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cal developmental syndrome due to its remarkable behav-
ioral phenotype and because  UBE3A  is so crucial to normal 
synaptic function and neural plasticity. 

 Copyright © 2011 S. Karger AG, Basel 

 History of the Syndrome 

 Angelman syndrome (AS) was first described by Dr. 
Harry Angelman in 1965 [Angelman, 1965]. It is charac-
terized by developmental delay, absent speech, ataxic gait, 
seizures, and a distinctive behavioral phenotype with ex-
citability and paroxysms of laughter [Clayton-Smith and 
Laan, 2003; Summers and Pittman, 2004; Williams, 2005; 
Dan, 2008; Van Buggenhout and Fryns, 2009; Williams 
et al., 2010a]. The incidence is thought to be 1/12,000 to 
1/20,000 [Clayton-Smith and Pembrey, 1992; Steffenburg 
et al., 1996]. Cases have been reported from all over the 
world without racial predilection.

  Clinical Features 

 Consensus criteria for the clinical diagnosis have been 
described [Williams et al., 2006] as outlined in  table 1 . 
One of the earliest distinctive behaviors of AS may be 
persistent social smiling beginning at 1–3 months. Chor-
tling, giggling and constant smiling may follow. Exces-
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 Abstract 

 The Angelman syndrome is caused by disruption of the 
 UBE3A  gene and is clinically delineated by the combination 
of severe mental disability, seizures, absent speech, hyper-
motoric and ataxic movements, and certain remarkable be-
haviors. Those with the syndrome have a predisposition to-
ward apparent happiness and paroxysms of laughter, and 
this finding helps distinguish Angelman syndrome from
other conditions involving severe developmental handicap. 
Accurate diagnosis rests on a combination of clinical criteria 
and molecular and/or cytogenetic testing. Analysis of par-
ent-specific DNA methylation imprints in the critical 15q11.2–
q13 genomic region identifies 75–80% of all individuals with 
the syndrome, including those with cytogenetic deletions, 
imprinting center defects and paternal uniparental disomy. 
In the remaining group,  UBE3A  sequence analysis identifies 
an additional percentage of patients, but 5–10% will remain 
who appear to have the major clinical phenotypic features 
but do not have any identifiable genetic abnormalities. Ge-
netic counseling for recurrence risk is complicated because 
multiple genetic mechanisms can disrupt the  UBE3A  gene, 
and there is also a unique inheritance pattern associated 
with  UBE3A  imprinting. Angelman syndrome is a prototypi-
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sive mouthing behaviors are also common in AS infants 
and children with active exploration of objects through 
manipulation and chewing. Tongue protrusion is seen in 
30–50% of children associated with drooling.

  Hyperkinetic movements of the trunk and limbs may 
be seen in early infancy and jitteriness or tremulousness 
may be present very early [Fryburg et al., 1991]. Voluntary 
movements may be slightly jerky or uncoordinated coarse 
movements that prevent walking, feeding and reaching 
for objects may be seen. The mildly impaired child can 
have almost normal walking in early childhood with only 

mild toe-walking or a prancing gait. More severely af-
fected children can be extremely shaky and jerky when 
walking or stiff and robot-like. The legs are kept wide-
based and the feet are often flat and ankles pronated and 
turned outward. Arms are kept uplifted with flexed el-
bows and downward turned hands.

  Hypermotoric behaviors can be pronounced in young 
children and this in combination with the jerky limb 
movements and frequent smiling and/or laughter can 
give a distinctive behavioral phenotype, recently re-
viewed by Williams [2010]. Most have social-seeking be-

Table 1. C linical features of AS

A. Consistent (100%)
� Developmental delay, functionally severe
� Movement or balance disorder, usually ataxia of gait and/or tremulous movement of limbs. Movement 

disorder can be mild. May not appear as frank ataxia but can be forward lurching, unsteadiness,
clumsiness or quick, jerky motions

� Behavioral uniqueness: any combination of frequent laughter/smiling; apparent happy demeanor; easily 
excitable personality, often with uplifted hand-flapping or waving movements; hypermotoric behavior

� Speech impairment, none or minimal use of words; receptive and nonverbal communication skills higher 
than verbal ones

B. Frequent (more than 80%)
� Delayed, disproportionate growth in head circumference, usually resulting in microcephaly (≤2 SD of 

normal OFC) by age 2 years. Microcephaly is more pronounced in those with 15q11.2–q13 deletions
� Seizures, onset usually <3 years of age. Seizure severity usually decreases with age, but the seizure disorder 

lasts throughout adulthood
� Abnormal EEG, with a characteristic pattern, as mentioned in the text. The EEG abnormalities can occur 

in the first 2 years of life, can precede clinical features and are often not correlated to clinical seizure 
events

C. Associated (20–80%)
� Flat occiput
� Occipital groove
� Protruding tongue
� Tongue thrusting, suck/swallowing disorders
� Feeding problems and/or truncal hypotonia during infancy
� Prognathia
� Wide mouth, wide-spaced teeth
� Frequent drooling
� Excessive chewing/mouthing behaviors
� Strabismus
� Hypopigmented skin, light hair and eye color (compared to family), seen only in deletion cases
� Hyperactive lower extremity, deep tendon reflexes
� Uplifted, flexed arm position, especially during ambulation
� Wide-based gait with pronated or valgus-positioned ankles
� Increased sensitivity to heat
� Abnormal sleep-wake cycles and diminished need for sleep
� Attraction to/fascination with water, fascination with crinkly items such as certain papers and plastics
� Abnormal food-related behaviors
� Obesity (in the older child)
� Scoliosis
� Constipation
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haviors, and their apparent happiness and laughter is of-
ten contextually appropriate [Oliver et al., 2002; Horsler 
and Oliver, 2006a, 2006b]. Bursts of laughter may occur 
in up to 70% of older individuals [Buntinx et al., 1995].

