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Growth patterns vary in space and time as an organ develops, leading to shape and size changes. Quantifying spatiotemporal
variations in organ growth throughout development is therefore crucial to understand how organ shape is controlled. We
present a novel method and computational tools to quantify spatial patterns of growth from three-dimensional data at the
adaxial surface of leaves. Growth patterns are first calculated by semiautomatically tracking microscopic fluorescent particles
applied to the leaf surface. Results from multiple leaf samples are then combined to generate mean maps of various growth
descriptors, including relative growth, directionality, and anisotropy. The method was applied to the first rosette leaf of
Arabidopsis (Arabidopsis thaliana) and revealed clear spatiotemporal patterns, which can be interpreted in terms of gradients in
concentrations of growth-regulating substances. As surface growth is tracked in three dimensions, the method is applicable to
young leaves as they first emerge and to nonflat leaves. The semiautomated software tools developed allow for a high
throughput of data, and the algorithms for generating mean maps of growth open the way for standardized comparative
analyses of growth patterns.

The highly regulated organization of tissues into
functional shapes during morphogenesis is a crucial
and intriguing process (Coen et al., 2004; Strutt, 2005;
Tsukaya, 2006). Changes in shape and size as an organ
develops are driven by spatial and temporal variations
in growth parameters, such as the rate and direction-
ality of tissue expansion and tissue rotation (for re-
view, see Coen et al., 2004). Characterizing these
growth parameters at a sufficient spatial and temporal
resolution would be instrumental in uncovering the
mechanisms responsible for the generation of organ
shapes.
Leaves are a good system in which to study the

process of morphogenesis, given their relatively thin
structure that can be approximated as a three-dimensional
(3D) surface, visual accessibility, and the absence of cell
migration (Cosgrove, 2005). Early efforts to measure leaf
growth involved drawing ink dots on the adaxial leaf
surface to delineate a grid of small rectangles whose
deformations over time could be used to calculate re-
gional growth rates (Avery, 1933; Richards andKavanagh,
1943). Other studies since then have employed the same
concept of quantifying growth at the adaxial leaf surface

by tracking ink marks (Maksymowych, 1962; Saurer and
Possingham, 1970; Poethig and Sussex, 1985; Granier and
Tardieu, 1998; Wang et al., 2011) or vein intersections
(Maksymowych, 1959; Erickson, 1966; Wolf et al., 1986;
Walter and Schurr, 1999; Taylor et al., 2003; Walter et al.,
2003). Recently, digital image sequence analysis tools have
been developed to automatically track the displacement
of identifiable features in successive images of a leaf
(Schmundt et al., 1998; Ainsworth et al., 2005; Wiese et al.,
2007).

One important limitation of existing tracking
methods is that they cannot be used to study early
stages of leaf development in which major growth and
developmental processes occur. This is because draw-
ing or printing ink dots on the leaf surface (Avery,
1933; Richards and Kavanagh, 1943; Maksymowych,
1962; Poethig and Sussex, 1985; Granier and Tardieu,
1998; Wang et al., 2011) or threading or clipping
weights through the leaf margins, as required for the
digital image sequence analysis setup (Schmundt
et al., 1998; Ainsworth et al., 2005; Wiese et al., 2007),
require that the leaf be relatively large, and vascular
features (Maksymowych, 1959; Erickson, 1966; Wolf
et al., 1986; Walter and Schurr, 1999; Taylor et al., 2003;
Walter et al., 2003) are not visible at early stages of
development.

Another significant limitation of existing methods
and computations is that they are only applicable to
flat or flattened leaves. In the past decade, there has
been increased interest in more geometrically complex
leaf shapes, such as such those with stronger curva-
tures, rolling, ruffling, wrinkling, and twisting, but, as
many researchers have pointed out, methods to study
the growth of such 3D surfaces are not available at
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Anne-Gaëlle Rolland-Lagan (arolland@uottawa.ca).

[W] The online version of this article contains Web-only data.
[OA] Open Access articles can be viewed online without a sub-

scription.
www.plantphysiol.org/cgi/doi/10.1104/pp.112.194662

Plant Physiology�, May 2012, Vol. 159, pp. 27–39, www.plantphysiol.org � 2012 American Society of Plant Biologists. All Rights Reserved. 27



present (Piazza et al., 2005; Tsukaya, 2006; Cronk, 2009;
Micol, 2009; Walter et al., 2009).

Finally, previous leaf growth studies have not been
able to produce average leaf growth information at
high spatial resolution. Even within leaves of the same
genotype at the same developmental stage, there is
variation in leaf size and growth, so in order to make
quantitative comparisons of leaf growth between mu-
tant and wild-type plants, plants grown in different
environmental conditions, or plants of different eco-
types, for example, it would be very useful to have a
method for producing mean spatial maps of growth
parameters from a number of samples.

Here, we present a novel technique and computa-
tional tools that allow for a detailed analysis of spatial
growth patterns at the adaxial surface of a leaf in
three dimensions from an early stage of development.
The computational tools involve largely automated
image analysis and point-tracking algorithms, as well
as programs for averaging results of several samples,
to compute and display average leaf shapes and
spatial maps of mean growth pattern parameters.
The technique may be applied to characterize growth
in other organs and organisms. The algorithms devel-
oped are available at http://mysite.science.uottawa.ca/
arolland/.

RESULTS

In this study, we monitor the growth of the first
rosette leaf in 35 Arabidopsis (Arabidopsis thaliana)
plants from 7 to 19 days after sowing (DAS). More
information on the data set can be found in Supple-
mental Materials and Methods S1 and Supplemental
Figure S1A. Here, we first present the results of the
data acquisition and computational methodology and
then describe the growth parameter data obtained.

