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The spectral reflectance signature of living organisms pro-
vides information that closely reflects their physiological
status. Because of its high potential for the estimation of
geomorphic biological parameters, particularly of gross
photosynthesis of plants, two-dimensional spectroscopy,
via the use of hyperspectral instruments, has been widely
used in remote sensing applications. In genetics research, in
contrast, the reflectance phenotype has rarely been the sub-
ject of quantitative analysis; its potential for illuminating the
pathway leading from the gene to phenotype remains largely
unexplored. In this study, we employed hyperspectral ima-
ging techniques to identify Arabidopsis mutants with
altered leaf pigment status. The techniques are comprised
of two modes; the first is referred to as the ‘targeted mode’
and the second as the ‘non-targeted mode’. The ‘targeted’
mode is aimed at visualizing individual concentrations and
compositional parameters of leaf pigments based on reflect-
ance indices (RIs) developed for Chls a and b, carotenoids
and anthocyanins. The ‘non-targeted’ mode highlights dif-
ferences in reflectance spectra of leaf samples relative to
reference spectra from the wild-type leaves. Through the
latter approach, three mutant lines with weak irregular re-
flectance phenotypes, that are hardly identifiable by simple
observation, were isolated. Analysis of these and other mu-
tants revealed that the RI-based targeted pigment estima-
tion was robust at least against changes in trichome density,
but was confounded by genetic defects in chloroplast photo-
relocation movement. Notwithstanding such a limitation,
the techniques presented here provide rapid and
high-sensitive means to identify genetic mechanisms that
coordinate leaf pigment status with developmental stages
and/or environmental stress conditions.

Keywords: Arabidopsis � Hyperspectral imaging � Mutant
identification � Pigment � Quantitative phenotyping.

Abbreviations: Anth, anthocyanin; Car, carotenoid; CSV,
comma-separated-value; 2D, two-dimensional; cTP, chloro-
plast transit peptide; EMS, ethyl methanesulfonate; HSD,
hyperspectral data; iref, irregular reflectance; MS, Murashige
and Skoog; N, nitrogen; NIR, near-infrared; ORF, open reading

frame; P, phosphate; PPM, Plant Pigment Monitor; RGB, red–
green–blue; RI, reflectance index; RMSE, root mean square
error; RT–PCR, reverse transcription–PCR; VIS, visible.

Introduction

The color of living organisms is often diagnostic of their physio-
logical status. Combined with morphology, it accounts for
much of the visible phenotype. In plants, for example, adverse
growth environments, such as low temperatures and macronu-
trient deficiencies, lead to leaf color changes from green to
yellow-green, and sometimes even to red (Diaz et al. 2006,
Hasdai et al. 2006). These changes can result from passive nec-
rotic cell death, but most are considered relevant as active
adaptive responses aimed at evading photooxidative damage
(Niyogi 1999, Havaux and Kloppstech 2001, Steyn et al. 2002,
Dall’Osto et al. 2010). While leaf color is governed both by
cellular structure and biochemical components, the concentra-
tion and composition of pigments, including Chls a and b,
carotenoids (Cars) and anthocyanins (Anths) are the primary
determinants of leaf color. Accordingly, there has been a long
line of research trying to make full use of the color, namely the
visible spectroscopic signature, for absolute quantification of
these pigments (for reviews, see Porra 2002, Ustin et al. 2009).

Traditionally used wet chemical pigment analysis included
leaf extraction with organic solvents and spectrophotometric
absorbance measurement of the extracts. In order to eliminate
the necessity for chromatographic separation, equations for
calculating individual pigment concentrations in crude extracts
have been elaborated (Arnon 1949, Lichtenthaler 1987, Gitelson
et al. 2001, Porra 2002). However, such ‘gold standard’ methods
still require time- and labor-intensive procedures for sample
preparation. Moreover, due to the invasive nature of the pro-
cedures, leaf samples once used for chemical pigment analysis
are no longer able to be used for additional biochemical assays
for enzymatic activities and/or quantification of other metab-
olites, and to temporal analysis of pigment dynamics in re-
sponse to environmental and/or developmental cues.

In the research area of remote sensing, alternative solutions
for leaf pigment analysis with non-invasive optical methods
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have been proposed (for reviews, see Blackburn 2007, Ustin
et al. 2009). Particular efforts have been devoted to the devel-
opment of robust algorithms for total Chl determination based
on spectral reflectance measurements (e.g. Chappelle et al.
1992, Blackburn 1998, Datt 1998, Richardson et al. 2002, Sims
and Gamon 2002, Gitelson et al. 2003, le Maire et al. 2004,
Gitelson et al. 2006a, and references therein), as they help
estimate photosynthetic activity, and accordingly the gross pri-
mary production, from the leaf to canopy scale (Chappelle et al.
1992, Gitelson et al. 2006b). Although much less frequent, al-
gorithms for estimating total Car and Anth concentrations
from the spectral reflectance signature have also been reported
(Chappelle et al. 1992, Blackburn 1998, Datt 1998, Gitelson et al.
2001, Gitelson et al. 2002, Sims and Gamon 2002, Gitelson et al.
2006a). However, except for the occasional exploratory use of
commercial Chl meters, optical methods for leaf pigment ana-
lysis have yet to become a widespread technique in the research
area of plant genetics. At least to our knowledge, there have
been no reports utilizing genetic bioresources with altered leaf
pigment metabolism to adjust the algorithms for optical pig-
ment estimation. Also, no biological studies applying such op-
tical methods to identify genetic defects in leaf pigment
metabolism have been carried out. This may be partly because
the superiorities and limitations of the methods are not well
recognized across different research areas. In this respect, it
seems of great significance to demonstrate how they can con-
tribute to genetic investigations, especially when
two-dimensional (2D) imaging spectrophotometry is used.

In the recent post-genome research, quantitative pheno-
type description is becoming increasingly important, heading
toward understanding the whole biological system from
genome to phenome (Edwards and Batley 2004, Kuromori
et al. 2009). Of the major elements of the visible phenotype,
morphological traits have become the subject of compu-
tational analysis in a model plant Arabidopsis, and their
developmental dynamics and ecotype-specific characteristics
have been defined quantitatively (Kaminuma et al. 2004,
Mündermann et al. 2005). On the other hand, although
physical definition and measuring methods of colors, the
spectroscopic traits, appear simpler and more pervasive
than those of morphology, to our knowledge, systematic
phenomic analysis of leaf color has yet to be undertaken.
It is important to note, in this context, that conventional
digital imaging procedures usually involve considerable
reduction and deterioration of color information. For
example, in a standard red–green–blue (RGB) image, each
of the three bands has a wide and partially overlapping
spectral sensitivity (i.e. low spectral resolution) and therefore
the subtle color information is not retained. Moreover, the
absence of a standardized white balancing procedure, also
referred to as normalization or calibration, makes it imprac-
tical to attempt a quantitative comparison of colors between
images captured using different equipment and photographic
conditions.

