWk (s, t) is a bivariate function providing the covariance between two locations of the

functional predictor. Further, let  be the spectral decomposition of ΣWk

(s, t), where λk1 ≥ λk2 ≥ … are the non-increasing eigenvalues and ψk(·) = {ψkl(·) : l ∈ ℤ+}
are the corresponding orthonormal eigenfunctions. In practice, functional predictors are
observed over finite grids, and often with error. Thus we estimate ΣWk (s, t) using a method-
of-moments approach, and then smooth the off-diagonal elements of this observed
covariance matrix to remove the “nugget effect” caused by measurement error (Staniswalis
and Lee, 1998; Yao et al., 2003). Moreover, in the case that the Wijk(s) are sampled sparsely
or over different grids, one can construct an estimate of the covariance matrix using the
following two-stage procedure (Di et al., 2009). First, use a fine grid to bin each subject’s
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observations to construct a rough estimate of the covariance matrix based on these under-
smoothed functions; second, smooth the rough covariance matrix estimated in the previous
step.

A truncated Karhunen-Loève approximation for Wijk(s) is given by

, where Kw is the truncation lag, the

 are uncorrelated random variables with variance λkl, and
μk(s) is the mean of the kth functional predictor, taken over all subjects and visits. Unbiased
estimators of cijkl can be obtained either as the Riemann sum approximation to the integral

 or via the mixed effects model (Crainiceanu et al., 2009; Di et al.,
2009)

(2)

where  is the vector of subject-visit specific loadings for the kth
functional predictor, Λk is a Kw × Kw matrix with (l, l)th entry λkl and 0 elsewhere, and the
cijk, εijk(s) are mutually independent for every i, j, k. Note we have expressed the Wijk(s)
without taking the repeated subject-level observations into account; alternatively, one could
use longitudinal functional principal components analysis for a decomposition that borrows
strength across visits (Greven et al., 2010).

The second step in LPFR is to model the coefficient functions γk(s) using a large spline
basis with smoothness induced explicitly via a mixed effects model. For example, let ϕk(s) =
{ϕk1(s), ϕk2(s), …, ϕkKg (s)} be a truncated power series spline basis, so that

 are
knots (note that the index on the knots begins at 3 to match the index of the spline terms in
gk). Thus,

where Mk is a Kw × Kg dimensional matrix with the (l, m)th entry equal to

. Then, letting Ck be the  matrix of

PC loadings with rows , X be the design matrix of fixed effects, and Z1 be the random
effect design matrix used to account for repeated observations, the outcome model (1) is
posed as

(3)

Goldsmith et al. Page 5

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where X = [1 X (C1M1)[,1:2] … (CKMK)[,1:2]] is the design matrix consisting of scalar
covariates and fixed effects used to model the γk(s), Z = [Z1 (C1M1)[,3:Kg] …
(CKMK)[,3:Kg]] is the design matrix consisting of subject-specific random effects and
random effects used to model the coefficient functions; β = [α, β, g10, g11, …, gK0, gK1] is

the vector of fixed effect parameters; and  is the vector of
subject-specific random effects and the random effects used to model the γk(s). The terms

 are incorporated into the overall model intercept α.

In this way longitudinal functional regression models can be flexibly estimated using
standard, yet carefully constructed, mixed effects models. Once again, we note that the
random effect structure is simple for expositional purposes only; complex combinations of
random effects and covariance structures can be implemented just as in standard generalized
mixed models. Similarly to Crainiceanu and Goldsmith (2010), it is possible to model jointly
the principal component loadings cijk and the outcome. This is important if there is
substantial variability in the estimates of the cijk, but may not be necessary if good estimates
are available. We have assumed the same truncation lags Kw, Kg for each functional
predictor and coefficient, but this assumption is easily relaxed. For the choice of truncation
lags, we refer to Goldsmith et al. (To Appear) and Ruppert (2002) and choose them large,
subject to the identifiability constraint Kw ≥ Kg; typically Kw = Kg = 30 will suffice. Spline
bases other than the truncated power series basis can (and, in the Bayesian software
implementation, will) be used with appropriate changes to the specification of the random
effects u used to model the γk(s).

A related approach, which can be advantageous when the shape of γk(s) is known, takes
ϕk(·) as a collection of parametric functions, i.e. ϕk(s) = {1, t} if γk(s) is a linear function,
and uses random effects to model the longitudinal structure of the data but not to induce
smoothness on γk(s). However, absent setting-specific knowledge of the shape of γk(s) we
typically advocate the more flexible penalized approach described above.