Using Fluorescent Particles as Landmarks to Track

Leaf Growth

To track growth, fluorescent microparticles are ap-
plied topically to the adaxial surface of the leaves.
Particles are applied as soon as the leaf surface is
exposed, typically at 7 DAS (i.e. DAS7), when the
leaves are as small as 500 mm in length. The applica-
tion method is gentle, noninvasive, and does not
disturb leaf development (Supplemental Fig. S1B).
The particles settle onto the leaf cuticle and move
with the leaf surface as it grows (Supplemental Fig.
S1C), so leaf growth can be quantified by tracking
particle divergence.

Imaging the Leaf and Fluorescent Particles

Each leaf is imaged every 24 h with a motorized
fluorescence macroscope (for details, see “Materials
and Methods”). We first acquire a z-stack (a series of
images at different focal planes) of a leaf under

reflected bright-field lighting and then a second stack
under fluorescent lighting. The microscopy software
saves details such as the vertical step size between
focal planes in the z-stack and the resolution of the
images. The bright-field stack is used to obtain a
multifocus montage image of the leaf (Fig. 1A), a
depth map of the leaf surface (Fig. 1B), and a confi-
dence map of the depth map computations (Fig. 1C).
The fluorescence stack is used to produce a multifocus
image of the fluorescent particles (Fig. 1D). All com-
putational steps that follow are performed using our
custom-made software developed in Matlab (see “Ma-
terials and Methods”).

Extracting the 3D Leaf Surface

If the leaf being imaged is not touching other leaves,
the two-dimensional projection of the leaf outline can
be obtained automatically from the bright-field multi-
focus leaf image through the use of an image texture
analysis function (for details, see Supplemental Fig.
S2). Alternatively, the outline can be obtained by
digitally tracing it on the bright-field multifocus leaf
image. The 3D outline and topography of the leaf are
then extracted from the depth map. The 3D leaf
surface is recorded as a mesh fitted over the area
enclosed by the leaf outline, using the depth map to
determine the z-coordinates of each point on the grid
(Supplemental Video S1). The leaf coordinates are then
centered and aligned so that the leaf blade is centered
at the origin of a Cartesian coordinate system, the
proximodistal axis of the leaf coincides with the y axis,
and the x-y plane corresponds to the regression plane
fitted to the leaf surface.

Digitizing Particles Semiautomatically

A k-means clustering function (Seber, 2008) is ap-
plied to the multifocus fluorescence image (Fig. 1, E
and F) to automatically identify which pixels in the
image are bright enough to be considered the fluores-
cence of a particle. Particle x, y coordinates are iden-
tified as the centroid of interconnected bright pixels.
Depending on the quality of the image and the distri-
bution of particles, this will typically identify 80%
to 100% of the particles. Any bead missed by the
algorithm can be manually added by the user. The
z-coordinates of the particles are retrieved from the
vertical height of the 3D leaf surface at each particle’s x,
y position. Figure 1G shows an extracted leaf surface
and its associated particles in three dimensions.

Tracking Particles Semiautomatically

Digital image sequence analysis software (Bernd,
1997) is not applicable to particle tracking in our study
due to the large displacement of particles between
successive images. To make our procedure capable of
high throughput, we developed a set of programs for
semiautomatic tracking of points with large displace-
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Figure 1. Acquiring and extracting data. A to D, Leica LAS Montage Module images generated from z-stack images of a leaf. We
use the bright-field z-stack to obtain a multifocus montage (A), a depth map (B), and a confidence map for the depth map (C). We
use the fluorescence z-stack to obtain a multifocus montage image of the fluorescent particles on the leaf (D). In D, the image is
enhanced to improve the visibility of the particles in the publication-sized figure, the leaf outline is plotted for clarity, and the
yellow rectangle indicates the region magnified in E and F. Bar in A = 1 mm. E and F, Illustration of the particle digitization
algorithm. E shows a zoomed-in region of the fluorescence montage image. The algorithm applies a k-means clustering function
that sorts the pixel values into four groups: typically, the dark parts of the image (dark blue), the very faintly glowing areas around
the particles (light blue), the brighter glowing areas around the particles (yellow), and the brightest parts of the image, the
fluorescent particles (red). The x, y coordinates of particles, shown as green dots, are defined as the centroid of clusters of the
brightest pixels (F). G, Digital reconstruction of the leaf surface and particles in three dimensions after extracting z-coordinates
from the depth map. Axes units are in mm. H and I, Illustration of the pattern-matching algorithm.We show the particles on a leaf
at two successive time points, DAS10 (H) and DAS11 (I). The insets show the fluorescent montage images (rotated so that the
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ments due to growth deformations. This involves two
algorithms. A pattern-recognition algorithm first iden-
tifies a particle at successive time points based on the
relative positions of its neighboring particles, as illus-
trated in Figure 1, H and I. The pattern-recognition
algorithm typically matches 80% to 100% of the par-
ticles. These initial matches are then used by a warping
and matching algorithm to estimate the tissue defor-
mation between time points and thereby identify any
remaining particles based on their relative positions on
the leaf. Matches need to be verified by the user, and in
cases where matching is not successful, the default
parameters of the matching programs can be adjusted
by the user. Further details of both algorithms are
provided in Supplemental Materials and Methods S1.

Computing Growth Strains in Three Dimensions

To subdivide the surface into small regions that can
be tracked over time, we apply a Delaunay triangula-
tion function to connect all of the particle coordinates
on the leaf to each other through nonintersecting
triangles, using the same triangulation on matched
particles over successive time points. Now, instead of
tracking the movement of particles per se, we are
tracking the changes in size, shape, and orientation
of triangular regions over time. Using singular value
decomposition (SVD) formulas, as explained byGoodall
and Green (1986), we are able to compute a variety of
growth parameters. SVD allows us to calculate, for
each triangle, the direction of maximal growth, the
rotation, and the scaling factors p and q. p is the scaling
factor along the maximal direction of growth, and q is
the scaling factor along the minimal direction of
growth, which by the laws of mechanics is oriented
orthogonally to the maximal direction of growth. We
compute the relative growth (RG) for each triangle as
the percentage increase in area over the course of 1 d
(24 h):

RGðtÞ ¼ Aðtþ 1Þ2AðtÞ
AðtÞ 3100% ¼ �

p3q2 1
�
3100%

where RG(t) is the percentage increase in area from
day t to day t+1, A(t) is the area of the triangle at day t,
A(t+1) is the area of the triangle at day t+1, and p and q
are the scaling factors along the maximal and minimal
directions of growth over the course of 1 d.