In this study, we explored the potential of hyperspectral
imaging techniques as a method of quantitative genetics for
evaluating leaf color phenotypes in Arabidopsis. Based on quan-
titative spectral reflectance data, an experimental system for
visualizing individual concentrations and compositional par-
ameters of major leaf pigments was constructed. On the
other hand, the ratio of spectral reflectance (relative to the
reference spectra) was used to highlight subtle color differences
between and within leaves. These techniques are not only ef-
fective in identifying mutants with an altered leaf pigment
status, but also serve as unique building blocks toward enabling
chemometric imaging and profiling of wider biochemical com-
ponents in Arabidopsis leaves.

Results

Targeted determination of individual pigment
concentrations: technical background

To achieve high-accuracy estimation of leaf physiological status
based on spectral reflectance measurement, it is of practical
interest to investigate reflectance indices (RIs) that help deter-
mine individual pigment concentrations. There are, however,
several difficulties that need to be resolved in developing
pigment-specific RIs. First, we still do not have much knowledge
about in situ spectroscopic properties of individual pigments, as
their absorption spectra can be influenced by interaction with
solvents and other solutes (Lichtenthaler 1987, Porra 2002).
Secondly, there is considerable overlap between the absorption
spectra of different pigments (Fig. 1), which demands advanced
spectral decomposition techniques to estimate the accurate
relative contribution of a pigment of interest to the total re-
flectance. Thirdly, there is naturally a close interrelationship
between the concentrations of different pigments (see
Supplementary Fig. S1A); a series of leaf samples with diverse
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Fig. 1 Absorption spectra of the major leaf pigments. The spectra are
plotted in terms of molar extinction coefficient. Standards of Chls and
Anth (cyanidin chloride) were prepared in neutral and acid methanol,
respectively. Car (b-carotene) was dissolved in acetone, because of its
low solubility and therefore the difficulty in preparing a homogeneous
solution in methanol from its dried form. The maxima are adjusted to
the values reported by Lichtenthaler (1987).
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pigment compositions are needed to establish the specificity of
the RIs. Fourthly, the range of factors other than pigments that
influence the reflectance spectra must be taken into consider-
ation; it is particularly important that the measured spectra be
adjusted for differences in backscatter between leaf samples.

Through continued efforts to overcome these difficulties,
several empirical models for relating pigment concentrations
to the reflectance spectra have been proposed (for reviews,
see Blackburn 2007, Ustin et al. 2009). At the individual
leaf scale, when applied to limited numbers of species grown
under naturally occurring environmental conditions, some of
these have been proven to be reasonable indicators of actual
pigment concentrations. On the other hand, there has been
little agreement between different studies on the target plant
species, the equipment and conditions for spectral reflectance
measurements, and the methods employed for spectral signal
analysis.

Hyperspectral reflectance imaging

The configuration of the hyperspectral imaging set-up used in
this study is basically identical to the one proposed previously
(Lenk et al. 2007) (Fig. 2A). This configuration was originally
applied to multispectral rather than hyperspectral imaging.
Both of these spectral imaging techniques allow extraction of
information that cannot be retained in the standard RGB
images, due to the higher spectral resolution of the techniques.
Multispectral imaging, however, produces discrete, not con-
tiguous, spectral information. Hence, the reflectance images
were captured using a line-scanning hyperspectral camera
(HSC1700, the earliest commercial model manifactured in
2007; Hokkaido Satellite). This camera is capable of aquiring
8-bit VGA (640�480 pixel) images for 72 contiguous wave-
bands from 400 to 800 nm (5.6 nm bandwidth). In our set-up,
the scanning area was approximately 140�120 mm; the result-
ing spatial resolution of the images was 116 and 100 dots per
inch in the horizontal and vertical dimensions, respectively. As
the epi-illumination light source, two double-ended 250 W
halogen lamps were used. When capturing Arabidopsis
images, a 50% reflectance standard (SRS-050-010; Labsphere)
was placed in the same visual field. A hyperspectral image of a
sheet of homogenous white paper (No. 526; ADVANTEC) was
captured under the same conditions, and was used to calibrate
the Arabidopsis images for spatial non-uniformity of
illumination.

Fig. 3A shows an example of raw reflective signals recorded
in the areas of the standard and leaves of Arabidopsis plants
from five different subdata sets (Table 1), which are described
in detail in the following sections. As is evident from the figure,
the irradiation spectrum from the light source was not flat over
wavelengths (Fig. 3A, black line). Hence, the reflectance
spectrum in each pixel of the images was calibrated by linear
regression against the 50% reflectance standard (Fig. 3B).
To semi-automate these calibration processes and thus facili-
tate retrieval of numerical spectral reflectance values from the
hyperspectral images, we developed the software HSD Analyzer

(Hyperspectral Data Analyzer; Fig. 2B), which is provided as
Supplementary File S1 (see Supplementary Text S1 for le-
gends and methods of operation). The subsequent develop-
ment of RI-based equations for ‘targeted’ pigment estimation
(Equations 2–12) and of PPM software (Fig. 1C) depended
primarily on the analysis using HSD Analyzer.

However, although the calibration made so far, and accord-
ingly the output of HSD Analyzer, was sufficient to detect subtle
differences in reflectance phenotypes between leaf samples, the
absolute reflectance values are not yet correct, largely due to
the sensor’s non-linearity (see Fig. 3B, right side). Thus, more
accurate reflectance values were calculated by second-order
correction using quadratic functions (y = ax2 + bx + c, where x
and y are thought of as reflectance values before and after the
correction, respectively) regressed for each waveband from a
measurement of five different reflectance standards [50%,
Labsphere; 10% (SG3083/24), 25% (SG3089/52), 70% (SG3089/
41), and 99% (SG3089/9), SphereOptics] (Fig. 3C). The coeffi-
cients in the quadratic functions used and the determination
coefficient (r2) of the correction are shown in Supplementary
Table S1. Such a second-order correction, however, will not
necessarily be required if recent high-performance hyperspec-
tral cameras are used; the optical systems have been improved
enough to keep high sensor linearity in their measurable light
intensity range.

Besides the sensor’s non-linearity, the low bit-depth of the
camera was another difficulty for our system. Due to the
uneven spectral distribution of the light source, the maximum
and minimum raw signal intensities recorded in the 50%
standard were 131.5 ± 2.32 (at 603 nm) and 28.9 ± 1.29
(at 400–406 nm), respectively (n = 25, where each measure-
ment is the averaged intensity from a 20 pixel diameter area)
(Fig. 3A). Accordingly, after the non-linearity correction, the
reflectance resolution was 0.39–1.0% in the wavelength range
above 439 nm, whereas the resolution was no better than
1.2–2.5% in the shorter wavelengths.