3 Simulations
We pursue a simulation study to test the effectiveness of our proposed method in estimating
one or more functional coefficients in longitudinal regression models. We use two
implementations, a likelihood-based approach and a Bayesian approach, and briefly note a
few differences between the two. First, the likelihood based approach estimates the matrix of
PC loadings C using a Riemann sum approximation and then treats this matrix as fixed,
while the Bayesian approach estimates C as in equation (2). Second, the Bayesian
implementation uses a b-spline basis for the γk(s) to improve mixing of the MCMC chains.
A more detailed discussion of the two implementations is available in an online appendix.
To ensure reproducibility, full code for the simulation exercise is also available online.

3.1 Single Functional Predictor
We first generate samples from the model
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where , uij1 ~ Unif[0, 5], uij2 ~ N[1, 0.2], υijt1,

υijt2 ~ N[0, 1/t2] and  denotes the observed functional predictor for subject i at visit j.
By construction the Wij(s) are a combination of a vertical shift, a slope, and sine and cosine

terms of various periods. The Wij(s) are observed on the dense grid .
We assume I = 100 subjects, and use two true coefficient functions in separate simulations:
γ1(s) = 2 sin(πs/5) and . Note that the first true coefficient function is selected to
be an early principal component of the observed functions, and the second is an arbitrary

smooth function. We take J ∈ {3, 10}, , which
gives a total of 16 possible parameter combinations and two coefficient functions. For each
of these combinations, we generate 100 datasets and fit model 1 using both likelihood-based
and Bayesian approaches. For the Bayesian implementation, we used chains of length 500
with the first 100 as burn-in; the estimated parameters are taken to be the posterior mean of
the generated samples.

We calculate the mean squared error of the estimated coefficient function γ̂(s) as

Table 1 provides the average mean squared error (AMSE) using the both implementations

taken over the 100 simulated datasets for , and all possible combinations of

J, , and coefficient function; results for other values of  are quite similar to those
presented and are omitted. Thus, we see that the estimation of γ(s) is very accurate
regardless of the magnitude of the random effect variance or, notably, the presence or
absence of measurement error. As expected, there is a substantial decrease in AMSE when
one observes 10 visits per subject compared to 3 visits per subject. Doubling the error
variance on the outcome has the largest impact on the AMSE, but in many situations this
impact is small. To provide context for Table 1, in Figure 2, we show the estimates resulting

in the median MSE for J = 3,  under both coefficient functions.

We note that several differences between the results for the likelihood-based and Bayesian
implementations are apparent for J = 3. Particularly, notice that the likelihood-based
implementation generally has better performance for γ2(s). A possible reason for this is that
the Bayesian implementation uses a smaller basis for both the functional predictors and the
coefficient function and uses a b-spline basis for γ(s), rather than a truncated power series.
With fewer observations, the smaller b-spline basis may lack the flexibility to adequately
represent γ2(s). Though not shown, a second difference in the results for the different
implementations is the slightly larger impact of measurement error on AMSE for the
Bayesian implementation. Recall that this approach jointly estimates the model parameters
and the matrix of PC loadings C. The added variability in estimating C in the presence of
measurement error may lead to more variable estimation of the functional coefficient γ(s).
However, for J = 10 these differences largely disappear.

Finally, in Figure 3 we show the coverage probabilities for the 95% confidence and credible
intervals produced by a subset of the simulations described above. We show the two extreme

situations: first, we let J = 3, ; second, we let J = 10,

. For γ1(s), we generally see that the confidence intervals have
coverage probabilities somewhat lower than the nominal level, while the credible intervals

Goldsmith et al. Page 7

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are slightly conservative with the exception of one region. A more interesting situation is
apparent for γ2(s). We note from Figure 2 that both implementations tend to oversmooth the
leftmost tail of the coefficient function; this is reflected in the very low coverage
probabilities there. The Bayesian implementation recovers from this initial oversmoothing
and has conservative credible intervals over the remainder of the domain, but the likelihood-
based implementation has a second dip corresponding to a second region of oversmoothing
before achieving coverage probabilities more similar to those for γ1(s). The oversmoothing

of γ2(s) is most likely related to the use of a single parameter  to control smoothness
across the domain of the coefficient function. In the case of γ2(s), the leftmost tail exhibits
much more curvature than the remainder of the function, meaning that the single parameter
may induce more smoothness than is accurate.

3.2 Multiple Functional Predictors
Next, we generate samples from the model

where , uijl1 ~ Unif[0, 5], uijl2 ~ N[1, 0.2],

υijtl1, υijtl2 ~ N[0, 1/t2] and  denotes the kth observed functional predictor for subject i
at visit j. Thus the Wijk(s) are independent functions constructed in the same manner as in

Section 3.1. The Wijk(s) are observed on the dense grid  and we set I =
100. Again we choose γ1(s) = 2 sin(πs/5) and  and we take J ∈ {3, 10},

. For each of these combinations, we generate 100
datasets and fit model 1 using both of the implementations described in Section A. Due to
the added complexity of the model, we used chains of length 1000 with the first 500 as burn-
in.