Growth anisotropy, a measure of how preferentially
growth occurs along the maximal direction of growth,
is computed from the ratio of the scaling factors (p/q).
An anisotropy value of 1 indicates that growth is
occurring evenly in all directions, and higher values

indicate that growth occurs predominantly along a
main direction.

The SVD calculations are not directly applicable to 3D
landmarks. To compute growth strain parameters from
3D coordinates, we developed an algorithm to first
rotate the triangle coordinates onto a two-dimensional
plane, compute growth using SVD, and then reorient
the results in the true 3D position by applying the
inverse of the flattening rotations. Further details are
provided in Supplemental Materials and Methods S1.

To display a given growth parameter from one time
point to the next, we plot the parameter value of each
triangular region on the first of the two time points
using a color map. For instance, to display leaf RG
from DAS10 to DAS11, we plot the RG values on the
DAS10 leaf. An example of a map of RGs of one leaf
over time is shown in Figure 2A. These results can be
plotted and viewed in three dimensions, as shown in
Supplemental Video S2.

Making Mean Spatial Growth Maps

Because there is inherent variability in growth pat-
terns between samples, we use warping procedures
adapted from Rolland-Lagan et al. (2009) to generate
mean growth maps and related SE maps based on
multiple samples for each time point. In particular, we
track the growth of the first leaf in several plants and
for each time point calculate the average leaf outline of
the samples. Growth data for each sample can then be
mapped to the average leaf shape through warping.
As all samples for a given time point are overlaid, we
can then calculate average growth parameters for each
point on the average leaf surface. This yields mean
growth parameter maps for each time point and
reveals the average behavior of tissue. The number
of samples used in the meanmap calculations varies in
space and time (Supplemental Fig. S3A), with most
areas and most time points having 12 to 15 samples. To
illustrate the result of combining data from multiple
samples, in Figure 2B we show the mean RG spatial
maps for the same time points (DAS7–DAS11) and on
the same size and color scale as that of the RG maps
shown for the individual leaf sample in Figure 2A.
Spatial means of the scaling factors, RG, anisotropy,
and associated SE values of the means are displayed as
surface color maps on the mean leaf shape, and angles
of the maximal direction of growth and the rotation of
tissue are displayed as lines, with the orientation of a
line indicating the direction of growth or rotation. We
only display mean values on the surface maps for
locations where the number of samples is at least three.

Figure 1. (Continued.)
leaves are oriented vertically), and the yellow rectangles indicate the areas shown on the main panels. The neighbor patterns of
four particles are shown, with the green arrows illustrating the neighbor distances and orientation (measured relative to the axis
in blue). Matches between the two time points, indicated by the numbering, are identified by the program based on these unique
neighbor patterns. Bars in H and I = 0.5 mm. For more information, see Supplemental Figure S1.
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Relative Growth Values Follow a Tip-to-Base Gradient
and Decrease over Time

In Figure 2C, we show the mean maps of RG for all
of the time points analyzed. Temporally, we see that
growth slows down over the course of development
and that the changes in the mean leaf size accordingly
become much smaller at later time points. To further
evaluate temporal changes in leaf growth, we took the
average of all the values in the top and bottom quar-
ters of the mean spatial maps for each DAS and plotted
them over time (Fig. 3). Overall, growth appears to be
declining at an exponential rate, and the decline in RG
at the leaf base is much higher than the decline in RG
at the leaf tip at earlier time points, with the difference
in growth rates between leaf base and leaf tip decreas-
ing over time.
Since the leaf size and range of RGs change drasti-

cally over time, in Figure 4, we separate the growth
maps into groups of three (DAS7 to -9, DAS9 to -11,
DAS11 to -13, DAS13 to -15, and DAS15 to -18) and
show RG for each group using a different color scale.
This shows a clear proximodistal growth gradient,
with RG highest at the base and lowest at the tip for all

time points. To better assess and describe the prox-
imodistal growth gradient, we take a strip of values
along the midrib of the mean RG maps and plot the
average of the values in that strip at each position
along the leaf proximodistal axis (Fig. 5A). This shows
that the slope of the growth gradient decreases signif-
icantly over time.

The scaling factors in the direction of maximal and
minimal growth, p (Fig. 6A) and q (Fig. 6B), respec-
tively, both follow the same trend as RG, with values
decreasing over time and decreasing from base to tip. p
and q also decline faster at early time points and
decline by a greater amount at the base than at the tip
over the course of development (Supplemental Fig. S4,
A and B). The proximodistal gradients of p and q are
slightly different, as p follows an exponential decline
from base to tip (Fig. 5B) while q declines more linearly
(Fig. 5C).

The Shape of the Growth Gradient Isolines Is Initially
Downward Curving But Becomes Straighter over Time

and Differs between p and q

The two-dimensional shape of gradients on maps
can be assessed visually by identifying isolines, i.e.
lines along which parameter values are the same. The
RG gradient isolines have a downward-curving shape
for DAS7 through DAS10, and then in DAS11 to
DAS13 appear to take on a straighter and even slightly
upward-curving shape. From DAS13 onward, the
gradient still exists but the shape of the gradient
becomes much less distinctive. The relative SE of the
mean RG (Supplemental Fig. S3B) is generally higher
at those later time points, ranging from 1% to 10% for
DAS7 to DAS11 and from 10% to 30% for DAS12 to
DAS18, except for areas around the leaf perimeter,
where the relative SE is high due to lower sample
coverage.