Reflectance index model

While most empirical models for optical pigment estimation
have been aimed at relating the concentration of a single pig-
ment to the reflectance spectra, Gitelson and his colleagues
proposed a flexible conceptual model that is applicable to
the estimation of multiple pigment concentrations (Gitelson
et al. 2003, Gitelson et al. 2006a). We therefore started with
their ‘three-band model’ to develop RIs for Chl a and b, Anth
and Car estimation in Arabidopsis leaves. The model is ex-
pressed as:

Cp!ðR�1
�1 � R�2

�1Þ � R�3 ð1Þ

where Cp denotes the target pigment concentration, and
asks to find three wavebands (�1–�3) for each pigment that
maximize the linear correlation between Cp and the RI on the
right-hand side. At the first waveband (�1), the reflectance (R�)
should be highly sensitive to absorption by the pigment of
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interest. The second waveband (�2) is introduced with the
purpose of removing the extraneous effects of other pigments
on R�1. The third waveband (�3) is selected from the spectral
range where the backscattering rather than pigment absorption
controls the total reflectance. If the resulting correlation was
not satisfactory enough, a custom modification was made to
the model. This was the case for the development of the
Car-specific RI, designated as (Car)RI, that is robust against
the presence of Anths (Equation 10; see Fig. 5E).

Data sets

To collect a series of leaf samples with different Chl concentra-
tions, plants were grown on agar media containing varying
amounts of nitrogen (N) source (Table 1; subdata sets #1, 3
and 5). This is reasonable because a certain fraction of total leaf
N is allocated to Chls (Evans 1989). The Anth concentrations

were negligibly low in all plants in these subdata sets, suggesting
that the minimum N concentration used here (18.8 mM as
potassium nitrate) was sufficient to prevent N deficiency-
induced Anth accumulation (Diaz et al. 2006). To cover the
lower Chl concentration range, plants treated with norflurazon,
which induces chlorosis without accompanying Anth accumu-
lation (Jung 2004), were also included in these subdata sets. A
series of leaf samples with different Anth concentrations was
prepared by growing the plants on low-phosphate (P) media, or
by mechanical wounding in root tissues (Trull et al. 1997, Steyn
et al. 2002) (subdata sets #2 and 4). Unlike Chl a and Cars,
complete depletion of Chl b and Anths does not lead to
plant lethality (Espineda et al. 1999, Abrahams et al. 2002).
Hence, the mutants ch1 (subdata sets #3 and 4) and tt4
(subdata set #5), which are deficient in Chl b and Anths, re-
spectively, were used to evaluate if RI-based pigment estimation
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Fig. 2 Equipment for hyperspectral reflectance imaging and data analysis. The programs shown in B–D are provided as Supplementary File S1
of this article (see Supplementary Text S1 for legends and methods of operation). (A) Hyperspectral image acquisition system. The system is
basically composed of a hyperspectral camera directed downward to the sample stage and epi-illumination halogen lights. The inset shows the
VIS/NIR hyperspectral camera HSC1700 (early 2007 model). (B) Screenshot of HSD Analyzer software. The software facilitates calibration and
extraction of numerical reflectance data from the areas of interest in hyperspectral images. (C) Screenshot of PPM software. The software allows
visualization of individual concentrations and compositional parameters of major pigments in Arabidopsis leaves. (D) Screenshot of HSD
Visualizer software. The software displays the deviation of spectral reflectance relative to the reference spectra (usually from the wild type)
as a pseudocolor image.
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works equally well regardless of the presence or absence of
these pigments. In contrast, it was difficult to disturb the
strong linear correlation found between the concentrations
of Chl a and Cars (Supplementary Fig. S1A). The ratio of
Cars to Chl a, however, was somewhat lower in ch1 plants
(subdata sets #3 and 4), especially when grown under
Anth-inducing conditions (subdata set #4), than in plants of
the other genotypes. We therefore considered that the assem-
bly of the five subdata sets (#1–5) described above represents
sufficiently diverse pigment compositions needed to establish
specific RIs for the estimation of individual pigment concentra-
tions. Two independent data sets consisting of the same series
of subdata sets (#1–5) were prepared for calibration and valid-
ation purposes.

Chl a estimation from hyperspectral imagery

According to the precedent in the literature of the ‘three-band
model’ (Gitelson et al. 2006a), �3 was selected from the
near-infrared (NIR) region. Here, the spectral range of
772–800 nm was adopted as �3 for all pigments, because
little correlation was found in any subdata sets between the
reciprocal reflectance (R�

�1) in this waveband and the concen-
tration of any individual pigments (Supplementary Fig. S2). It
has been hypothesized that R�

�1 is nearly proportional to the
sum of absorption coefficients of all pigments absorbing the
light at wavelength � (Gitelson et al. 2006a). On the other hand,
spectral ranges of �1 and �2 were derived independently for
each pigment. For Chl a, �2 was set identical to �3 as in the
precedent, while �1 was selected from the long-wavelength side
within the red Chl a absorption band, wherein minimal or no
light absorption by pigments other than Chl a takes place
(Fig. 1). We also took care in determining �1 so that the
values of RI (right-hand side of Equation 1) steadily exhibit
high correlation with observed (chemically determined) Chl a
concentrations ([Chl a]obs.) through the five subdata sets. To
meet these requirements, a spectral range of 670–676 nm
appeared most suitable for �1, as is supported by the low
root mean square error (RMSE) of Chl a estimation (Fig. 4A).
Collectively, the RI for the estimation of Chl a concentration,
which is designated as (Chl a)RI, was summarized in the follow-
ing equation:

ðChl aÞRI ¼ ðR�1
670�676 � R�1

772�800Þ � R772�800

¼ R772�800 � R�1
670�676 � 1

ð2Þ

The correlation between (Chl a)RI and [Chl a]obs. in the
whole calibration data set is shown by a scatter plot in
Fig. 5A. A linear regression fitted to the wild-type subdata
sets (#1 and 2) gives an equation:

½Chl a�exp:¼ 1:0974� ðChl aÞRI + 0:0219 ð3Þ

where [Chl a]exp. denotes the expected Chl a concentration.
The RMSE of the differences between [Chl a]obs. and [Chl a]exp.,
and related statistical parameters are summarized in Table 2.
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Fig. 3 Retrieval of reflectance data from hyperspectral images. Data in
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from measurements in five different leaves of Arabidopsis plants from
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regression against the 50% reflectance standard. The means ± SD of
the calculated (observed, abbreviated as obs.) and actual (expected,
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70 and 99%) through the entire 72 wavebands (400–800 nm)
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not agree with each other at this step. (C) Reflectance spectra of
leaves after second-order correction for the sensor’s non-linearity.
The values of the coefficients in quadratic functions used to trans-
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Supplementary Table S1. Here, the observed and expected reflect-
ance of the five standards agree closely with each other as shown on
the right.
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Chl b estimation from hyperspectral imagery