Table 2 provides the AMSEs resulting from both likelihood-based and Bayesian
implementations of the longitudinal functional regression model with multiple functional
predictors taken over the 100 simulated data sets; again, results for various combinations of

 are similar and have been omitted. We see that the results in this setting are
remarkably similar to those considered in Section 3.1, despite the additional complexity of
the model. Specifically, the AMSEs are negligibly affected and the comparisons between the
likelihood-based and Bayesian implementations remain valid. Though not presented, figures
examining the coverage probabilities of confidence and credible intervals are also largely
unchanged.

4 Application to Longitudinal DTI Regression
Recall that in this study, 100 patients are scanned approximately once per year and undergo
a collection of tests to assess cognitive and motor function; patients are seen between 2 and
8 times, with a median of 3 visits per subject. Here we focus on the mean diffusivity profile
of the corpus callosum tract and the parallel diffusivity profile of the right corticospinal tract
as our functional predictors and the Paced Auditory Serial Addition Test (PASAT), a
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commonly used examination of cognitive function affected by MS with scores ranging
between 0 and 60, as our scalar outcome.

We begin by fitting models of the form

(4)

where Yij is the PASAT score for subject i at visit j, Wij(s) is functional predictor for subject
i at visit j, and the variable Xij = I(j > 1) is used to account for a learning effect that causes
PASAT scores to generally rise between the first and second visit. Two such models are fit,
one using the mean diffusivity profile of the corpus callosum and another using the parallel
diffusivity profile of the right corticospinal tract. Next, we fit additional models that include
the subject-specific time since first visit as a fixed effect and random slopes on this variable.
These models illustrate that more complex random effect structures are possible within our
proposed framework with a minimal increase in computation time and allow the treatment of
irregularly timed observations. However, these models gave results indistinguishable from
the random intercept only model, and are not discussed further. The random intercept
models are fit using both likelihood-based and Bayesian implementations of the method
describe in Section 2. Because our model uses a continuous outcome and identity link, the
coefficient function has a marginal interpretation; that is, the effect of the predictor function
on the outcome (as mediated by the coefficient function) does not depend on a subject’s
random effect.

Estimates of the functional coefficient γ(s), along with credible and confidence intervals, are
presented in the left panels of Figure 4. Note that in both cases the credible and confidence
intervals are quite different; we recall from our simulations that the credible intervals were
conservative, while the confidence intervals were slightly below the nominal coverage.
However, for the corpus callosum both intervals indicate that the first half of the tract has a
significant impact on the PASAT outcome, although only the confidence intervals indicate
significance for the region from 60 to 80. For the corticospinal tract, the region from 40–50
is indicated as having a significant impact on the outcome.

In Table 3 we show the percent of the outcome variance explained, defined as

 is the estimated residual variance and Var(Yij) is the
overall outcome variance, in each of several models. Included in this Table are the
longitudinal functional models described above, as well as a random intercept only model
and a standard linear mixed model with visit indicator and the average mean diffusivity in
the corpus callosum as a scalar predictor (rather than the functional tract profile). We note
that the largest source of variation in the outcome is the subject-specific random effect, and
that the functional regression models substantially outperform the standard linear mixed
model. Further, the two functional predictors explain a similar amount of variability beyond
the random intercept only model.

Next, we carry out an analysis that includes both the corpus callosum mean diffusivity
profile and the corticospinal tract parallel diffusivity profile in a single model. The estimated
functional coefficients in this model are given in the right panels of Figure 4. The estimated
coefficient function for the corpus callosum and accompanying confidence intervals are
largely unchanged from regression using this profile as a single functional predictor, but the
estimate for the corticospinal tract is quite different. Rather than a peak from 10–20 and a
dip from 40–50, the coefficient for the corticospinal tract is near zero over its entire range,
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and no regions appear particularly important in predicting the outcome. The model with
multiple functional predictors explains only slightly more of the outcome variance than
either model with a single predictor, indicating that the information contained in the two
predictors is similar.

The collection of results from the regression models displayed in Table 3 is reminiscent of
confounding in standard regression models: the effect of one variable largely disappears in
the presence of a second variable. A heatmap of the correlation matrix between the corpus
callosum and corticospinal tract profiles, shown in 5, indicates that the region spanning
locations 40–50 of the corticospinal tract are have correlations between .5 and .6 with the
corpus callosum. This region is similar to the region of interest when the corticospinal tract
is used as a single predictor. The high correlations likely occur due to the anatomical
proximity of the corpus callosum and corticospinal tracts in this region. Finally, the PASAT
score is a measure of cognitive function, and has been linked to degradation of the corpus
callosum (Ozturk et al., 2010). However, the corticospinal tract mediates movement and
strength, not cognition, and therefore should not have a direct impact on the PASAT score.
Based on these findings, it is therefore scientifically plausible that the corticospinal tract is
not directly linked to cognitive function, but is correlated through its correlation with the
corpus callosum. On the other had, the direct relationship between the corpus callosum and
the PASAT score appears scientifically and statistically plausible.