To better assess our observations about the shape of
the RG gradient isolines, we took a section along the

Figure 2. Spatial maps of RGs over time. A, Spatial maps of RG for one
leaf for DAS7 to DAS11. The color of each triangle indicates the
percentage increase in area over the course of 1 d, according to the
color scale below. B, Mean spatial maps of RG for DAS7 to DAS11
based on the average of 12 to 23 samples per time point. C, Mean
spatial maps of RG for all time points quantified in this study, DAS7
to DAS18. Bars = 1 mm. For more information, see Supplemental Fig-
ure S2.

Figure 3. RGs of the whole leaf and leaf base and tip over time. The
values for the whole leaf are computed from the average of all the
values across the mean spatial map of RG. The values for the leaf base
and tip are computed from an average of the bottom and top quarters of
the mean RG spatial map, respectively.
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width of the mean maps and plotted the average of the
values at each transverse position in that strip as a
function of the position along the leaf transverse axis
(Fig. 5D). Here, we can clearly see that the RG gradient
is downward curving for DAS7 to DAS10, with values
highest at the middle of the leaf and lowest at the
sides. At later time points, it seems to be the opposite,
although the difference between values at the middle
and sides of the leaf is very small. We carried out the
same assessment for the maps of p and q and found
that they do not have the same gradient shape as each
other. For p, the gradient appears to be very slightly
downward curving from DAS7 to DAS9 and slightly

upward curving from DAS13 onward (Fig. 5E). The
difference in q between the middle and sides of the
leaf, on the other hand, is much more dramatic and
shows a very strong downward curvature for DAS7 to
DAS11, with values at the middle being up to approx-
imately 15% higher than at the sides. From then on, the
gradient shape of q appears to be relatively straight
(Fig. 5F). These observed gradient shapes are statisti-
cally significant (Supplemental Table S1; Supplemen-
tal Fig. S4, C and D).

Figure 5. Proximodistal and transverse patterns of growth parameters.
A to C, Proximodistal gradient of RG (A), p (B), and q (C). As illustrated
in the diagram below the graphs, we take a strip of values along the
midline of the mean spatial maps (in gray) and plot the average of the
values in that strip at each position along the leaf proximodistal axis
(i.e. averaging occurs along the direction of the black lines within the
gray strip). D to F, Transverse gradient shapes of RG (D), p (E), and q (F).
As illustrated in the diagram below the graphs, we take a strip of values
across the width of the mean spatial maps (in gray) and plot the average
of the values in that strip at each position along the leaf transverse axis
(i.e. averaging occurs along the direction of the black lines within the
gray strip).

Figure 4. Mean spatial maps of RG for DAS7 to DAS18, with groups of
time points on different color scales. RG (percentage increase in area
over the course of 1 d) values are indicated by the color according to
the color scales shown on the right. The time points are divided into
groups of three (with each group overlapping by 1 d), each shown on a
different line on a different color scale (right), so that the spatial and
temporal patterns can be seen clearly. Bars on the left = 1 mm.
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Another interesting pattern is seen in spatial maps
of q (Fig. 6B), but not p, for DAS11 to DAS14. We see
lower values along the middle of the leaf, correspond-
ing to the position of the midvein, and particularly in
DAS13 we also see two “branches” of lower values
extending out fairly symmetrically from the midvein
at about 45�.

Anisotropy Is Strongest at the Leaf Base and Leaf
Perimeter and Decreases over Time

Figure 7A shows spatial maps of the angles of the
maximal direction of growth, colored according to
anisotropy. Like relative growth values, growth an-
isotropy values also decrease over time. Spatially,
growth anisotropy appears to follow a gradient where
the values are highest at the base and perimeter of the
leaf. However, the base and perimeter also correspond
to the areas with higher relative SE values (up to 15%)
at the earlier time points (Supplemental Fig. S5A). This
gradient becomes less distinctive after DAS12, while
the relative SE of anisotropy is very low, generally
under 2%.

The Main Direction of Growth Varies in Space

The maximal direction of growth seems to follow a
gradient where it is fairly horizontal in central regions
of the leaf and bends in outer regions to be more in line
with the angle of the nearest leaf margin, with the
exception of areas where the leaf margin is parallel to

the proximodistal axis of the leaf, in which case the
angle of principal direction is oriented perpendicu-
larly to the leaf margin. Another exception to this rule
appears to exist from DAS11 to DAS14, where the
main direction of growth along the midline of the leaf
seems to align more closely with the proximodistal
axis of the leaf. At DAS13, the main direction of
growth is also aligned along two branches extending
at about 45� on each side of the leaf midline. In order to
assess the variability in growth directions at each point
of the leaf, we can calculate circular variance. Circular
variance provides a measure of the spread of angles,
ranging from 0 to 1, with values close to 0 indicating a
tighter clustering of the values around the mean (Zar,
1996). The circular variance of the mean growth direc-
tions is fairly high (Supplemental Fig. S5B), with most
values in the range of 0.2 to 0.8 at DAS7, 0.4 to 0.8 at
DAS8 to DAS9, and 0.6 to 0.8 at the remaining time
points.

Tissue Rotates Upward at the Outer Edges of the Leaf
by an Angle That Decreases over Time

Mean spatial maps of the rotation of tissue are
shown in Figure 7B. Tissue at the leaf tip and along the
center does not rotate, while tissue on the left rotates
slightly clockwise and tissue on the right rotates
slightly counterclockwise. The amount of rotation
decreases over time, with rotation of up to 615� at
DAS7, 612� at DAS8, and 610� at DAS9. At later time

Figure 6. Mean spatial maps of scaling
factors p (A) and q (B), representing
growth along the maximal and mini-
mal directions of growth, respectively.
The time points are divided into groups
of 3 to 4 d (with each group overlap-
ping the previous group by 1 d), each
shown on a different line on a different
color scale (right) so that the spatial
and temporal patterns can be seen
clearly. The maps are scaled to the
relative mean leaf sizes for each DAS,
and the bars on the left = 1 mm. Color
scales indicate the scaling factor along
the maximal (A) or minimal (B) direc-
tion of growth over the course of a 1-d
interval. For more information, see
Supplemental Figure S3.
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points, the angles of rotation become very small. The
circular variance of the rotation angles is very low
(mostly in the range of 0–0.05) for all time points
(Supplemental Fig. S5C).