To develop an RI for the estimation of Chl b concentration,
which is hereafter designated as (Chl b)RI, we attempted to
select �1 from the long-wavelength side within the red Chl
absorption band, wherein minimal or no light absorption by
pigments other than Chls a and b takes place (Fig. 1). Because
�1 in (Chl a)RI (Equation 2) was selected from the spectral
range where Chl a absorption predominates over the absorp-
tion by other pigments, �2 in the (Chl b)RI was set identical to
this waveband, 670–676 nm. Then the optimal spectral range of
�1 was explored from the wavelength range above 600 nm
by correlating the observed Chl b concentration ([Chl b]obs.)
with the model (R�1

�1 – R670–676
�1)�R772–800. A preferable

result, that is not greatly affected by the presence or absence
of Anths, was obtained when �1 was set to 625 nm (Fig. 4B).
Collectively, (Chl b)RI was summarized in the following
equation:

ðChl bÞRI ¼ ðR�1
625 � R�1

670�676Þ � R772�800 ð4Þ

The correlation between (Chl b)RI and [Chl b]obs. in the
whole calibration data set is shown by a scatter plot in
Fig. 5B. A linear regression fitted to the wild-type subdata
sets (#1 and 2) gives an equation:

½Chl b�exp: ¼ 0:1613� ðChl bÞRI� 0:0170 ð5Þ

where [Chl b]exp. denotes the expected Chl b concentration.
The RMSE of the differences between [Chl b]obs. and [Chl b]exp.,
and related statistical parameters are summarized in Table 2.
As is later confirmed in the validation section, the equation is
quite successful in separating the Chl b-deficient ch1 mutants
(subdata sets #3 and 4) from the wild type (subdata sets #1
and 2) (see Fig. 6B).

Anthocyanin estimation from
hyperspectral imagery

In contrast to Chls a and b, which are single molecular species,
Cars and Anths are generic names for the groups of pigments
sharing similar basic structures. Hence, there is substantial di-
versity in the biochemical properties among the members of
each group, including absorption spectra, especially with regard
to Anths. The composition of Anths in Arabidopsis leaves, how-
ever, is far simpler than that in colored petals or deciduous
leaves of native plants (Bloor and Abrahams 2002). Moreover,
even though spectroscopic properties of Anths can change de-
pending on solvent environment, the major absorption band of
Anths in Arabidopsis leaves is probably distributed around
530 nm under physiological conditions. This is evident from
the comparison of reflectance spectra of leaf samples and
absorption spectra of their extracts derived from Anth-
accumulating and -deficient plants (e.g. see Fig. 3C, subdata
sets #2 vs. 5), and is apparent in the correlogram between R�

�1

and observed Anth concentration ([Anth]obs.) (Supplemen-
tary Fig. S2D).

To develop an RI for the estimation of Anth concentration,
which is hereafter designated as (Anth)RI, we started with an
initial setup of �1 = 530 nm in the ‘three-band model’. The
optimal spectral range of �2 was explored by correlating
[Anth]obs. with the model (R530

�1 – R�2
�1)�R772–800. In the

Anth-accumulating wild-type subdata set (#2), the highest
correlation was achieved when �2 was set to the spectral
range of 670–676 nm (Fig. 4C). Then the optimal spectral
range of �1 was reconsidered by a similar procedure using
the model (R�1

�1 – R670–676
�1)�R772–800. A preferable result

was obtained when �1 was set to 530 nm (Fig. 4D), demon-
strating that the initial setup of �1 was no less suited for Anth
estimation. Collectively, (Anth)RI was summarized in the fol-
lowing equation:

ðAnthÞRI ¼ ðR�1
530 � R�1

670�676Þ � R772�800 ð6Þ

The correlation between (Anth)RI and [Anth]obs. in each
subdata set is shown by a scatter plot in Fig. 5C. A linear re-
gression fitted to subdata set #2 gives an equation:

½Anth�exp: ¼ 0:9023� ðAnthÞRI + 0:3792 ð7Þ

where [Anth]exp. denotes the expected Anth concentration.
The RMSE of the differences between [Anth]obs. and
[Anth]exp., and related statistical parameters are summarized
in Table 2. As is later confirmed in the validation section, the
equation is quite successful in separating the Anth-deficient tt4
mutants (subdata set #5) from the wild type grown under
Anth-inducing conditions (subdata set #2) (see Fig. 6D).

Carotenoid estimation from
hyperspectral imagery

As shown in Supplementary Fig. S1A, a strong linear correl-
ation was found between Chl a and Car concentrations in the
calibration data set. The ratio of Cars to Chl a, however, was

Table 1 Combinations of genotypes and growth conditions used to
obtain the five subdata sets

Subdata
set

Genotype Growth mediuma Phenotypes

Primary Secondary

#1 WT A B No apparent Anths

#2 WT A Cb Accumulate Anths

#3 ch1-3 A B Chl b-deficient mutant,
no apparent Anths

#4 ch1-3 A Cb Chl b-deficient mutant,
accumulate Anths

#5 tt4 A B Anth-deficient mutant

Plants germinated on the primary medium were transplanted on day 8 to the
secondary medium. They were grown for another 6–10 d before being subjected
to hyperspectral reflectance imaging and chemical pigment analysis. WT, wild
type.
aCompositions of growth media indicated by each symbol are as follows: A, 1�
MS (0/1� NH4NO3, 1� KH2PO4), 1% (w/v) sucrose; B, 1� MS (0/1/2�
NH4NO3, 1�KH2PO4), 0/1/5 mM norflurazon; C, 1� MS (0/1/2� NH4NO3,
10�3
� KH2PO4). 1� concentrations for NH4NO3 and KH2PO4 are 20.6 and

1.25 mM, respectively. Nutrient concentrations regarded as ‘normal’ are indi-
cated in bold.
bSome of the plants were wounded in root tissues after being transplanted to
the secondary medium.
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appreciably lower in ch1 subdata sets (#3 and 4) than in the
others. Hence, once an equation for the estimation of Car con-
centration was formulated, it was essential to evaluate if it
provides as accurate estimate of Cars in ch1 mutants as in
plants of the other genotypes.

