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Although pathogenic bacteria are suspected contributors to
colorectal cancer progression, cancer-promoting bacteria and
their mode of action remain largely unknown. Here we report
that sustained infection with the human intestinal colonizer
Pseudomonas aeruginosa synergizes with the Ras1V12 oncogene
to induce basal invasion and dissemination of hindgut cells to
distant sites. Cross-talk between infection and dissemination
requires sustained activation by the bacteria of the Imd–dTab2–
dTak1 innate immune pathway, which converges with
Ras1V12 signalling on JNK pathway activation, culminating in
extracellular matrix degradation. Hindgut, but not midgut, cells
are amenable to this cooperative dissemination, which is
progressive and genetically and pharmacologically inhibitable.
Thus, Drosophila hindgut provides a valuable system for the study
of intestinal malignancies.
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INTRODUCTION
Colorectal cancer represents the third leading cause of cancer
mortality in the United States. Intestinal infection has been
proposed as a risk factor for colon cancer progression [1,2], but
the aspects of tumourigenesis that are potential targets of infection
remain poorly understood; proposed mechanisms include
chronic inflammation and production of carcinogenic metabolites
by pathogens [3]. Furthermore, in combination with genetic
aberrations [4,5], innate immunity stimulation is likely an

important contributor to colorectal cancer progression [6,7].
However, the nature of the link between infection and tumour
progression is poorly understood.

Our previous work on the Drosophila midgut has shown that
virulent bacteria induce enterocyte apoptosis. This leads to stem
cell-mediated compensatory proliferation that works for the
benefit of the host by replenishing dying cells [8]. Oncogenes can
divert this process to stimulate tumour formation and growth [8],
but the impact of intestinal bacteria on subsequent steps of cancer
(that is, cancer cell dissemination and metastasis) remains unclear.

The Drosophila Immune Deficiency (Imd) innate immune
pathway is considerably conserved in mammals [9,10]. It is
predominantly activated by Gram-negative bacteria and consists
of two branches that are both required for activation of the
downstream nuclear factor-kB factor Relish (Rel), while only one
of them leads to JNK pathway activation [9]. The two branches
might be activated sequentially [11] or synergistically to induce
immune responses [9] or act antagonistically [12]. In this study we
provide an adult Drosophila model of oncogene-induced cell
dissemination, a genetically and pharmacologically tractable
system to study epithelial cell invasion and dissemination. We
use it to show that prolonged bacterial infection that induces an
Imd to JNK innate immune signalling in the Drosophila hindgut
facilitates the basal invasion and dissemination of oncogenic
hindgut epithelial cells to distant tissues.

RESULTS AND DISCUSSION
To explore the role of infection on colorectal cancer progression,
we developed an adult Drosophila model by expressing the
oncogene Ras1V12 in the adult hindgut enterocytes and their
progenitors [13,14]. We controlled the byn-GAL4 driver with
GAL80ts, a temperature-sensitive GAL4 inhibitor, to restrict
Ras1V12 activation only in the adult. UAS-gfp was used to monitor
Ras1V12-expressing cells over time (Fig 1A).

Seven days after transferring flies to the permissive temperature
(29 1C) to activate Ras1V12, we observed abundant green
fluorescent protein (GFP)-positive hindgut cells delaminating
through the basal side of the epithelium (Fig 1B–G). The hindgut
showed reduced and non-uniform laminin staining in the gaps
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where hindgut epithelial cells and cytoplasmic protrusions were
mislocalized (Fig 1F–N). Laminin loss can be a result of basement
membrane degradation by secreted matrix metalloproteases
(MMPs) [4,15,16]. Indeed, we found high levels of non-uniform
MMP1 expression in Ras1V12 hindgut epithelia that was absent in
wild-type control animals (Fig 1O–R).

Following 7 days of Ras1V12 induction, we found that Ras1V12-
expressing hindgut cells disseminated away from the hindgut to
distant sites within the body. These disseminating cells formed
GFP-positive foci—both as individual cells and as cell clusters
(Fig 1W–Y)—in the abdominal cavity, including the body wall,
trachea, fat body and nephrocytes (Fig 1S–Y). We classified the
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dissemination phenotypes into four groups according to their
quantitative strength: none, weak, moderate and strong based on
the number of foci observed in the abdominal cavity (Fig 1Z).
Strikingly, dissemination was progressive, increasing in pene-
trance and severity over time (Fig 1Z). This indicated that
migrating cells either do not die or that their dissemination rate
is higher than their death rate.