DISCUSSION

In this paper, we have presented a novel technique
for quantifying leaf growth patterns in vivo over
several days without disturbance to the plant. Growth
can be followed from a much earlier stage of devel-
opment than has previously been possible, and vari-
ous growth parameters can be computed from 3D
coordinates of landmarks. Leaf growth phenotypes
can be quantified relatively quickly using several
semiautomated custom computational tools, and
mean spatial growthmaps can be generated to analyze
and compare the mean leaf growth patterns of several
groups of plants. In the following, we discuss the
results we obtained as well as the method itself.

Changes in the Growth Gradient Shape over Time
Suggest Possible Mechanisms for the Control

of Leaf Growth and Shape

Our results showed that the RGs across the leaf
decrease over time and have a very distinct proximo-
distal gradient, with values highest at the base and
lowest at the tip. At early time points, isolines in the
growth gradient have a very clear downward-curving
pattern. This suggests that the signal that gives rise to
the gradient is a growth-promoting/maintaining sig-
nal originating from the leaf base. At approximately
DAS11, the shape of the isolines in the growth gradient
becomes straighter or even upward curving. This
change in gradient shape over time may reflect inter-
play between a growth-promoting signal originating
from the leaf base from early time points onward and a
growth-inhibiting signal originating from the leaf tip
at later time points. Interestingly, the KLUH gene has
been shown to be expressed at the leaf base during
early development and was proposed to generate a
proximodistal concentration gradient of a mobile
growth factor in the leaf (Anastasiou et al., 2007;
Kazama et al., 2010). On the other hand, the cell
division patterns in leaves of the snapdragon (Antir-
rhinum majus) cincinnata mutant support the existence
of a growth-repressing signal originating from the leaf
tip (Nath et al., 2003).

The isolines of the growth gradient may affect the
3D curvature of the leaf. A downward-curving growth
gradient indicates that at any point along the prox-
imodistal axis of the leaf, the sides of the leaf grow
slower than the center. This should lead to an in-
creased curvature of the leaf across the transverse axis
during the days where the gradient is clearly down-
ward curving; this concept is exaggerated in the
Arabidopsis peapod mutant, whose dome-shaped leaf
phenotype is explained by excess growth of the lamina
but not the perimeter (White, 2006). By the same token,
as the growth gradient becomes straighter or upward
curving, the leaf transverse curvature should decrease.
The relationship between growth gradients and leaf
shape, including leaf curvature, will be discussed in
more detail in a related paper.

Figure 7. Mean spatial maps of growth directionality and tissue
rotation. A, Mean spatial maps of anisotropy and main growth direction
for DAS7 to DAS18. The orientation of each line represents the
direction of maximal growth at that point, and the color of the line
indicates the growth anisotropy (p/q) as per the color scales on the right.
B, Mean spatial maps of tissue rotation for DAS7 to DAS12. The
orientation of the lines represents the rotation of the tissue measured
from the positive x axis, with horizontal lines corresponding to no
rotation (0�). For more information, see Supplemental Figure S4.
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Differences in the Patterns of p and q Support the

Hypothesis That Expansion in the Maximal and Minimal
Directions of Growth Are Regulated Independently

The proximodistal gradient and the shape of the
gradient isolines differed between the scaling factors p
and q, with p having a more exponential decline in
values from base to tip compared with the more linear
decline of q, and p having relatively straight gradient
isolines throughout development in comparison with
the very strongly downward-curving gradient isolines
of q in early development. Since p and q are directly
implicated in the calculation of the relative growth
and anisotropy, the patterns we observe in p and qmay
simply be the result of mechanisms controlling growth
and anisotropy. However, such differences in their
patterns could also indicate that p and q are under the
control of different signals that may diffuse at different
rates in the leaf and originate from different positions.
This offers support to the hypothesis of Baskin (2005)
that expansion in the maximal and minimal directions
are regulated by distinct molecular mechanisms.
Based on narrow-leaf mutants with reduced cell

expansion in the mediolateral axis and short-leaf mu-
tants with reduced cell elongation in the proximodistal
axis, Tsuge et al. (1996) have similarly proposed that
leaf expansion involves independent processes con-
trolling cell elongation along the leaf length and leaf
width. However, our results on the anisotropy and
direction of growth show that growth orientation
varies spatially and does not occur distinctly along
the length and width axes of the leaf. Therefore, it may
be more appropriate to consider effects on expansion
in the maximal and minimal growth directions, like
Baskin (2005), rather than along the leaf width and
length specifically. It would be interesting to quantify the
growth patterns in these mutants to see how those differ
from thewild type in terms of growth direction, p, and q.

A Polarizing Substance May Control
Growth Directionality

Kennaway et al. (2011) recently outlined three pos-
sibilities regarding the control of growth directionality
in developing tissues. The first possibility is that
directions of growth are defined in the leaf tissue early
in development and remain fixed locally, in which case
any change in the pattern of growth directions at the
whole organ level would reflect rotation of the tissue
within the organ. Alternatively, growth orientation
could be set globally through external information,
such as gravity. In this case, the pattern of growth
directions at the whole organ level would remain the
same as the organ develops. Lastly, growth direction
may be governed by a polarizing substance that con-
tinues to diffuse through the tissue throughout
growth. If this were the case, it would be impossible
to predict the growth direction pattern without know-
ing details such as the source and diffusion coefficients
of the proposed substance. Our results do not support

the first two possibilities, because changes in growth
orientation patterns do not correspond to tissue rota-
tion (Supplemental Fig. S5, D and E), and although
there are some general trends in the direction of
growth that remain consistent, the pattern does not
remain exactly the same over time. Therefore, our
results are more consistent with the idea that growth
direction is governed by a polarizing substance.
Growth directionality may also be influenced by me-
chanical forces in the leaf, which is discussed in the
next section in the context of the vascular system.