  Sleep problems are well known for AS and frequent 
awakening at night is common [Bruni et al., 2004; Did-
den et al., 2004]. Dyssomnias (difficulties in initiating or 
maintaining sleep), irregular sleep-wake cycles, disrup-
tive night behaviors such as periods of laughter, and 
sleep-related seizures have been reported [Pelc et al., 
2008b]. Pelc et al. [2008b] attribute these sleep anoma-
lies to abnormal neurodevelopmental functioning of the 
thalamocortical axis.

  Onset of seizures of varied types (generalized tonic-
clonic, absence, atonic, complex partial, and myoclonic) 
occurs between 1 and 3 years of age, but can occur later. 
Seizures are associated with specific non-epileptic EEG 
changes [Galvan-Manso et al., 2005]: runs of high-ampli-
tude delta activity with intermittent spike and slow-wave 
discharges (at times observed as a notched delta pattern), 
runs of rhythmic theta activity over a wide area and runs 
of rhythmic sharp theta activity of 5–6/s over the poste-
rior third of the head, forming complexes with small 
spikes. These are usually facilitated by or seen only with 
eye closure [Boyd et al., 1988; Rubin et al., 1997; Korff et 
al., 2005]. Nonconvulsive status epilepticus may occur 
[Pelc et al., 2008a]. It is believed that seizures are usually 
well controlled on anticonvulsants, but a recent question-
naire study by Thibert et al. [2009] suggests that the epi-
lepsy is relatively refractory as only 15% of patients re-
spond to the first anti-epileptic drug. Structurally the 
brain appears to be normal except for delayed or abnor-
mal myelination and mild atrophy [Harting et al., 2009; 
Castro-Gago et al., 2010]. Peters et al. [2010] noted abnor-
malities in diffusor tensor imaging suggestive of dysmy-
elination.

  Intellectual deficiency is in the severe to profound 
range of functioning in AS. Severe language impairment 
is the norm and the great majority has absent speech. 
Some communication via gestures and communication 
boards is possible [Clayton-Smith, 1993]. Accurate devel-
opmental testing is difficult because of inability to pay 
attention, hyperactivity and lack of speech. Psychometric 
testing suggests that the upper developmental potential is 
in the 24–30-month range [Peters et al., 2004; Trillings-
gaard and Ostergaard, 2004; Didden et al., 2006].

  Although there are craniofacial anomalies present in 
some individuals with AS, these typically do not repre-
sent significant facial dysmorphism. Individuals with
AS who have prominent oral-motor behaviors associat-

ed with a protruding tongue often have deformational 
changes leading to some degree of mandibular progna-
thism, and those with microcephaly may have dimin-
ished length of the cranial base leading to midface retru-
sion [Frias et al., 1982]. More recently, the use of comput-
er mapping and 3-dimensional analysis of standardized 
facial photographs [Hammond et al., 2005] holds promise 
for detecting subtle facial changes among different ge-
netic types of AS individuals, but only a preliminary re-
port of this has occurred (noted in Williams and Franco 
[2010]).

  Natural History 

 Newborns with AS appear to have had normal fetal 
development and have normal head circumferences at 
birth. It is difficult to diagnose AS in infancy since non-
specific developmental delay, hypotonia and feeding dif-
ficulties may be the only recognized features. Micro-
cephaly becomes evident by 1 year of age in about one 
half and, as in Rett syndrome, acquired microcephaly is 
present. Most children are diagnosed by ages 3–7 years 
when the abnormal gait and distinctive behaviors be-
come evident. Most walk by age 2 and a half to 6 years 
and have a jerky, ataxic gait associated with uplifted and 
pronated forearms ( fig. 1 ) [Zori et al., 1992; Lossie et al., 
2001].

  Physical health in older AS children and in adults ap-
pears to be remarkably good. Young adults with AS con-
tinue to learn and are generally not expected to have
deterioration in their mental abilities. The main adult 
problems are essentially a continuation of any present in 
childhood. Although the severity or frequency of seizures 
may improve with age, many still require some type of 
anticonvulsant medication. Prolonged disabling bouts of 
tremor have recently been noted in teenagers and adults, 
but the cause of this is unclear, and it does not appear
to be a seizure manifestation nor is it representative of a 
Parkinson-like movement disorder. This episodic trem-
or problem is often overlaid on an existing long-term 
tremulousness. In the author’s experience (C.A.W.), these 
tremors are present both at rest and upon intention and 
last 2–6 weeks before returning to baseline.