On the basis of the previous observations [16], we assessed the
requirement and sufficiency of JNK pathway activation in MMP1
induction and hindgut cell dissemination. The JNK pathway
reporter puckered-lacZ (pucZ) [17] was induced in a subset of
hindgut cells at 4 days (pucZþ cells/hindgut ¼ 6±3.5 s.d.) and
at 7 days (12±2.8 s.d.) after Ras1V12 induction (Fig 2A,B); no
pucZþ cells were present after 2 days of induction. Co-expressing
the dominant-negative JNK isoform BskDN or RNA interference
(RNAi) for Bsk or Jun [8] or feeding of SP600125, a JNK pathway
inhibitor with conserved activity in Drosophila [12,18], sup-
pressed dissemination of Ras1V12 hindgut cells (Fig 2E). In
addition, expression of the JNK kinase Hep sufficed to induce
MMP1, facilitating dissemination of hindgut cells specifically in
the presence of Ras1V12 (Figs 2E,4B); by contrast, expression of the
MMP inhibitor TIMP considerably reduced dissemination (Fig 2E).
Of note, delaminating enterocytes did not express detectable
pucZ (0%, n¼ 20), and pucZ staining only partially overlapped
with MMP1 expression (Fig 2C,D; supplementary Fig S1 online),
suggesting that strong JNK pathway activation is either transient or
it induces MMP1 non-autonomously to facilitate dissemination
of hindgut cells.

To test whether bacterial infection can synergize with
oncogenes to induce dissemination, we challenged flies by
feeding them with two strains of P. aeruginosa, a human bacterial
pathogen that can also colonize the Drosophila intestine [8,19].
PA14 strain is lethal to flies starting 5 days of ingestion, while the
CF5 strain causes no mortality due to the lack of expression of
several main virulence factors [8,20]. Approximately 300 (±250
s.d.) bacteria from each strain were sustained within the hindgut
and both strains induced CecZ, an antimicrobial peptide reporter
for Cecropin (supplementary Fig S2 online). To examine the role of
PA14 and CF5 in our migratory assay, we induced Ras1V12 for
6 days and then fed flies with these strains for 4 days at 25 1C,
conditions that avoid fly mortality due to infection (Fig 3A).
Importantly, regardless of their virulence, both strains potentiated
dissemination to a similar extent (Fig 3B), indicating that
sustained immune response rather than virulence is necessary
for this potentiation.

To identify mechanisms by which infection enhanced Ras1V12-
dependent dissemination, we further explored JNK activity, a
mediator of the immune response. Ras1V12-expressing flies
fed with CF5 bacteria showed higher numbers of pucZþ cells
(37±7 s.d.) than those fed with bacteria-free media (14±4.3 s.d.,
P¼ 0.003; Fig 3C,D), indicating elevated JNK activity; wild-type
controls did not show detectable pucZþ cells. Imd is a central
mediator of the Drosophila innate immune response and a potent
activator of JNK on bacterial infection in Drosophila [21]. Co-
expression of Ras1V12 and Imd in the hindgut (byn4Ras1V12Imd)
led to a striking potentiation of dissemination (Fig 3E) coupled
with increased MMP1 expression (Fig 3F,G).

We next tested whether infection can also promote dissemina-
tion at 4 days of Ras1V12 induction, a stage at which only 10–15%
of uninfected flies show (weak) dissemination (Figs 1Z,4A).
Dissemination was suppressed by co-expression of BskDN or
RNAi for Bsk or Jun (Fig 4B) and strongly enhanced by Imd co-
expression (Fig 4C), indicating that dissemination was dependent
on JNK pathway activity. Further, bacterial infection or Imd
expression led to detectable MMP1 expression in byn4Ras1V12

adults 4 days after induction (Fig 4D). Reducing activity of the Imd
pathway members Imd, dTab2 and dTak1—key regulators of the
branch of immune response leading to JNK activation [9]—also
reduced the penetrance and severity of dissemination (Fig 4E). In
contrast, a distinct branch of the Imd pathway dedicated to
nuclear factor-kB/Rel activation, specifically dDredd and Rel [9],
was not required for full induction of dissemination (Fig 4E). Also
co-expression of an activated form of Rel (relD) for 4 days failed to
enhance Ras1V12-induced dissemination (Fig 4C). Our results
collectively indicate that the synergistic interaction between
infection and Ras1V12 expression is mediated by the interaction
of Ras1V12 with the Imd–dTab2–dTak1–JNK axis, but not the
Imd–dDredd–Rel innate immunity branch (Fig 5D).