Growth Patterns Suggest Growth Differences between
Vascular and Nonvascular Tissue

Digital image sequence analysis studies have reported
lower growth in leaf vascular tissue compared with
surrounding nonvascular tissue (Christ, 2005; Wang
et al., 2011). Moreover, it has been suggested that there
are tensile stresses along veins (Bohn et al., 2002; Corson
et al., 2009) and that growth direction can be dictated by
mechanical stresses in the tissue (Hamant et al., 2008). It
is likely, therefore, that growth in vascular tissue is
oriented along vascular paths. In our study, we did not
quantify growth at a sufficiently high spatial resolution
to clearly distinguish vascular regions in individual
samples, and since venation patterns vary, the vascular
and interveinal regions of the different samples would
not be perfectly aligned in the making of the mean
spatial maps. However, at DAS11 to DAS14, q (but not p)
values are lower along the midline of the leaf (where the
midvein is located) and along two lines extending out on
each side of the midline, which may correspond to the
positions of secondary veins. Maps of anisotropy and
growth direction further show that the maximal direc-
tion of growth tends to be oriented along those same
presumed vein positions. These results suggest that once
veins have differentiated (Scarpella et al., 2006), growth
in the vasculature occurs preferentially along vascular
paths and that growth along vein width is reduced
compared with growth along the minimal direction of
growth in the surrounding tissue.

Accuracy and Reliability of the Method and Results

The nearly perfect bilateral symmetry of the growth
patterns we observed provides strong evidence for the
accuracy, robustness, and reliability of the method
described. Moreover, the growth patterns we observed
are consistent with other leaf growth analyses, which
have shown a similar proximodistal gradient in growth
rates in Arabidopsis (Wiese et al., 2007) as well as in
other species, such as tobacco (Nicotiana tabacum; Avery,
1933; Poethig and Sussex, 1985;Walter and Schurr, 1999;
Walter et al., 2003), sunflower (Helianthus annuus;
Granier and Tardieu, 1998), grape (Vitis vinifera; Wolf
et al., 1986), spinach (Spinacia oleracea; Saurer and
Possingham, 1970), cocklebur (Xanthium pensylvani-
cum; Maksymowych, 1959; Erickson, 1966), ivy (Hedera
helix; Wang et al., 2011), and poplar (Populus spp.;
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Taylor et al., 2003). An exception to this pattern was
shown in soybean (Glycine max; Ainsworth et al., 2005),
where no spatial gradient was observed, leading the
authors to conclude that the mechanisms of leaf
growth in soybean may be different from that in other
species. The soybean study followed growth from
when the leaves were already 30 mm in length. There-
fore, it would be interesting to see whether a growth
gradient is detectable in the soybean leaf at earlier time
points, as our results show that the proximodistal
growth gradient in Arabidopsis leaves becomes less
steep as they mature.

Measurements of growth directionality in leaves
were provided by Richards and Kavanagh (1943) and
Erickson (1966). These measurements were made at
relatively late stages of development, when growth
was nearly isotropic, although Richards and Kavanagh
(1943) did show that leaf growth becomes more isotro-
pic over time, which concurs with our findings.

While a spatial pattern is still discernible in the mean
RGmaps for the later stages, it is less clear and SE values
are higher. This could reflect more variation in growth
among samples at the later time points, as we also saw
that the leaf sizes diverge more as they mature. How-
ever, when we looked at spatial maps of individual
samples, we also saw much “patchier” patterns at later
time points, with regions of high relative growth inter-
spersed with regions of lower relative growth, com-
pared with clearer gradients at the earlier time points.
This patchiness has also been noted to some extent in
other leaf growth analyses (Christ, 2005; Wiese et al.,
2007). Christ (2005) hypothesized that this could be
associated with patchy stomatal conductance, as spatial
variation in stomatal openings could result in small
spatial heterogeneities in turgor pressure and thus
growth. We propose that this increased patchiness at
later time points could also be associated with the
differentiation of cells as the leaf matures, as different
cell types may have different cell wall properties that
could respond differently to growth cues. This theory is
supported by a recent study showing that stomatal
guard cells follow substantially different growth dy-
namics than those of neighboring epidermal pavement
cells (Asl et al., 2011). Changes in the flux or position of
growth signal sources in the leaf blade over time (Aloni
et al., 2003) could also play a role.

Limitations and Future Improvements

Our microscopy setup and experimental techniques
cannot be used to monitor growth before the leaf
surface is exposed. Those earlier stages correspond to
periods when cell divisions are occurring throughout
the leaf primordium (Kazama et al., 2010) and there-
fore would be particularly interesting to capture. The
computational methods presented could be adapted to
quantify growth in those earlier stages using other 3D
microscopy systems, such as confocal microscopy,
optical projection tomography, or selective plane illu-
mination (for review, see Ntziachristos, 2010).

As the microscopy setup presented requires that
landmarks be visible from one vantage point, it cannot
be used to quantify growth in severely wrinkled leaves
or those that have curved under themselves. However,
depending at which stage the leaf curling/wrinkling
occurs, it may be possible to at least identify the alter-
ations in growth patterns that lead to the curvature/
folds.

The leaf shape and surface extraction, particle dig-
itization, and particle-tracking algorithms have been
mostly automated, but we note that they do need to be
visually verified by the user and, in some cases,
manually adjusted. We are working toward a fully
automated analysis for future versions of the pro-
grams.