5 Discussion
In this paper we are posed with a scientifically interesting and clinically important data set
exploring the relationship between intracranial white matter tracts and cognitive disability in
multiple sclerosis patients. Data of this type, in which functional predictors and scalar
outcomes are observed longitudinally, will soon be regularly observed in the statistical
community. To properly analyze these data, we proposed a longitudinal functional
regression model which is broadly applicable. The results of our analysis indicate that the
combination of functional data techniques with more traditional longitudinal regression
models is a powerful tool to enhance our understanding of basic scientific questions.

The approach we propose is appealing in that in casts difficult longitudinal functional
regression problems in terms of the popular and well-known mixed model framework. The
methods developed are: 1) very general, allowing for the functional coefficient to be fit
using a flexible penalized approach or modeled parametrically; 2) applicable whether the
functional covariates are sparsely or densely sampled, or measured with error; and 3)
computationally efficient and tractable. To the last point, we developed two implementations
for this approach using common statistical software and demonstrated their effectiveness in
a detailed simulation study; code for these implementations, as well as a discussion of their
relative merits, is available in an online appendix.

Future work may take several directions. Most broadly, there is a need for rigorous model
selection techniques in the context of functional regression. In our analysis, we chose the
model based on the scientifically plausible appearance of confounding, but the development
of hypothesis tests suitable for this setting is necessary. Because in our model the flexibility
in the coefficient function is based on a random effect distribution, testing for a zero
variance component can examine the null hypothesis that the effect of the functional
predictor is constant over its domain. Methods exist to conduct this test, but their
performance should be carefully studied in this setting. Alternatively, the use of LASSO-
based methods in similar settings allow penalized approaches to variable selection, although
their feasibility in the longitudinal functional regression setting must be evaluated (Fan and
James, Under Review; Yi et al., To Appear). Related to the issue of variable selection, it is

Goldsmith et al. Page 10

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



common for scientific applications to produce many correlated predictors for each subject.
The inclusion of such predictors in a single model raises the issue of “concurvity”, a
functional analog of collinearity, and may result in unstable estimates or computational
errors. Concurvity has been studied in the generalized additive model literature, but
additional work is needed to address the problems caused by correlation in functional
predictors (Ramsay et al., 2003).

Other directions for future work include the possibility of basing longitudinal functional
regression on functional decomposition techniques tailored to the structure of the data,
which may give results that are simpler to implement or interpret. Penalized approaches that
use cross validation to impose smoothness, though computationally expensive, could
provide a useful alternative to the mixed model approach presented here. Borrowing from
the smoothing literature, the use of adaptive smoothing methods for the estimation of
coefficient functions could alleviate the issue of localized over- or undersmoothing
demonstrated in our simulations. Finally, functional regression techniques for data sets in
which the predictor contains tens or hundreds of thousands of elements, either from
extremely dense observation or because the predictor is a 2- or 3-dimensional image, will be
needed as such data sets are collected and analyzed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structure of the data. The center panel displays the scalar PASAT-3 cognitive disability
measure for two subjects over five visits (measured as the number of questions answered
correctly out of sixty); above and below are the parallel diffusivity tract profiles of the right
corticospinal tract corresponding to each subject-visit outcome, which we use as a functional
regressor.
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Figure 2.
For both true coefficient functions and both implementations, we show the estimate γ̂(s)
with median MSE. Median MSEs for likelihood-based and Bayesian approaches are,
respectively, 0.016 and 0.012 for γ1(s) and 0.006 and 0.009 for γ2(s).
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Figure 3.
Coverage probabilities for 95% confidence and credible intervals for both true coefficient
functions in simulations with single functional predictors.
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Figure 4.
Results of analyses with single and multiple functional predictors. On the left, we show the
estimated coefficient function the mean diffusivity (MD) profile of the corpus callosum and
the parallel diffusivity (PD) profile of the right corticospinal tract treated separately as single
functional predictors. On the right we show the results of an analysis including both profiles
as functional predictors. In all panels, solid lines depict estimated coefficient functions and
dashed lines represent confidence intervals, while black curves are likelihood-based and red
are Bayesian.

Goldsmith et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Heatmap of the correlation matrix between the mean diffusivity of the corpus callosum and
the parallel diffusivity of the right corticospinal tract, the tract profiles used as functional
predictors in the analyses with single and multiple functional predictors. Tract locations are
provided on the axes of the heatmap.
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