To determine whether P. aeruginosa infection can induce
Ras1V12-expressing hindgut cells to disseminate at a stage when
uninfected flies are completely dissemination-free, we induced
this oncogene at low levels by placing byn4Ras1V12 flies at a
semipermissive temperature (23 1C). Dissemination was not
observed at 7 days, and only weak, low penetrant dissemination
was seen at 14 days in uninfected flies (Fig 5A). In contrast,
infected flies showed both weak and moderate dissemination as
early as 4 days after induction and infection, which became
progressively stronger and more penetrant (Fig 5A).

To test if sustained bacterial infection is required for the
potentiation of dissemination, we monitored infected animals that

Fig 1 | Ras1V12 expression is sufficient to initiate dissemination of the adult Drosophila hindgut cells. (A) Drosophila intestinal epithelium. Hindgut cells

green fluorescent protein (GFP)-marked using byn-GAL4. Blue, nuclei (DAPI); m, midgut, r, rectum. (B–E) Hindguts expressing GFP alone (B,C) or

GFP plus Ras1V12 (D,E) 7 days (B,D) or 21 days (C,E) after induction of transgenes. Arrowheads: cellular protrusions throughout ileum. (F,G) Surface

views of ileum expressing GFP alone (F) or GFP plus Ras1V12 (G). Blue, laminin (basement membrane). (F0,G0) Laminin channel only of F and G.

(H–K0) Cross-sections of control (H,H0) and Ras1V12 (I–K0) hindguts. Ras1V12-expressing hindguts (I–K) show GFPþ cells in the process of invading

basally out of the gut epithelium (stars). These regions also have reduced or absent laminin staining (I0–K0, arrows). (L–N) Close-up views of

disseminating cells (arrows) from Ras1V12-expressing hindguts. (laminin, blue). (L0,N0) Laminin channel only of L–N. Disseminating cells are present

in regions of reduced laminin staining (arrows). (O–R) Matrix metalloprotease 1 (MMP1) expression (red) in control (O,P) and Ras1V12-expressing

hindguts (Q,R). (O0–R0) MMP channel only of O–R. (S) Inside view of the abdominal cavity from an animal expressing Ras1V12 in the hindgut showing

GFPþ foci (arrows). Stereoscope (T–Y) and confocal (W–Y) live views of GFPþ foci and dsRed nuclei (dsRed-nls). Note: yellow autoflorescence

makes nephrocytes (n), fat body (f) and trachea (t) visible. (Z) Quantification of Ras1V12-induced dissemination over time. DAPI, 4,6-diamidino-2-

phenylindole; nls, nuclear localization signal.
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were subsequently cleared of P. aeruginosa by feeding them
methyl paraben and propionic acid. The enhanced dissemination
observed in infected animals was lost within 3 days of clearing the
bacteria: no significant differences in dissemination were subse-
quently observed between previously infected and non-infected
flies (Fig 5B). By contrast, continuous infection led to continued
enhancement of Ras1V12-mediated dissemination (Fig 5B). We
conclude that the process of infection-enhanced dissemination is
progressive and requires sustained infection.

The mechanisms by which microbes affect dissemination are not
clear. One possibility is that pathogens can damage epithelia,
inducing regeneration that might favour tumourigenesis in geneti-
cally predisposed hosts [7], as in the Drosophila midgut [8].
However, we observed no dissemination in the midgut model (esg-
GAL44Ras1V12) in the presence or absence of infection and no
evidence of hindgut regeneration due to infection (supplementary
Fig S3 online). Perhaps hindgut cells, in contrast to midgut cells, are

more resistant to stress and apoptosis [22,23], provoke a stronger
immune response (supplementary Fig S2 online) or have a distinct
physiology or metabolism [24,25]. Whatever the mechanism,
sustained immune response rather than virulence potentiates
Ras1V12-mediated dissemination in the Drosophila hindgut. This
dissemination requires potentially transient and non-autonomous
JNK pathway activation as well as both autonomous and/or
non-autonomous induction of MMP1 (Fig 5C).

Hindgut cells showed features of basal invasion and dissemi-
nation rather than shedding of cells due to tissue damage. For
example, we observed (i) no evidence of regeneration on
infection, (ii) basement membrane degradation, MMP1 expression
and basal delamination of cells, (iii) cytoplasmic processes of
delaminating cells, (iv) attachment of cell foci in tissues and to
each other, and (v) progressive accumulation of foci.