  Mobility issues become a more predominant concern 
in teenagers and young adults, often associated with obe-
sity. Individuals with AS who have severe ataxia may lose 
their ability to walk if ambulation is not encouraged. Sco-
liosis can develop in adolescence and is especially a prob-
lem in those who are nonambulatory [Clayton-Smith, 
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1993; Clayton-Smith and Laan, 2003; Dan, 2008]. Scolio-
sis is treated with early bracing to prevent progression, 
and surgical correction or stabilization may be necessary 
for severe cases.

  Due to disruptive behaviors, those with AS may be giv-
en neuroleptic medications, and the sedating or other 
side effects of these agents can be a health problem.

  Pubertal onset and development are generally nor-
mal in AS and procreation appears possible for both 
males and females. Lossie and Driscoll [1999] reported 
transmission of an AS deletion to a fetus by the affected 
mother.

  Independent living is not possible for adults, and until 
recently, most adults probably lived in small residential 
facilities or larger institutional care programs. More re-
cently, a growing number continue to live at home or near 
their homes in small home-like placements such a group 
homes. Life span does not appear to be dramatically 
shortened in AS but may be decreased by 10–15 years. 
Those who are not ambulatory and have difficulty with 
eating so as to require a gastrostomy tube, and/or have a 
severe seizure disorder are expected to have some dimi-
nution in their life span. There are reports of AS individ-

uals living beyond 70 years; although there is, as of yet, 
no actuarial data about longevity in AS [Bjerre et al., 1984; 
Philippart and Minassian, 2005].

  Molecular Biology of the  UBE3A  Gene 

 AS is caused by disruption of the function of the ma-
ternally inherited ubiquitin-protein ligase E3A  (UBE3A)  
gene [Kishino et al., 1997; Matsuura et al., 1997; Jiang et 
al., 1999; Nicholls and Knepper, 2001]. The gene lies with-
in the AS critical region 15q11.2–q13, spans approximate-
ly 120 kb of genomic DNA and contains 16 exons (see 
 fig. 2 ). The coding region is 60 kb. The main 3 mRNA 
transcripts have 10 exons, are approximately 5 kb in size 
and encode 3 protein isoforms (I, II and III) [Kishino et 
al., 1997; Vu and Hoffman, 1997; Yamamoto et al., 1997; 
Kishino and Wagstaff, 1998] ( fig. 2 ). There appears to be 
8–10 other smaller transcripts of unknown function or
of uncertain significance. Isoform I corresponds to the 
open reading frame for E6-associated protein (E6-AP). 
Isoform II has an additional 20 amino acids and isoform 
III has an additional 23 amino acids at the amino termi-

A B C D

E F G H

  Fig. 1.  Pictured are individuals who have genetic test-proven
Angelman syndrome. The mechanisms identified in them are: 
15q11.2–q13 deletion ( A ,  B ,  D ,  E ); paternal uniparental disomy ( C ); 
 UBE3A  mutation ( F ,  G ) and imprinting defect ( H ). Individuals  A , 
 B  and  C  illustrate some of the gait characteristics seen in the syn-
drome. Protruding tongue can be a noteworthy phenotypic fea-

ture, especially in combination with laughter (as in  C ), but most 
do not have pronounced tongue protrusion. The girl  H  has a non-
deletion, mosaic-type imprinting defect, and thus her cognitive 
and language skills are relatively higher than observed in the typ-
ical child with the syndrome. 
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nus. The functions of the different protein isoforms are 
unknown. They may interact with different substrates in 
different intracellular regions. The 5 �  untranslated region 
has a somewhat complex structure with additional exons 
located upsteam of the initiation site. The 3 �  UTR extends 
for about 2.0 kb [Kishino and Wagstaff, 1998].

   UBE3A  produces an 865 amino acid E6-AP. This as-
sociated protein was first recognized as a protein that 
binds to p53 and mediates its association with human 
papilloma virus E6 protein. This binding leads to deg-
radation of p53 tumor suppressor via the ubiquitin pro-
teasome pathway and thus promotes development cervi-
cal carcinoma [Huibregtse et al., 1991; Huang et al., 
1999]. E6-AP facilitates the transfer and covalent link-
age of activated ubiquitin (a 76-amino acid protein) to 
the target protein. The polyubiquitylated substrates are 
then identified and degraded by the 26S proteasome 
pathway. E6-AP belongs to the HECT (homologous to 
E6-AP COOH-terminus) class of E3 enzymes that share 
a 40 kDa conserved COOH-terminal catalytic domain. 
The HECT domain of E6-AP is a bilobed structure with 
a broad catalytic cleft at the junction of the 2 lobes. The 
domain is encoded by exons 9 through 16. The E6-bind-
ing site is encoded by exon 9 and the active site cysteine 
residue that accepts ubiquitin from the E2 ubiquitin-
conjugating enzyme is encoded within exon 16 [Yama-
moto et al., 1997; Kishino and Wagstaff, 1998]. Muta-
tions within the cleft interfere with ubiquitin-thioester 
bond formation. Indeed, most AS mutations due to mis-
sense or single amino acid insertion or deletion muta-

tions in the HECT domain map to the catalytic clefts 
[Huang et al., 1999].