3D length and width measurements follow a loga-
rithmic curve similar to what has been observed in
other studies. A slight drop in leaf size at DAS16
appears to be due to the fact that the leaves of our
secondary data set, collected a few weeks after the
original data set (see Supplemental Fig. S1A and
Supplemental Materials and Methods S1), continued
to grow fromDAS14 to DAS15 at a higher rate than the
original data set. Although temperature, humidity,
and light are controlled in our laboratory, it has been
shown that even small variations in growing condi-
tions and handling of plants can lead to significant
differences in leaf growth phenotypes (Massonnet
et al., 2010). Therefore, in order to compare growth
patterns from data sets collected at different times,
we suggest growing a set of wild-type plants along
with the set of plants being analyzed. Simple two-
dimensional measurements of leaf area or leaf width of
those wild-type plants over time could then be used to
generate a reference growth curve to be compared
between experiments for calibration purposes.

Ease of Use and Wider Applicability of the Methods and
Computational Tools

The methods and software presented allow for easy,
high-throughput phenotyping of spatiotemporal leaf
growth patterns for the largest range of developmental
stages to date.

The processing time is relatively short and makes it
feasible to capture growth information for many
leaves over many time points. The data acquisition
time depends on which developmental stages are to be
followed, with each imaging session taking roughly 2
h for 15 leaves. Running through the programs, from
image analysis to the generation of mean spatial maps,
for 15 leaves over 10 time points, for example, would
take less than 40 h. A real-time demonstration for one
sample tracked from one time point to the next is
shown in Supplemental Video S3.

In this study, we used a line of plants lacking
trichomes to make it easier to extract the leaf surface
and particle 3D coordinates, but we have developed
tools to automatically crop trichomes out of the depth
map while preserving the leaf surface data (Supple-
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mental Materials and Methods S1; Supplemental Fig.
S6) and tested that particle location can be extracted
even in the presence of trichomes. Thus, average leaf
growth patterns can be quantified for wild-type and
mutant plants in a wide variety of species, opening the
way for standardized comparative analyses of growth
patterns. We expect that such analyses will be instru-
mental in elucidating the mechanisms of growth pat-
tern formation and the control of leaf shape.
Our analysis was performed on the first rosette

leaves of Arabidopsis, as they are the first leaves to
appear and are commonly used to compare the mor-
phology of leaf shape in wild-type and mutant plants
(Pérez-Pérez et al., 2011). However, the same technique
can also be used to track growth in later leaves if
desired, as leaf overlap is usually minimal (Leister
et al., 1999). If necessary, any leaves obstructing the
view can be moved out of the way during imaging.
The tracking and growth-computing software we

presented could be adapted to quantify growth at the
surface of other organs or organisms, as long as they are
visually accessible and have recognizable landmarks
(applied topically, naturally occurring, or genetically
engineered). The software for computing average
growth maps could also be used on growth pattern
data sets collected using other methods (Dumais and
Kwiatkowska, 2002).

CONCLUSION

The method outlined in this paper makes it possible
to describe average spatiotemporal growth patterns at
the 3D surface of leaves. Mean spatial maps of growth
parameters from multiple samples show clear spatio-
temporal patterns, which may reflect the influence of
morphogenetic signals. For instance, if a signal pro-
moting or restricting growth is produced at a given
position on the leaf and during a given time, any
disruption to its localization or timing will be reflected
in the leaf growth patterns. Generating mean growth
maps from multiple samples will make it possible to
perform standardized comparative analyses of growth
patterns between wild-type and mutant plants and/or
between species, and under different environmental
conditions. Such comparative analyses may shed light
on the morphogenetic mechanisms controlling leaf
growth and shape. Similar approaches to the ones
presented in this paper could also be applied to
explore the control of morphogenesis in other organs
and organisms.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

In this study, we used Arabidopsis (Arabidopsis thaliana) ecotype Landsberg

erecta glabra1-1, available from the Arabidopsis Biological Resource Center as

seed stock number cs64. We follow the growth of one of the first two rosette

leaves on each plant, chosen randomly, as is standard practice (Scarpella et al.,

2006), since they develop almost simultaneously.

Seeds are surface sterilized and imbibed at 4�C in the dark for 4 d, then

sown in autoclaved Pro-Mix potting soil (Premier) with five plants per 3- 3
3-inch pot, and grown under an ArabiSun lighting system (Lehle Seeds), with

27-W mercury bulbs providing a light intensity of 150 mmol m22 s21, on a 16/

8-h light/dark cycle, with watering as needed to keep the soil moist. The light

shelves and microscope are in the same room, in which the temperature is

maintained at 22�C and humidity at 25% to 30%. To image the leaves, each pot

is removed from the light shelves (during the light phase of the cycle) and

placed on the microscope stage, then it is returned to the light shelves after

imaging (which takes a maximum of 25 min per pot).

Plants with similar germination times and sizes are used for analysis. We

use one group to track growth from DAS7 to DAS12, a second to track DAS12

to DAS18, and a third to obtain additional information for DAS10 to DAS14

(for further details, see Supplemental Materials and Methods S1).

Particles and Application Technique

Weuse 6.2- and 29.6-mmSPHEROFluorescent Yellow Particles (Spherotech),

using the former on smaller leaves (up to DAS14) and the latter on larger leaves.

We start bymaking strong and weak dilutions of the particles in distilled water:

approximately 2 and 10 mL mL21 for the 6.2-mm particles and 40 and 200 mL

mL21 for the 29.6-mmparticles. If allowed to sit for several minutes, the particles

will fall to the bottom of the solution, at which point most of the water can be

removed from the top and replaced with fresh water, to help remove any

chemicals present in the original particle solution. After this, the solutions are

vortexed frequently before and during application to prevent settling and

clumping of the particles. A syringe with a 28-gauge needle is used to apply

the particle solution to the leaf surface, starting with the weaker solution. If the

desired leaf can be fully covered by a spherical droplet of the solution, the

particles are left to settle onto the leaf surface (approximately 20 min). At this

time, the droplet of water can be removed by touching it with a piece of tissue or

drawing it off with the syringe, allowing any remaining water to evaporate.