Our Ras1V12-based hindgut cell invasion and dissemination
assay likely generates benign-like tumours that might require
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more mutations to establish secondary tumours and metastasis.
Nevertheless, our study emphasizes the potential importance of
microbial infections in promoting colon cancer progression,
including towards malignancy. Monitoring individuals—especially
those genetically predisposed for colon cancer—for microbiota
that promote sustained and aberrant innate immune responses
might help to reduce their risk for malignant progression.

METHODS
Dissemination assay. Anaesthetized females were lined up
ventral sides up on microscope slides coated with vaseline and
slides were then submerged in 1� PBS. The abdomens were
opened up, intestines and ovaries removed, and the number of
GFPþ foci along the abdominal cavity was counted using a Leica
MZ 16F dissecting microscope with a GFP filter under a � 10
magnification. Each experiment was performed in duplicate
(n¼ 30 in each replicate); error bars indicate standard error.

P-values were calculated using Fisher’s exact test with a 4� 2
contingency table to assess the four phenotypic classes between
two conditions at a time. Background dissemination level in
control uninfected and infected flies were 1% (n¼ 264) and
5–10% (n¼ 60).
Pharmacological treatment. SP600125 (1 mM; Cayman Chemi-
cals) in 0.5% DMSO was prepared by diluting a 200-mM stock
(in 100% dimethylsulphoxide, DMSO) in 60 1C-heated flyfood
using Bloomington’s semidefined medium recipe and dispensed
into standard Drosophila vials (1 ml/vial). After the flyfood
solidified, flies were transferred onto SP600125/DMSO or
DMSO only or control flyfood (n¼ 30 flies/vial). Flies were
transferred onto fresh compound-treated food every other day
until scoring.
Immunohistochemistry. The following primary antibodies were
used: rabbit anti-b-gal (1:10,000; Cappel), mouse anti-MMP1
(1:100; DSHB), mouse anti-BRDU (1:10; BD Biosciences) and
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rabbit anti-laminin (1:500; Abcam). Secondary antibodies con-
jugated to Alexa Fluor-568, 633 and 555 were diluted to 1:1,000
(Molecular Probes). Standard staining methods were used [13,14].
Images were collected on a Leica TCS SP2-AOBS confocal
microscope. For b-gal cell enumeration, whole hindgut pucZ-
positive cells were counted from n¼ 5 or more female hindguts
using a � 20 lens. Error represents the standard deviation of
the mean. Statistical significance assessment was done using
two-tailed Student’s t-test assuming equal variance.
Fly strains. byn-GAL4 (hindgut and salivary gland-specific),
UAS-GFP and tubGAL80ts [14] were recombined on the III
chromosome and crossed with combinations of the following:
UAS-Ras1V12 (II), UAS-bskDN (X), UAS-dsRed-nls (II) and
UAS-hep (II) obtained from Bloomington Stock Center; UAS-Imd,
Imd1 and dTak1/2 [21]; puc-lacZE69 [17]; UAS-dTab2RNAi and
UAS-dRelshRNA [26]; UAS-dTak1RNAi (II), UAS-dDreddRNAi (II),
UAS-bskRNAi (III), UAS-JunRNAi (II) and UAS-ImdRNAi (II) obtained
from the National Institute of genetics in Japan; UAS-relD [27].

esg-GAL4 (midgut progenitor-, malpighian tubule- and salivary
gland-specific) was used for the midgut experiments [8].
Fly culture and infection. Fly rearing and collection were done at
18 1C (Gal80 repressor, on; Gal4 expression, off). To induce
transgenes, flies were transferred at the semipermissive (23 1C) or
fully permissive (29 1C) temperature. Infections with PA14 and
CF5 strains added in 4% sucrose media and colony-forming unit
measurements of n¼ 6 hindguts were performed as previously
described [8]. For bacterial clearance, 0.1% methyl paraben and
0.36% propionic acid were added to sucrose, eliminating bacteria
within 24 h.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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suc 10d’); or continuously infected for 7 or 14 days (‘CF5 7d’ and ‘CF5 14d’; **: Po0.01). (C) Model illustration depicting the synergistic induction of

JNK and MMP1 in the hindgut enterocytes and the destruction of laminin as a mechanism that facilitates cell dissemination. (D) Model illustration

delineating the branch of innate immune responses that converge with Ras1V12 signalling (red arrows) and the Imd pathway branch dedicated to the

activation of Rel/nuclear factor-kB (black arrows). DAPI, 4,6-diamidino-2-phenylindole; DMSO, dimethylsulphoxide; GFP, green fluorescent protein;

MMP1, matrix metalloprotease 1; NF-kB, nuclear factor-kB.
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