  The ubiquitin-proteasome pathway is essential for cel-
lular functioning such as signal transduction, cell-cycle 
progression, DNA repair, and transcriptional regulation 
[Ciechanover, 1998; Hershko and Ciechanover, 1998]. 
Several E6-AP targets have been discovered [Kühne and 
Banks, 1998; Kumar et al., 1999; Oda et al., 1999; Khan et 
al., 2006; Li et al., 2006; Reiter et al., 2006; Louria-Hayon 
et al., 2009; Shimoji et al., 2009], and recently 2 target 
proteins, ARC (activity-regulated cytoskeleton-associat-
ed protein) and Ephexin-5, have been identified that ap-
pear to be crucial components of synaptic plasticity and 
dendrite growth regulation [Greer et al., 2010; Margolis 
et al., 2010; Scheiffele and Beg, 2010]. The ARC protein is 
involved regulating membrane stabilization of excitatory 
postsynaptic receptors. The guanine exchange protein, 
Ephexin-5, is known to regulate activity of EphB receptor 
signaling that is a crucial component of dendritic growth 
[Margolis et al., 2010]. Eph receptors are known to be
enriched at synapses and are important in regulating 
dendritic spine density. The EphB receptors interact
with ephrin ligands and regulate dendritic development 
through small GTPases of the Rho family (Rho, Rac and 
Cdc42) by activation of guanine nucleotide exchange fac-
tors [Murai and Pasquale, 2003]. It is unknown how ab-
normalities in E6-AP-target proteins interaction lead to 
AS, but the recently identified targets strongly indicate 
that the UBE3A protein is crucial to development of nor-
mal synaptic development and neural plasticity. This 
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  Fig. 2.  Schematic diagram of the  UBE3A  gene showing exons 1–16 
and 3 of the most studied protein isoforms that differ by 20 and 
23 amino acids at the amino terminal aspect. Exons 9–16 con-
stitute the HECT binding and transfer domains. The steroid co-
activation region does occupy a contiguous genomic region but 

spans a region that contains several 5-amino acid motifs known 
to be receptor interacting motifs [Ramamoorthy and Nawaz, 
2008]. An alternative exon numbering system for  UBE3A  is indi-
cated by the asterisk, as designated by Yamamoto et al. [1997]. 
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concept is supported by AS mouse studies that demon-
strate abnormal dendritic processes [Dindot et al., 2008; 
Lu et al., 2009] and defects in hippocampal long-term po-
tentiation, experience-dependent maturation of excitato-
ry cortical circuits [Jiang et al., 1998; Yashiro et al., 2009] 
and postsynaptic kinase pathways involving calmodulin-
dependent protein kinase II [Weeber et al., 2003]. The 
major features of the AS mouse phenotype have been res-
cued by reducing the phosphorylation of calmodulin-de-
pendent protein kinase II [van Woerden et al., 2007].

  A steroid receptor coactivation domain is located up-
stream of the HECT region, but its role in neuronal de-
velopment is uncertain. E6-AP appears to have at least 2 
independent functions since the ligase region and the 
HECT domain are not required for function of the co-
activation domain [Ramamoorthy and Nawaz, 2008].

   UBE3A  displays predominant maternal expression in 
human fetal brain and adult frontal cortex [Rougeulle et 
al., 1997; Vu and Hoffman, 1997; Herzing et al., 2001]. 
Detailed studies of imprinting regions in the human 
brain are limited; however, in the mouse model maternal 
allele-specific expression is detected in the hippocampus, 
cerebellum, olfactory bulb, and visual cortex [Albrecht et 
al., 1997; Jiang et al., 1998; Yashiro et al., 2009]. It is pos-
sible that there is widespread, if not global, UBE3A allele-
specific expression in the mouse and in the human brain 
neurons. Primary cell cultures from fetal mouse brain 

also reveal that  UBE3A  imprinting is limited to neurons 
and that glial cells show biallelic expression [Yamasaki et 
al., 2003].  UBE3A  has a large 5 �  CpG island, but its DNA 
methylation does not differ between the maternal and pa-
ternal alleles [Lossie et al., 2001], both are unmethylated. 
Because no differentially methylated promoter region
is present in  UBE3A , it has been proposed that the im-
printed expression of  UBE3A  may be regulated indirect-
ly through a paternally expressed antisense transcript 
[Rougeulle et al., 1998]. Runte et al. [2001] have shown 
that a long  SNURF-SNRPN  sense/ UBE3A  antisense RNA 
transcript exists in the AS/PWS region, starting from the 
 SNURF-SNRPN  IC and extending more than 460 kb to at 
least the 5 �  end of  UBE3A . It has been proposed that pa-
ternally active  UBE3A  antisense transcripts block pater-
nal  UBE3A  transcription ( fig. 3 ).