Absorption spectra of Cars are characterized by unimodal
distribution (Fig. 1). There is increasing overlap in the ab-
sorption band of Cars with that of Chls a and b at wave-
lengths below 500 nm. For this reason, we started with an
initial set-up of �1 = 501 nm in the ‘three-band model’ to
develop (Car)RI. The optimal spectral range of �2 was
explored by correlating the observed Car concentration
([Car]obs.) with the model (R501

�1 – R�2
�1)�R772–800. Under

conditions where Anth accumulation was negligible (subdata

sets #1, 3 and 5), a waveband centered at 603 nm appeared
most suitable for �2 (Fig. 4E). The reflectance at this wave-
band was correlated closely with total Chl concentration, but
was independent of the presence or absence of Chl b. This
implies that the absorption coefficients of Chls a and b
in vivo would equilibrate at this wavelength. Then the opti-
mal spectral range of �1 was reconsidered by using the model
(R�1
�1 – R603

�1)�R772–800. A better result was obtained when
�1 was set to 507 nm, rather than 501 nm (Fig. 4F).
Collectively, (Car)RI was summarized tentatively in the follow-
ing equation (marked with an asterisk to indicate that it is
temporary):

ðCarÞRI� ¼ ðR�1
507 � R�1

603Þ � R772�800 ð8Þ
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Fig. 4 Optimization of wavebands �1 and �2 in the model (R�1
�1 – R�2

�1)�R�3 for the estimation of individual pigment concentrations. The
analysis was performed on the calibration data set. Details of each subdata set (#1–5) are summarized in Table 1. The process of model tuning for
Chl a (A), Chl b (B) and Anth (C and D) estimation, or Car estimation in the absence of Anth accumulation (E and F) is indicated. The RMSE was
calculated for linear regression of the model indicated in the vertical label vs. the observed concentration of the pigment of interest. A lower
RMSE indicates more accurate estimation. In C and E, �1 is indicated in parentheses due to its temporary nature; the optimal waveband was
reconsidered in the second step of model tuning in D and F, respectively. WT, wild type.
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At this moment, the relationship between (Car)RI* and
[Car]obs. did not fit well to a linear regression when there was
substantial Anth accumulation (subdata sets #2 and 4)
(Fig. 5D). Hence, to remove the Anth contribution from
(Car)RI*, an additional term R530

�1, which closely correlates
with the Anth concentration, was introduced into Equation 8
with an adjustable constant c as follows:

ðCarÞRI ¼ ðR�1
507 � R�1

603 � c� R�1
530Þ � R772�800 ð9Þ

As shown in Fig. 5E, when a constant of 0.6456 was sub-
stituted for c, which was derived by multiregression analysis
using the wild-type subdata sets (#1 and 2), the relationship
between (Car)RI and [Car]obs. from all subdata sets fell on a
single regression line. Here, the equation for the estimation of
Car concentration can be generalized as follows:

ðCarÞRI ¼ ðR�1
507 � R�1

603 � 0:6456� R�1
530Þ � R772�800 ð10Þ

½Car�exp: ¼ �0:3176� ðCarÞRI� 0:1997 ð11Þ

where [Car]exp. denotes the expected Car concentration. The
RMSE of the differences between [Car]obs. and [Car]exp., and
related statistical parameters are summarized in Table 2.
The slope of Equation 11 is negative (Fig. 5E) because, different
from RIs for other pigments, the total reflectance at waveband
�1 (507 nm) is usually higher than at waveband �2 (603 nm)
(Fig. 3C).

As described above, the Car concentration can also be
approximated based on its linear correlation with the Chl a

concentration using the equation as follows (Supplementary
Fig. S1B):

½Car�exp: ¼ 0:6191� ðChl aÞRI + 0:0728 ð12Þ

While the RMSE of Car estimation was not greatly different
between cases where Equation 11 or 12 was used, the former
produced a more accurate estimate in total and especially in
ch1 subdata sets (#3 and 4) (Table 2). This provides strong
counter-evidence against complete autocorrelation between
(Chl a)RI and (Car)RI.

Validation

The equations for the estimation of Chls a and b, Anths and
Cars (Equations 3, 5, 7 and 11, respectively) were tested for their
predictive performance by using validation data sets composed
of plants containing certain amounts of the pigment of interest.
While the wild-type (subdata sets #1 and 2), ch1 (subdata sets
#3 and 4) and tt4 (subdata set #5) plants were all included in
the validation data set for Chl a and Car estimation, ch1 and
tt4 mutants were excluded from the validation of Chl b and
Anth estimation, respectively. Similar to the case with the
calibration data sets, close agreement between the observed
and expected concentrations of each pigment was confirmed
in the validation data sets by the scatter plot analysis (Fig. 6).
Several statistical parameters obtained from the multivariate
correlation analysis between the pairs of concentrations in
the validation as compared with the calibration data sets are
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summarized in Table 2. Only small differences in the RMSE of
pigment estimation were noted between cases where either
data set was used. This indicates that the equations developed
above provide reasonable estimates of the concentration of
each pigment, at least under the growth conditions used in
this study.

Using these equations, the software PPM (Plant Pigment
Monitor), which allows 2D monitoring of leaf pigment status,
was constructed (Fig. 2C). In addition to the individual con-
centrations, this also allows visualization of compositional par-
ameters of pigments such as the sum and/or ratio of two or
more constituents (e.g. see Fig. 7F). The software is provided as
Supplementary File S1 of this article (see Supplementary Text
S1 for legends and methods of operation).

Non-targeted rapid detection of altered leaf
pigment status: isolation of irregular reflectance
mutants using hyperspectral imagery

While PPM was developed aiming for ‘targeted’ screening of
mutants with defects in leaf pigment metabolism and/or its
regulation in response to environmental and/or developmental
cues, it required a certain amount of time and effort until the
equations implemented in this software had been established.
We therefore developed in parallel an additional analytical
technique of hyperspectral imagery in order to detect subtle
differences in reflectance phenotypes that are possibly
associated with altered leaf pigment status. The technique is
implemented in the software HSD Visualizer (Fig. 2D), which
is also packaged in Supplementary File S1 of this article
(see Supplementary Text S1 for legends and methods of
operation).

Fig. 7A shows an example of reflectance spectra from the
leaves of the wild type and mutants isolated via the use of
HSD Visualizer (the details of the screening are described later
in this section). Here, the reflectance spectra calibrated simply
by linear regression against the 50% standard (as in Fig. 3B)

were used; as described above, they were sufficient to evaluate
qualitative differences in reflectance phenotypes. Using
the spectra from the wild type as the baseline, the ratio of
spectral reflectance was calculated for each pixel of the
hyperspectral images. The derived ratio spectra in the areas
of the mutant leaves are shown in Fig. 7B. To cite an
example, in a wavelength range of 600–650 nm, the re-
flectance deviation in a mutant designated as irregular
reflectant 1 (iref1) was +16.8% at the maximum and
+13.7 ± 2.2% (n = 5) on average relative to the wild type.
The software HSD Visualizer automatically calculates such
parameters and display the reflectance deviation as a pseu-
docolor image (e.g. see Fig. 7D, E).

