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Abstract
Traditional chemotherapy has resulted in only a modest response if any for the three most
common cutaneous malignancies of basal cell carcinoma (BCC), squamous cell carcinoma (SCC),
and melanoma. Recent advances in understanding of the defects in the pathways driving
tumorigenesis have changed the way that we think of these cancers and paved the way to targeted
therapy for specific tumors. In this review, we will introduce the novel systemic treatments
currently available for these cancers in the context of what is understood about the tumor
pathogenesis. We will also introduce ongoing studies that will hopefully broaden our options for
highly effective and tolerable treatment.
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INTRODUCTION
The objective of this review is to discuss the novel systemic treatments available for the
management of metastatic basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and
melanoma. Although surgical excision is the gold standard treatment for all of these
cutaneous malignancies, extensive locally destructive or metastatic disease still poses a
therapeutic challenge and treatments are rarely curative. Traditional treatment is highly toxic
and the non-specificity of the mechanism of action makes it impossible to determine who
will respond to treatment. The advent of molecular targeted therapy is changing the
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therapeutic landscape for these diseases with increased therapeutic index and in many cases
with a more tolerable toxicity profile.

Basal Cell Carcinoma
BCC is the most common form of skin cancer with an incidence rate that is 4 to 5 times
more likely than SCC. It is typically slow-growing, but if left untreated local invasion may
occur, leading to destruction, disfigurement, and rarely metastasis. The options available for
treatment of local disease include surgery, destruction, radiation, topical
immunomodulation, and topical chemotherapy. Locally advanced BCC may invade
underlying muscle, bone, or other contiguous structures. Metastatic disease is rare but can be
life threatening. In those cases in which local modalities are insufficient, systemic therapy is
warranted. There have been variable successes with cisplatinum-based chemotherapy
regimens in the past.1

Recent advances in the understanding of the pathogenesis of BCC have led to the
development of therapeutics targeting the biological mechanism driving this malignancy.
The Hedgehog (Hh) pathway has been shown to play a key role in the pathogenesis of BCC
with the majority of BCC bearing mutations in genes in this developmental pathway. The
majority of mutations implicated in BCC pathogenesis involve mutations in the
transmembrane proteins with loss of function of patched homologue 1 (Ptch1) or gain of
function of smoothened homolog (Smo).2 Mutation in the Ptch1 gene was initially
implicated as the cause of the rare autosomal dominant heritable basal cell nevus syndrome
(Gorlin syndrome), the hallmark of which is a high susceptibility for the development of
BCCs.3-4 It was later found that essentially all BCCs harbored mutation in the Ptch1 gene or
other alterations in the Hh signaling pathway.5

Ptch1 is a keratinocyte membrane protein that binds Sonic Hedgehog. In the absence of
Sonic Hedgehog, the role of normal Ptch1 is to inhibit Smo. Smo enables the activation of a
family of transcription factors called Gli which then enter the nucleus to promote expression
of more Gli, Ptch1, as well as other apoptotic factors, and suppression of genes associated
with keratinocyte differentiation. This sequence of events leads to cell proliferation and
increased survival.

Overexpression of Ptch1, Smo, Gli1, and Gli2 are associated with BCC.6 This makes the Hh
pathway both an attractive and logical target for molecular inhibitors for treatment of BCC.
A number of hedgehog pathway inhibitors (HPI) are under development in both oral and
topical formulations. Currently, all are HPI against Smo.

Vismodegib (Genentech/Roche), previously known as RG3616 or GDC-0449, is the first of
the oral small molecule HPI against Smo to be FDA approved for locally advanced or
metastatic BCC. In phase I testing, 18/33 patients with locally advanced or metastatic BCC
showed a response to the drug and 11 treated patients had stable disease (SD) over a median
follow-up of 9.8 months. Measurement of Gli in treated tumors was lower, demonstrating a
down-regulation of the Hh pathway thus confirming the molecular mechanism of action.7 In
a phase II trial, looking at locally advanced BCC not amenable for surgery or radiation and
metastatic BCC, the overall response rate (ORR) was 43% in the locally advanced group and
30% in the metastatic group. The median duration of progression-free survival (PFS) for
both groups was 9.5 months.8

LDE225 (Novartis) is another oral HPI targeting Smo. In a phase I dose-escalation study in
solid tumors, LDE225 was found to have a dose-dependent inhibition of the Hh pathway,
which was measured by downregulation of Gli-1 expression. Although the trial was not
designed to test for efficacy, it is notable that only 1 of 7 subjects with BCC progressed

Chong et al. Page 2

Semin Cutan Med Surg. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



while on treatment.9 Phase II trials are currently underway. Other systemic HPIs are
currently in development. These include IPI-926 (Infinity Pharmaceuticals), TAK-441
(Millennium Pharmaceuticals), PF-04449913 (Pfizer), LEQ506 (Novartis), and
BMS-833923 (Bristol-Myers Squibb).