  Molecular Classes of Angelman Syndrome 

 In normal neurons,  UBE3A  is transcriptionally inacti-
vated (imprinted) on the paternally derived allele of chro-
mosome 15 and is active only on the maternally derived 
allele. All other somatic cells have biallelic transcription. 
The syndrome can occur by 4 different mu tational mech-
anisms affecting the  maternally  derived chromosome 15: 
intragenic mutation, deletion of the gene (e.g. via chromo-
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  Fig. 3.  Schematic drawing of chromosome region 15q11.2–q13 in-
dicating the breakpoint regions BP1–BP6. Low-copy repeat ele-
ments are located within these breakpoint regions (see text for 
details). Approximately 90% of chromosome deletions resulting 
in Angelman syndrome initiate at BP1 or BP2 and terminate in 
region BP3 (class I and class II). Approximately 10% of deletions 
are larger, typically spanning from BP1 to BP5, rarely beyond BP5. 
Genes that are not imprinted and thus biparentally expressed are 

noted by the open circles. The 2 critical imprinting center (IC) 
elements, the AS-SRO and the PWS-SRO, are drawn as open box-
es. The shaded box for the  SNURF-SNRPN  gene is shown with 
some overlap with the PWS-SRO. The SNURF-SNRPN sense/
UBE3A antisense transcript is labeled  UBE3A -AS. Distances are 
not to scale particularly between  SNRPN  and  UBE3A ; not pic-
tured are the paternally expressed snoRNAs that are transcribed 
as part of the long antisense transcript between these 2 genes. 
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some microdeletion), paternal uniparental disomy (UPD) 
with absence of maternal chromosome 15, and a defect in 
the imprinting center (IC) that controls  UBE3A  transcrip-
tion. These mechanisms are reviewed below.

  Chromosome Microdeletions 

 Three chromosome 15q11.2–q13 breakpoints (proxi-
mal BP1, BP2 and the more distal BP3) are involved in 
about 90% of AS causing de novo deletion events, and 
these deletions span approximately 5–7 Mb [Knoll et al., 
1990; Amos-Landgraf et al., 1999; Christian et al., 1999]. 
Class I deletions account for 40% of deletion cases and 
extend from BP1–BP3. Class II deletions extend from 
BP2–BP3 and account for 50% of cases. Fewer than 10% 
of individuals with AS may have deletions extending 
from the BP1/BP2 region to regions more distal at BP4, 
BP4A, BP5, or BP6 ( fig. 3 ) [Sahoo et al., 2007]. The BP1, 
BP2 and BP3 regions are characterized by low-copy re-
peats, typically in direct orientation, that contain repeats 
of several pseudogenes and other expressed sequences. 
One of the most noteworthy elements in these low-copy 
repeats is derived from the  HERC2  gene  (HEct domains 
 and  RCc1 domain protein 2)  [Pujana et al., 2002]. The
BP sites distal to BP3 contain low-copy repeats without 
 HERC2  duplications, but they share other chromosome 
15-derived repeat elements. Microdeletions have been de-
scribed that flank the typical deletion region and include 
areas between BP1 and BP2 [Doornbos et al., 2009], BP3 
and BP4 [Rosenfeld et al., 2011] and the more distal mi-
crodeletion syndrome involving region 15q13.3 [Ma-
surel-Paulet et al., 2010]. Individuals with these deletions 
do not exhibit features of the AS. Interstitial duplications 
of 15q11.2–q13 on the maternally derived chromosome 
cause a disorder involving autism and/or intellectual de-
ficiency, but it is clinically distinct from the phenotype of 
AS [Boyar et al., 2001]. A proportion of mothers who have 
a child with an AS deletion have molecular inversions in 
the 15q11.2–q13 region [Gimelli et al., 2003]. The signifi-
cance of this is uncertain and needs further study. A kin-
dred in which 2 first cousins had deletions (one deletion 
causing Prader-Willi syndrome (PWS) and the other 
causing AS, inherited from a brother and sister, respec-
tively) has been reported to be associated with an inher-
ited inverted intrachromosomal insertion of 15q11.2–q13 
[Collinson et al., 2004]. It is thus possible that in other-
wise normal individuals, such preexisting genomic ab-
normalities may predispose to deletion of 15q11.2–q13 in 
the germ line resulting in offspring with AS.

  Paternal Uniparental Disomy 15 

 Paternal UPD of chromosome 15 causes 3–7% of AS; 
these individuals have a milder presentation with a lower 
incidence of seizures. Robinson et al. [2000] reported that 
a somatic segregation error is the most likely mechanism 
leading to the paternal UPD. Paternal UPD cases of mei-
otic origin do occur, but this mechanism is less common 
than is seen in the maternal UPD cases associated with 
PWS. Individuals with UPD should have chromosomal 
analysis to ensure that they do not have a paternally in-
herited Robertsonian translocation. In individuals with 
paternal UPD and no Robertsonian translocation, the 
risk to sibs of having AS is less than 1%. The recurrence 
risk is not zero, as recurrent meiotic nondisjunction of 
maternal chromosome 15 has been reported [Harpey et 
al., 1998]. If an individual has paternal UPD with a nor-
mal karyotype, a maternal chromosomal analysis could 
be performed to rule out a Robertsonian translocation
or a marker chromosome that may generate a maternal 
gamete nullisomic for chromosome 15. This situation 
could theoretically lead to a postzygotic correction to pa-
ternal disomy.