Using this software, we conducted, so to speak, a
‘non-targeted’ screen for mutants with altered reflectance
phenotypes with the view to getting information about in
what situations the reflectance-based pigment estimation
works as expected or fails. During a small-scale ‘pilot’ screening
of ethyl methanesulfonate (EMS)-mutagenized M2 lines of
Arabidopsis (1,700 individuals), we encountered a number
of mutants with altered reflectance phenotypes that are
readily identifiable from their colors and/or associated mor-
phological defects. Here, we focused exclusively on mutants
with weak iref phenotypes that are hardly identifiable without
using hyperspectral imagery. Combined with an additional
screening of T-DNA activation-tagged lines (7,000 individuals),
three mutants exhibiting iref phenotypes under normal
growth condition (as defined in Table 1) were isolated
(Fig. 7C, D).

Genetic localization of irregular reflectance loci

Genetic mapping of a recessive EMS allele, iref1, localized the
mutation to a 134 kb region between two single nucleotide
polymorphisms, PERL0254266 and PERL0255054 (Perlegen), on
chromosome 1. Sequencing of this region revealed that an
open reading frame (ORF) At1g75100.1 of the iref1 genome
contained a C-to-T nonsense transition in the sixth exon
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(Fig. 8A), which results in a truncation of the C-terminal 114
amino acids of the gene product (Fig. 8B). To confirm further
if this base transition is responsible for the iref phenotype of
the mutant, two recessive T-DNA insertion alleles of the same
ORF were analyzed. As shown in Fig. 7E, all homozygous
T-DNA individuals exhibited the phenotype comparable
with that of the iref1 mutant. This provides unequivocal evi-
dence that the At1g75100 locus corresponds to the IREF1
gene.

In contrast to the iref1 mutant, iref3 and iref4 mutants were
isolated from the T-DNA population. Accordingly, inverse PCR
amplification of the T-DNA flanking regions followed by
sequencing of the PCR products led to identification of the
locations of T-DNA tags that co-segregate with the iref pheno-
types of the mutants. In the genome of the recessive iref3
mutant, T-DNA was inserted 20 bp downstream from the
translation start site of an intron-less ORF At1g09520.1

(Fig. 8A). Because no other T-DNA knockout allele of this
ORF was available, the identity of the IREF3 gene was tested
by genetic complementation of the iref3 mutant. As shown in
Fig. 7E, introduction of a genomic fragment covering the
wild-type At1g09520 locus into the mutant resulted in the dis-
appearance of the iref phenotype, demonstrating that this locus
corresponds to the IREF3 gene.

On the other hand, iref4 was a dominant mutant, and there-
fore the corresponding mutation is designated as iref4-D.
According to segregation analysis, the iref phenotype of this
mutant was linked to the activation T-DNA tag located
within an intergenic region between the ORFs At4g27250.1
and At4g27260.1 (Fig. 8A; 2.1 and 7.1 kb apart from the respect-
ive ORFs). However, reverse transcription–PCR (RT–PCR) ana-
lysis revealed that expression of these flanking genes in leaves
was neither activated nor repressed at the transcriptional level.
Identification of the bona fide IREF4 gene still awaits further
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genetic and expression analysis of a wider genomic region flank-
ing the T-DNA tag on chromosome 4.

Evaluation of limit situations for reflectance-based
pigment estimation

In a previous report, it was warned that changes in leaf surface
structure such as trichome density can mislead
reflectance-based assessment of leaf chemistry and physiology,
including the values of RIs conventionally used to approximate
leaf pigment compositions (Levizou et al. 2005). To test if this is
true of the ‘targeted system’ developed in this study, the pre-
dictive performance of the equations for the estimation of in-
dividual pigment concentrations (Equations 3, 5, 7 and 11) was
evaluated in a trichome-less gl1 mutant. As shown by scatter
plots in Fig. 9A–D, the correlation between the observed and
expected concentrations of each pigment under routine
growth conditions, i.e. the conditions used to obtain subdata
sets #1 and 2 (Table 1), was comparable in the gl1 plants and
the wild-type plants. This, in combination with the related stat-
istical parameters (Table 2), corroborates the robustness of our
‘targeted’ system for leaf pigment estimation at least against the
decrease in trichome density.

An example of a physiological process that limits
reflectance-based pigment estimation became evident from
the characterization of the iref1 mutant. Actually, the mutant
locus At1g75100 has been formerly identified as being required
for chloroplast photorelocation movement. The encoded pro-
tein, JAC1, an auxilin-like J-domain protein (Fig. 8B), is involved
in the process of low light-induced accumulation of chloro-
plasts in the outermost cytoplasmic layer of palisade mesophyll
cells (Suetsugu et al. 2005). Because all iref1 alleles tested in
this study lead to truncation of the characteristic J-domain
at the C-terminus (Fig. 8B), as in the cases of jac1 alleles
(Suetsugu et al. 2005, Takano et al. 2010), the iref phenotype
seen in the mutant is most likely to be the result of loss of
function of the JAC1 protein. A similar but somewhat weaker
iref phenotype was also seen in a loss-of-function allele
(Schmidt von Braun and Schleiff 2008) of another chloroplast
photorelocation mutant, chup1 (Fig. 7E). This mutant is
also deficient in the low light-induced chloroplast accumula-
tion response (Oikawa et al. 2003). Under routine growth
conditions, where chloroplast accumulation is mostly stimu-
lated in the wild-type plants, the reflectance-based method
resulted in severe underestimation of the concentrations of

A
Chr. I

Chr. IV

1caj3feri /iref1

T-DNA1T-DNA2iref3At1g09510.1

At1g09520.1 At1g75100.1

iref1
(C1612T)

0.5 kb

0.5kb

iref4

At4g27260.1

At4g27250.1

iref4-D

2 kb

B

JAC1/IREF1

iref1
(Q538Stop)