More information about the particle application technique can be found in

SupplementalMaterials andMethods S1 and related Supplemental References S1.

Microscopy and Image Acquisition

Z-stack images are obtained with a Leica Z16 APOAMacroFluo motorized

fluorescence macroscope using a Leica DFC350 camera (Leica Microsystems).

The Leica Application Suite Montage Module (Leica Microsystems) is used to

generate the multifocus images and depth map. To visualize the fluorescent

yellow particles, we use a GFP filter cube (excitation filter BP 470/40,

dichromatic mirror 500, suppression filter BP 525/50), with the intensity of

the fluorescent light source kept as low as possible. Further details on image

acquisition settings are available in Supplemental Materials and Methods S1.

Software and Computations

All custom-written programs are developed in Matlab version 2010a

(Mathworks), using many Matlab built-in functions as well as functions

from the Matlab Image Processing Toolbox and Statistics Toolbox. Statistical

analyses are performed using IBM SPSS 18 software. Further details on the

software we developed can be found in Supplemental Materials and Methods

S1. The software demonstration in Supplemental Video S3 is made with

Adobe Captivate 5.5 (Adobe Systems).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Further details on the data set and validation of

methods to show that imaging and bead application do not disturb plant

growth and that beads do stick to the leaf surface.

Supplemental Figure S2. Details of the automated leaf-outlining software.

Supplemental Figure S3. Spatial maps of sample numbers used in the

calculation of the mean maps and the relative SE of the RG maps.

Supplemental Figure S4.Analyses of spatiotemporal patterns and relative

SE maps of p and q.

Supplemental Figure S5. Error and variance maps of anisotropy and

growth direction, and maps of the rotation of growth direction within

the tissue over time with associated error maps.
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Supplemental Figure S6. Automated digital cropping of leaf trichomes

from wild-type Arabidopsis ecotype Columbia.

Supplemental Table S1. Test on the significance of the gradient shapes of

RG, p, and q at each time point.

Supplemental Video S1. Example of a DAS11 leaf surface reconstructed in

3D.

Supplemental Video S2. Example of relative growth values in 3D for a

single sample for DAS10 to DAS11.

Supplemental Video S3. Demonstration of software and processing time

for one leaf from DAS10 to DAS11.

Supplemental Materials and Methods S1. Experimental and computa-

tional details.

Supplemental References S1. Supplemental reference related to Supple-

mental Materials and Methods.
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Govaerts W, De Veylder L (2011) Model-based analysis of Arabidopsis

leaf epidermal cells reveals distinct division and expansion patterns for

pavement and guard cells. Plant Physiol 156: 2172–2183

Avery GS Jr (1933) Structure and development of the tobacco leaf. Am J Bot

20: 565–592

Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev

Cell Dev Biol 21: 203–222

Bernd J (1997) Digital Image Analysis. Springer, New York

Bohn S, Andreotti B, Douady S, Munzinger J, Couder Y (2002) Constitu-

tive property of the local organization of leaf venation networks. Phys

Rev E Stat Nonlin Soft Matter Phys 65: 061914

Christ MM (2005) Temporal and spatial patterns of growth and photosynthesis

in leaves of dicotyledonous plants under long-term CO2- and O3-exposure.

PhD thesis. Heinrich Heine University, Duesseldorf, Germany

Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P

(2004) The genetics of geometry. Proc Natl Acad Sci USA 101: 4728–4735

Corson F, Adda-Bedia M, Boudaoud A (2009) In silico leaf venation

networks: growth and reorganization driven by mechanical forces. J

Theor Biol 259: 440–448

Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:

850–861

Cronk Q (2009) The Molecular Organography of Plants. Oxford University

Press, Oxford

Dumais J, Kwiatkowska D (2002) Analysis of surface growth in shoot

apices. Plant J 31: 229–241

Erickson RO (1966) Relative elemental rates and anisotropy of growth in

area: a computer programme. J Exp Bot 17: 390–403

Goodall CR, Green PB (1986) Quantitative analysis of surface growth. Bot

Gaz 147: 1–15

Granier C, Tardieu F (1998) Spatial and temporal analyses of expansion

and cell cycle in sunflower leaves: a common pattern of development

for all zones of a leaf and different leaves of a plant. Plant Physiol 116:

991–1001

Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P,

Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, et al (2008) Devel-

opmental patterning by mechanical signals in Arabidopsis. Science 322:

1650–1655

Kazama T, Ichihashi Y, Murata S, Tsukaya H (2010) The mechanism of

cell cycle arrest front progression explained by a KLUH/CYP78A5-

dependent mobile growth factor in developing leaves of Arabidopsis

thaliana. Plant Cell Physiol 51: 1046–1054

Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse

biological forms through combinatorial interactions between tissue

polarity and growth. PLoS Comput Biol 7: e1002071

Leister D, Varotto C, Pesaresi P, Niwergall A, Salamini F (1999) Large-

scale evaluation of plant growth in Arabidopsis thaliana by non-invasive

image analysis. Plant Physiol Biochem 37: 671–678

Maksymowych R (1959) Quantitative analysis of leaf development in

Xanthium pensylvanicum. Am J Bot 46: 635–644

Maksymowych R (1962) An analysis of leaf elongation in Xanthium

pensylvanicum presented in relative elemental rates. Am J Bot 49: 7–13

Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, Beemster

GTS, Meyer RC, Messerli G, Gronlund JT, et al (2010) Probing the

reproducibility of leaf growth and molecular phenotypes: a comparison

of three Arabidopsis accessions cultivated in ten laboratories. Plant

Physiol 152: 2142–2157

Micol JL (2009) Leaf development: time to turn over a new leaf? Curr Opin

Plant Biol 12: 9–16

Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of

surface curvature. Science 299: 1404–1407

Ntziachristos V (2010) Going deeper than microscopy: the optical imaging

frontier in biology. Nat Methods 7: 603–614
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