  Imprinting Defects 

 About 2–4% of AS individuals have a defect in the re-
setting/maintaining of imprints during gametogenesis or 
after fertilization. Genetic (small deletions) and epigenet-
ic (abnormal DNA methylation pattern but no deletion) 
defects in the AS IC within 15q11.2–q13 change the DNA 
methylation and expression patterns along 15q11.2–q13. 
Even though these individuals have biparental inheri-
tance of chromosome 15, the maternal 15q11.2–q13 re-
gion has a paternal epigenotype and is therefore tran-
scriptionally incompetent for the maternal-only ex-
pressed  UBE3A  gene in this region [Glenn et al., 1993; 
Buiting et al., 2001, 2003].

  The IC has a bipartite structure and regulates in  cis  
imprint resetting and maintenance within the 15q11.2–
q13 imprinted domain [Sutcliffe et al., 1994; Buiting et al., 
1995, 1999]. About 8–15 % of those with an imprinting 
defect will have deletions that disrupt the IC, and map-
ping of these deletions (as well as mapping of the IC de-
letions that are associated with PWS) has delineated 2 
smallest regions of deletion overlap (SRO) that define 2 
critical elements in the IC region, the AS-SRO and the 
PWS-SRO [Buiting et al., 1995]. The PWS-SRO is 4.3 kb 
in size and overlaps with the  SNURF-SNRPN  exon1/pro-
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moter region [Ohta et al., 1999] ( fig. 3 ). IC deletions found 
in patients with AS affect the more centromeric  SNURF -
 SNRPN  promoter/exon 1 region. The smallest region of 
overlap in patients with AS and an IC deletion (AS-SRO) 
is 880 bp in size and maps 35 kb proximal to  SNURF-
SNRPN  exon 1 [Buiting et al., 1999; Horsthemke and
Buiting, 2008]. Two out of the 13 IC deletions described 
so far have occurred de novo on the maternal chromo-
some, but in most of the cases they have been inherited 
from the mother [Horsthemke and Buiting, 2008]. The 
deletions are without any phenotypic effect when trans-
mitted through the male germ line, but lead to an incor-
rect paternal imprint when transmitted through the fe-
male germ line. It appears that the AS-SRO has an impor-
tant role in the establishment of the maternal imprint in 
the female germ line, possibly by interacting with the 
PWS-SRO and that a deletion of this element prevents 
maternal imprinting of the deletion chromosome.

  IC deletions are found only in a small fraction of AS 
patients with imprinting defects. In the vast majority of 
patients ( 1 90%), the imprinting defect represents a pri-
mary epimutation [Buiting et al., 2003; Horsthemke and 
Buiting, 2008] without any changes in the DNA sequence. 
In AS patients with a primary epimutation, the maternal 
chromosome carrying a wrong paternal epigenotype can 
be inherited from either the maternal grandmother or 
grandfather, suggesting that in these patients the im-
printing defect results from an error in the imprint estab-
lishment in the female germ line or in imprint mainte-
nance in the early embryo, leading to somatic mosaicism 
[Horsthemke, 2010]. The postzygotic loss of the maternal 
imprint is a significant cause of AS with an imprinting 
defect as more than 40% of AS patients with an imprint-
ing defect are found to have somatic mosaicism [Buiting, 
unpubl. data]. These patients were found to have a small 
amount of methylated alleles, as they show a weak mater-
nal band in methylation analysis for the  SNURF-SNRPN  
locus using various techniques.

   UBE3A  Mutations 

 The majority of  UBE3A  mutations found in AS are 
protein truncating mutations [Kishino et al., 1997; Mat-
suura et al., 1997; Malzac et al., 1998; Lossie et al., 2001]. 
More than 60 mutations have been reported and 60–70% 
of these involve small deletions and duplications leading 
to frameshift mutations [Abaied et al., 2009; Camprubi
et al., 2009; Stenson et al., 2009]. Another approximate 
25% involve missense and nonsense mutations with the 

remainder representing splicing defects, gross deletions 
and complex rearrangements [Stenson et al., 2009]. All 
mutations noted thus far are predicted to disrupt the 
HECT ligase domain. Exons 9 and 16, which code for part 
of the HECT domain, account for a high percentage of all 
mutations, but these coding regions are disproportion-
ately large, so this high percentage probably does not rep-
resent true hot spots for mutation. It is possible that indi-
viduals with milder effect mutations (e.g. certain mis-
sense and inframe deletions or duplications) may show 
some, but not all, of the clinical features associated with 
AS. Novel missense mutations, especially de novo ones, 
can be problematic in establishing pathogenicity, but de-
termination of the parental origin of the mutation can be 
helpful since the mutation would need to arise from the 
maternal chromosome [Horsthemke et al., 2011] Com-
plete or partial overlapping deletions of  UBE3A  and in-
tragenic deletions have also been identified. These can be 
missed by sequencing but can be detected using various 
methods, such as quantitative PCR, real time PCR and 
MLPA. In some instances, array-CGH has detected 
multi-exonic or whole gene deletions [Govoni et al., 1985; 
Lawson-Yuen et al., 2006; Sato et al., 2007]. Detection of 
such deletions may vary by laboratory and methodology 
[Lawson-Yuen et al., 2006; Sato et al., 2007; Ramsden et 
al., 2010].