IREF3 ZF-
PHD

DnaJ

cTP
100 aa

iref3

2AND-T1AND-T

Fig. 8 Identification of irregular reflectance (iref ) loci. (A) Chromosomal positions of iref mutations. Rectangles (blue) and vertical triangles
(yellow) indicate exons and T-DNA insertions, respectively. The iref1 mutation causes a C-to-T transition at nucleotide 1,612 (excluding introns)
in an ORF At1g75100.1. T-DNA1 and 2 indicate T-DNA positions in WiscDsLox457-460P9 and SAIL_574_B09 lines, respectively. The iref3 genome
contains a T-DNA 20 bp downstream from the translation start site of an ORF At1g09520.1. The iref4-D mutation is linked to a T-DNA located
within an intergenic region between ORFs At4g27250.1 and At4g27260.1 (2.1 and 7.1 kb apart, respectively). (B) The structure of JAC1/IREF1 and
IREF3 proteins. The diagram is based on the information available from the InterPro (http://www.ebi.ac.uk/interpro/) and SMART (http://smart.
embl.de/) database, and a TargetP prediction (http://www.cbs.dtu.dk/services/TargetP/). Ellipses indicate segments of low compositional com-
plexity (light blue) and a coiled-coil region (orange). The horizontal triangle (orange) in IREF3 indicates the putative chloroplast transit peptide
(cTP). The iref1 mutation truncates the C-terminal 114 amino acids (aa) of the JAC1/IREF1 protein (651 aa). T-DNA1 and 2 truncate the protein
at aa 145 and 478, respectively. The iref3 T-DNA truncates the IREF3 protein (260 aa) at aa six. DnaJ, DnaJ molecular chaperone homology
domain; ZF-PHD, zinc finger plant homeodomain-type signature.

1165Plant Cell Physiol. 53(6): 1154–1170 (2012) doi:10.1093/pcp/pcs043 ! The Author 2012.

Hyperspectral imaging of Arabidopsis leaf pigments

http://smart.embl.de/
http://smart.embl.de/
http://smart.embl.de/
http://www.cbs.dtu.dk/services/TargetP/


photosynthetic pigments (Chls a and b, and Cars) in the iref1
mutant (Fig. 9E–G; Supplementary Fig. S3). These exemplify a
limit situation for the reflectance-based pigment estimation,
and also suggest that, if better predictive performance is desired
for this method, plants should be acclimated to low-light con-
ditions before being subjected to hyperspectral reflectance
imaging.

In contrast to the case of the iref1 mutant, the aberrancies in
pigment composition in the iref3 and iref4-D mutants as pre-
dicted from their hyperspectral images were consistent with
those elucidated by chemical pigment analysis. Under the
normal growth conditions defined in this study (Table 1), the
observed concentrations of some photosynthetic pigments
were slightly but significantly lower (P< 0.05) in both iref3
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and iref4-D mutants than in the wild-type plants
(Supplementary Fig. S3). As for the iref3 mutant, the
mutant locus At1g09520 encodes an uncharacterized protein
with a plant homeodomain-type zinc finger motif and a puta-
tive chloroplast transit peptide (cTP) at the N-terminus
(Fig. 8B). Because the T-DNA tag in the iref3 mutant is located
within the cTP coding region (Fig. 8B), the iref phenotype of the
mutant is most likely to be the result of loss of function of
the IREF3 protein. As shown in Fig. 7F, the subtle decrease in
the photosynthetic pigment concentrations in these mutants
relative to those in the wild type (Supplementary Fig. S3)
could be detected readily and separately for each pigment
using PPM. Thus, although there are some limiting situations
for the reflectance-based ‘targeted’ pigment estimation, it pro-
vides rapid and highly sensitive means to identify altered leaf
pigment status resulting from physiological responses to envir-
onmental and/or developmental factors, or from genetic mu-
tations affecting homeostatic mechanisms of the metabolism of
leaf pigments.

Discussion

In this study, we showed that hyperspectral imaging techniques
provide far more information than the eyes can see with regard
to leaf pigment status, largely due to its quantitative capability.
One of the concerns about the applicability of reflectance-
based pigment estimation, however, resides in the equations
for Anth and Car estimation (Equations 7 and 11), as these
pigments are in nature composed of heterogeneous chemical
compounds with somewhat different spectroscopic properties,
and the composition of these compounds can change in re-
sponse to environmental and/or developmental cues. As for
Cars, it has been shown that defects in metabolic steps leading
to an increase in their structural diversity, such as lutein and
b,b-xanthophyll biosynthetic pathways, do not result in large
alterations in the total Car concentration. This is because the
decrease or increase in certain Car compounds is usually com-
pensated by corresponding changes in the amount of other
compounds (Pogson et al. 1998, Kim and DellaPenna 2006).
The spectral resolution of the hyperspectral camera used in
this study was not high enough to reach 5 nm or below
throughout the measuring wavelength range (400–800 nm).
While the absorption coefficients of different Car compounds
at wavebands used in the Car estimation (Equation 11) differ, at
least to some extent, from each other, it may be that such a
‘wide’ bandwidth rather ensured the robustness of total Car
estimation against compositional changes in the Car com-
pounds. Even so, hyperspectral cameras are still the product
of emerging technology; higher spectral resolution and bit
depth are much needed to facilitate model tuning of RIs and
to accomplish more accurate estimation of individual pigment
concentrations.

The applicability of the equation for Anth estimation
(Equation 7) could be even more restricted to plants grown
under temperate, non-extreme conditions. At present, the

equation is devoid of the terms that specifically remove the
contribution of Chl b and Cars to the total reflectance. Hence,
the observed accuracy of Anth estimation could be the result of
low (though non-negligible) absorption coefficients of pig-
ments other than Anths at 530 nm (Fig. 1). Moreover, it is
well known that changes in the solvent environment surround-
ing the Anth molecules, such as vacuolar acidification, greatly
affect their coloration properties (Castañeda-Ovando et al.
2009), possibly including their absorption coefficient at
530 nm. Considering such uncertainties in the reflectance-
based Anth estimation, adoption of Anth-less genetic back-
grounds, such as tt4, would be a feasible solution if the research
target is not Anths themselves and is considered as being in-
dependent of Anth metabolism.

Despite a certain chemical diversity in leaf pigments, espe-
cially in Cars and Anths as described above, biomolecules,
so-called pigments, account for only a minor fraction of the
entire metabolites in plant cells. In contrast, almost all metab-
olites, being organic compounds, have their own absorption
spectra in the infrared range, which are correlated with their
intrinsic molecular vibration spectra. The NIR range extended
to about 2,500 nm is particularly advantageous for non-invasive
in situ analysis of primary metabolites directly associated with
plant growth, such as soluble and polymeric sugars, and organic
nitrogen compounds. Actually, NIR spectroscopy has been
widely applied in food industries for quality management of
agricultural products by using handheld or inline NIR analyzers
(Huang et al. 2008). In addition to the adoption of wider wave-
length ranges, acquisition of different types of hyperspectral
images, such as transmission and fluorescence images, and
even polarized reflectance images, would be achievable in a
laboratory environment. Such series of ‘multimode’ hyperspec-
tral images would allow the retention of a large amount of
information with regard to the physiological status of plants
used in any published work; these can be revisited by other
researchers to verify theoretical perspectives of their own
field of interest.