  Diagnostic Testing for AS 

 Laboratory diagnostic testing for AS can be compli-
cated. One approach to evaluation starts with a DNA 
methylation analysis of the AS/PWS IC region. If the 
DNA methylation test is abnormal, one of 3 AS mecha-
nisms is present: the large common deletion, uniparental 
disomy or defects in the IC. If the methylation test is ab-
normal, additional studies are needed to define the spe-
cific genetic mechanism. In such situations, the next step 
typically is to perform a microsatellite, FISH or micro-
array chromosome study to determine if the common 
15q11.2–q13 deletion is present (other methods such as 
MS-MLPA can test for the deletion concurrently with the 
methylation assay) [Ramsden et al., 2010]. If a deletion is 
excluded, the next step is to rule out paternal UPD by ad-
ditional microsatellite or microarray testing. Individuals 
with an abnormal AS DNA methylation study without a 
deletion and with biparental inheritance of chromosomes 
15 are then presumed to have an imprinting defect. The 
imprinting defect can be further studied to determine if 
there is a deletion of the IC. Molecular testing for IC re-
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gion deletions is available clinically from a small number 
of laboratories. Finally, if the methylation test is normal, 
mutation analysis of the  UBE3A  gene is the next step and 
may detect a significant percentage of individuals.

  Genotype to Phenotype Correlation 

 Identifying significant genotype to phenotype corre-
lations has been an ongoing issue in AS since the initial 
discovery of the deletion in 1987. Soon after this discov-
ery, those with the deletion were compared to those with-
out the microdeletion. As additional AS-causing mecha-
nisms were identified, the clinical correlations became 
more complicated because of overlapping symptoms 
among all mechanisms [Saitoh et al., 1994; Smith et al., 
1997; Fridman et al., 2000; Lossie et al., 2001; Nazlican et 
al., 2004; Saitoh et al., 2005]. It soon became evident that 
the core features of the syndrome can be attributed solely 
to disruption of the  UBE3A  gene, regardless of the mech-
anism, but some differences did exist among the genet-
ic types. Those with the large chromosome deletion ap-
peared to have more severe symptoms and this was pre-
sumably due to haploinsufficiency of genes adjacent to 
 UBE3A  such as the downstream  GABA  genes  (GABRB3 , 
 GABRA5  and  GABRG3)  or those located upstream in the 
BP1 to BP2 breakpoint region  (NIPA1 ,  NIPA2 ,  CYFIP1 , 
and  GCP5) . Individuals with the large deletions (class I 
[BP1–BP3] or class II [BP2–BP3]) are more likely to have 
microcephaly, seizures and more severe language impair-
ment compared to those with UPD,  UBE3A  mutations or 
imprinting defects. Also, most large deletions cause hap-
loinsufficiency of  OCA2  leading to relatively hypopig-
mented irides, skin and hair.  OCA2  plays a role in tyro-
sine metabolism and is important for the development of 
pigment in the skin, hair and irides. Tan et al. [2011] pre-
sented clinical data from 92 children with a molecular 
diagnosis of AS established between 5 and 60 months of 
age. They noted that individuals with the larger deletions 
have diminished weight compared to the general popu-
lation and to those with UPD/imprinting defects. This 
could be in part related to diminished muscle mass in 
those with the large deletion. 

 From the perspective of having a relatively higher ver-
bal speech ability and cognitive understanding, it appears 
that individuals with the epigenetic type of imprinting  
 defect associated with some degree of somatic mosaicism 
are higher functioning. These individuals may speak up 
to 50–60 words and use simple sentences [Nazlican et al., 
2004]. However, this degree of expressive language in AS 

is rare. AS patients with IDs or UPD have relatively high-
er developmental and language ability, but there is much 
overlap between all of the genetic categories. Individuals 
with larger class I deletions may have more language im-
pairment or autistic traits [Sahoo et al., 2007] than those 
with smaller class II deletions.

  Individuals with UPD appear to have better physical 
growth and fewer movement abnormalities, ataxia and 
seizures and are less likely to have microcephaly than the 
other classes [Lossie et al., 2001; Saitoh et al., 2005], but 
the reason for this is unclear.

  Differential Diagnosis 

 AS presents in infancy with nonspecific features, such 
as psychomotor delay and seizures. This can lead to the 
descriptive labels of cerebral palsy or static encephalopa-
thy. Hypotonia and seizures may raise the possibility of 
an inborn error of metabolism or a defect in oxidative 
phosphorylation, but metabolic and mitochondrial test-
ing is normal. Infants with AS may have feeding difficul-
ties, hypotonia, and developmental delay, features which 
overlap with PWS. Parent-specific DNA methylation 
analysis at the  SNRPN  locus can distinguish between 
these 2 syndromes.

  The Phelan-McDermid syndrome (22q13.3 deletion) 
can mimic some of the features of AS [Precht et al., 1998], 
as it presents with absent or minimal speech, moderate-
to-severe developmental delay and autistic features. The 
2q23.1 microdeletion results in severe speech delay, sei-
zures, microcephaly, and behavioral abnormalities that 
may overlap with AS [van Bon et al., 2010; Williams et al., 
2010b]. Newer microdeletion conditions discovered by 
microarray may be associated with some of the features 
of AS [Brunetti-Pierri et al., 2008; Sharkey et al., 2009]. 
Microduplication involving  MECP2  (typically encom-
passing an approximate 500-kb region at Xq28) causes 
severe developmental impairment, absent speech, sei-
zures, and ataxic gait with spastic paraparesis in males. 
Adult males are typically nonambulatory and are prone 
to infectious illnesses, but presentation in childhood may 
be relatively nonspecific and include features of mental 
retardation with autism, absent speech and unstable gait 
[Van Esch et al., 2005; Friez et al., 2006; Lugtenberg et al., 
2009].

  Affected female infants with seizures, acquired micro-
cephaly and severe speech impairment can resemble girls 
with Rett syndrome. Girls with Rett syndrome do not 
have a distinctive happy-demeanor and girls with AS do 
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not have a neuroregressive course and do not lose pur-
poseful use of their hands. Older girls with undiagnosed 
Rett syndrome may have features that resemble AS [Wat-
son et al., 2001].

  Mowat-Wilson syndrome can present with happy
affect, prominent mandible, diminished speech, micro-
cephaly, and constipation [Zweier et al., 2005]. Mowat-
Wilson syndrome results from a de novo dominant mu-
tation or deletions in  ZEB2 . Individuals with Christian-
son syndrome have seizures, severe developmental delay, 
ataxia, microcephaly, and a happy disposition [Chris-
tianson et al., 1999; Gilfillan et al., 2008; Schroer et al., 
2010]. Christianson syndrome is X-linked and is caused 
by mutations in the  SLC9A6  gene. Pitt-Hopkins syn-
drome is caused by mutations/deletions of the  TCF4  gene. 
This syndrome presents with mental retardation, wide 
mouth and distinctive facial features, intermittent hyper-
ventilation followed by apnea, microcephaly, seizures, 
ataxic gait, and happy personality [Peippo et al., 2006; 
Zweier et al., 2007].

  Adenylosuccinate lyase deficiency results in accumu-
lation of succinylpurines leading to psychomotor retarda-
tion, autistic features, hypotonia, and seizures [Spiegel et 
al., 2006]. Motor apraxia, severe speech deficits, excessive 
laughter, a very happy disposition, hyperactivity, a short 
attention span, mouthing of objects, tantrums, and ste-
reotyped movements have been reported in female sibs 
by Gitiaux et al. [2009]. Diagnostic testing involves detec-
tion of succinylaminoimidazole carboxamide riboside 
(SAICA riboside) and succinyladenosine (S-Ado) in cere-
brospinal fluid, urine and, to a lesser extent, in plasma. 
The rare metabolic disorder of severe methylene-tetrahy-
drofolate-reductase deficiency (MTHFR) associated with 
low methionine and elevated homocysteine blood levels 
was reported in an boy who presented with happy de-
meanor, ataxic gait, absent speech, and flattened occiput 
[Arn et al., 1998].

  Genetic Counseling in AS 

 Genetic counseling to address recurrence risk for fam-
ilies who have one child with AS can be a complicated 
issue and often requires expert consultation. Fortunately, 
the great majority of genetic mechanisms originates by 
spontaneous mutations and has low recurrence risk, as is 
the case usually for the chromosome deletions and for 
UPD. However, even in these groups rare genetic mecha-
nisms can lead to an increased recurrence risk within a 
family. IC deletions and  UBE3A  mutations can be inher-

ited and carry as high as a 50% recurrence risk. Because 
of the unique aspects of imprinting inheritance, it is pos-
sible for such mutations to be transmitted asymptomati-
cally in kindred but then become manifest depending on 
the parental origin of the transmission. Details of this 
counseling are beyond the scope of this review but have 
been addressed elsewhere [Buiting et al., 1998, 2000, 
2001; Stalker and Williams, 1998; Stalker et al., 1998;
Buiting, 2010; Ramsden et al., 2010; Williams et al., 
2010a].

  Conclusion 

 It has been almost 15 years since the  UBE3A  gene and 
its protein, E6-AP, were linked to the causation of AS. 
Since then, incremental progress has identified interact-
ing proteins and substrate targets for E6-AP. Much of this 
discovery has led to a focus on synaptic impairment as a 
fundamental problem underlying the intellectual defi-
ciency and other manifestations of the syndrome. New 
discoveries are leading to new ideas about how to amelio-
rate and potentially cure some of the symptoms of AS, but 
as of yet, no meaningful successes have occurred. Possi-
bilities for future therapies include  UBE3A  gene insertion 
into neurons, attempts to induce neuronal expression of 
the normal paternally silenced  UBE3A  gene by use of ar-
tificial transcription factors or use of epigenetic modulat-
ing drugs. We may also soon see attempts to manipulate 
E6-AP protein targets and interacting proteins via phar-
maceutical approaches. Further research into  UBE3A  tar-
gets is also likely to identify additional neuronal mecha-
nisms that could lead to viable druggable targets or to 
other therapeutic strategies.
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