Presently, further breakthrough is required in the method-
ology of spectral analysis in order for it to be able to draw out
comprehensive information about the metabolic status of
plants from their hyperspectral signature in both quantitative
and qualitative terms. Even so, quantitative description of leaf
color phenotypes based on reflectance and/or other spectra in
the visible (VIS) range, and extension of the wavelength range
from the ‘colored’ VIS to ‘colorless’ NIR range will provide a
technical interface allowing for correlation analysis between leaf
metabotypes and phenotypes. Similar to morphological traits,
spectroscopic traits, including colors, can account for a large
fraction of plant phenotypes, and are highly sensitive to envir-
onmental and/or developmental factors. Hence, a comprehen-
sive ‘spectrome’ catalog describing the relationship between
spectroscopic traits of plant tissues and the growth conditions
they experienced will help to improve our understanding
of how genetic variation leads to an effect on phenotypic
traits at the individual level. Thus, the prevalence of such a
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‘spectromics’ viewpoint facilitates one of the most essential
issues of post-genome research to be resolved, i.e. data integra-
tion from genome to phenome.

Materials and Methods

Plant materials and growth conditions

All lines of Arabidopsis thaliana described here were descended
from the Columbia wild type. The homozygous T-DNA inser-
tion lines, SM_3_15530 (The John Innes Centre) and
SALK_039478C (The Salk Institute), respectively, were used as
Anth-deficient tt4 (Abrahams et al. 2002) and trichome-less gl1
(Wang et al. 2004) mutants in the Columbia background. The
ch1-3 line from the Arabidopsis Biological Resource Center
was used as the Chl b-deficient mutant (Espineda et al. 1999).
The T-DNA lines WiscDsLox457-460P9 (The University of
Wisconsin) and SAIL_574_B09 (Syngenta) were obtained as
alleles of the jac1/iref1 mutant, and SALK_129128 as an allele
of the chup1 mutant. A genomic fragment corresponding to
nucleotides 52,346–54,691 of the bacterial artificial chromo-
some (BAC) clone F14J9 (GenBank accession No. AC003970)
was subcloned into the binary vector pKGW (Karimi et al. 2002)
using GatewayTM (Invitrogen) technology, and applied for com-
plementation of the iref3 mutant via Agrobacterium-mediated
transformation (Clough and Bent 1998). Kanamycin-resistant
T2 individuals from two independent transgenic iref3 lines were
subjected to further analysis. Plants were routinely grown on
Murashige and Skoog (MS)-based solid media containing 0.5%
(w/v) gellan gum (Kanto Chemical) at 22�C under continuous
fluorescent light (80 mmol m�2 s�1). To obtain leaf samples
with various pigment compositions, plants initially grown on
P-replete media with or without ammonium nitrate (20.6 mM)
were transferred to secondary media containing varying con-
centrations of N and P or 1–5mM norflurazon (see Table 1 for
details).

Pigment analysis

The concentrations of individual leaf pigments were deter-
mined from the same leaf samples that were used for hyper-
spectral reflectance imaging. Leaf tissues (approximately 3 mg
FW) were frozen and crushed in liquid nitrogen into fine
powder, and then extracted with 600 ml of 100% methanol.
After centrifugation, one 200 ml aliquot of the supernatant
was acidified with 1 ml of half-saturated (approximately
5.66 M) hydrogen chloride for the determination of total
Anth concentration, while another aliquot was used for
determination of the concentrations of Chls a and b, and
total Cars. An 80ml sample of each aliquot was dispensed
into a 96-well half-area microplate (MICROLON 200; Greiner
Bio-One) that ensures a 0.5 cm light path length with this
sample volume. Absorbance measurement was performed
using a microplate reader equipped with data analysis
software (Infinite M200A and Magellan; Tecan). For calculating
the concentration of each pigment, equations reported by

Lichtenthaler (1987) for Chls a and b, and total Cars in 100%
methanol, and the equation reported by Gitelson et al. (2001)
for total Anths in acid methanol were used. The concentration
was expressed on a fresh weight basis. The reagents used to
analyze the absorption spectra of these pigments (Fig. 1) were
purchased from Sigma [Chl a, C5753, purity 88% (w/w); Chl b,
C5878, purity 99.6% (w/w); cyanidin chloride, 79457, purity 95%
(w/w)] and Nacalai Tesque [b-carotene, 07312-81, purity 98%
(w/w)].

Hyperspectral reflectance imaging

The configuration of the hyperspectral imaging set-up is out-
lined in the Results (Fig. 2A). To add further detail, a blue color
conversion filter (LBB-4; Kenko) was mounted in front of the
camera lens so as to prevent saturation of the detector at longer
wavelengths, resulting from the irradiation with ‘reddish’ halo-
gen lights. For applications requiring extreme throughput, such
as correlation analysis between RIs and chemically determined
pigment concentrations, first rosette leaves were detached at
the petiole and aligned on a solid medium containing 0.5%
(w/v) gellan gum and 3 mM CaCl2 (for gelatinization). This ‘in-
vasive’ procedure allowed 50 or more leaves per 136�96 mm
square plate (AW2000, EIKEN CHEMICAL) to be analyzed at a
time. Otherwise, plants grown on solid media were used in their
intact forms. For 2-week-old plants, a density of at most 12
individuals per plate was desirable to prevent overlap of adja-
cent plants.

Software development and data analysis

The self-made software shown in Fig. 2B–D, which is provided
as Supplementary File S1 of this article (see Supplementary
Text S1 for legends and methods of operation), was developed
in managed C++ code using Visual Studio 2005 Standard
Edition (Microsoft). Spectral reflectance data were extracted
from hyperspectral images using HSD Analyzer (Fig. 2B).
They were exported as comma-separated-value (CSV) format
files prior to further statistical analysis using Microsoft Excel
software. Note that the exported data are not yet corrected
for the sensor’s non-linearity (equivalent to the data shown in
Fig. 3B). The method to obtain more accurate reflectance
values by introducing a second-order correction step is
described in the Results (Fig. 3C).

Analysis of mutants with irregular reflectance
phenotypes

Mutants with iref phenotypes were isolated through hyperspec-
tral image analysis using HSD Visualizer (Fig. 2D) from 1,700
EMS-mutagenized M2 lines and 7,000 T-DNA activation-tagged
lines developed by RIKEN (Nakazawa et al. 2003). The chromo-
somal position of the EMS-induced iref1 mutation was localized
by a map-based cloning strategy using cleaved amplified poly-
morphic sequence and simple sequence length polymorphism
markers. The T-DNA mutations, iref3 and iref4-D, were identi-
fied by restriction digestion and self-circularization of the
mutant genomic DNA, followed by inverse PCR amplification
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of the T-DNA flanking sequences, and DNA sequencing of the
PCR products.

Supplementary data

Supplementary data are available at PCP online.
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