Topical delivery of HPIs is also under investigation and poses an attractive option in terms
of side effect profile. CUR61414 (Curis/Genentech/Roche), was shown to be effective in
preclinical models but failed to have clinical activity in superficial or nodular BCCs in a
phase I clinical study in humans.10 LDE225 was also formulated as a topical cream. In a
randomized, vehicle-controlled, intra-individual trial in subjects with basal cell nevus
syndrome, topical LDE225 resulted in clinical responses in 12 of 13 BCCs studied, while
tumors treated with vehicle alone showed no efficacy.11 Although these are promising
results, further studies will be needed to test if the findings are generalizable for patients
with BCC without the syndrome.

Locally advanced and metastatic BCC portends a grave prognosis. The standard of care
remains the cisplatin-based chemotherapy. However the landscape of treatment for BCC is
on the cusp of changing with the advent of HPIs and targeted molecular approach to
treatment and hopefully the prognosis for advanced disease will improve as well.

Melanoma
Melanoma is a devastating disease once metastatic and is the leading cause of skin cancer
death.12 Systemic treatment for metastatic melanoma includes chemotherapy,
immunotherapy, and more recently targeted therapy. Chemotherapy has been the standard of
care for stage IV non-resectable melanoma with only a modest response and no
improvement in overall survival.13 With the advent of targeted therapy, we now understand
melanoma to be a heterogeneous entity with responses to treatment dependent upon genetic
status. Therefore, management of systemic disease now necessitates obtaining genetic
analysis prior to a discussion of the options available for an individual patient.

Immunotherapy—Immunotherapy has long been known to play an important role in
controlling melanoma and has been used in the adjuvant setting. Interferon alpha 2b and
more recently GM-CSF have been shown to improve progression-free and overall survival
in high-risk melanoma in the adjuvant setting. For metastatic melanoma, immune therapy
options include interleukin-2, ipilimumab, and interleukin-12.

High dose interleukin-2 can be highly efficacious in a very limited subset of patients with an
ORR of 16% and 6-8% complete response rate.14 However, it causes significant toxicities
and adverse events requiring intensive monitoring such as hypotension, renal insufficiency,
hepatocellular damage, edema, respiratory compromise, myocardial infarction, sepsis, and
death. Given the side effect profile, it is often a treatment reserved only for young and fit
patients.15 There are currently no biomarkers to determine who could likely benefit from
treatment, however it has been found that patients with disease limited to subcutaneous
tissue and those who are able to receive more dosages have been more likely to achieve an
objective response.16

Ipilimumab (Bristol-Myers Squibb) is a CTLA-4 antibody and has been recently FDA
approved for the treatment of metastatic melanoma. CTLA-4 competes for binding of a
surface protein B7, thus inhibiting T-cell proliferation and release of immune stimulatory
cytokines. Ipilimumab blocks CTLA-4, thus taking the proverbial brakes off the immune
system and allowing the immune system to act against melanoma.17 In a phase 3 study
comparing ipilimumab, with or without glycoprotein 100 (gp100) peptide vaccine, to gp100
alone in patients with previously treated melanoma, there was a statistically significant

Chong et al. Page 3

Semin Cutan Med Surg. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



improved survival associated with treatment with ipilimumab. Median OS in the ipilimumab
groups were not different and was about 10 months compared to 6.1 months for the gp100
alone group. A major drawback of this treatment has been the lag in treatment response.18

IL-12 is a heterodimeric cytokine that regulates both innate and adaptive immune
response.19-20 It has been shown to enhance the killing of tumor cells by tumor-infiltrating
lymphocytes in patients with melanoma.21-22 Local delivery of IL-12 via direct intratumoral
injection of IL-12 plasmid DNA is well-tolerated and has been shown to result in local
effects in the treated tumor but no systemic effect.23 Phase I and II trials of systemic IL-12
have been reported with responses in melanoma but is associated with significant
toxicity.24-26 More recently, a phase I study of intratumoral electroporation of a DNA
plasmid expressing IL-12 into melanoma lesions has been shown to result in regression of
untreated metastases in 10 of 19 evaluable patients and is not associated with significant side
effects.27 Future studies are proposed.

Although immunotherapy has been shown to make an impact in melanoma beyond just the
adjuvant setting, it is still poorly understood why subsets of patients have better response
than others. Further investigations will need to be made to determine why responders
respond and possibly what can be done to convert a non-responder to a responder. As
targeted therapies become the standard of care in melanoma, immunotherapy has become
second line treatment reserved for patients who have failed targeted treatment or for those
who do not qualify for targeted treatment. Studies are underway combining immunotherapy
with targeted therapy such as vemurafenib, a BRAF inhibitor, to potentially boost the
efficacy of both.

Therapies targeting molecular signaling—There are 2 main pathways currently
recognized to play a role specifically in melanoma pathogenesis. These are the mitogen
activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K)
pathway. Recognizing these pathways and developing drugs that target specific points that
are dysregulated in the pathways have several advantages. The specificity allows for
targeted treatment with fewer side effects. And because responders are chosen based on their
genetic status, it becomes possible to predict clinical response without subjecting non-
responders to treatment that will not be effective for them.

MAPK Signaling Pathway—MAPK signaling is initiated by binding of receptor tyrosine
kinases, which then lead to activation of Ras, a small G protein on the inner surface of the
cell membrane. Once activated, Ras can form complexes with Raf, which then leads to
phosphorylation of ERK via activation of MEK. ERK can directly enter the nucleus and
effect translation of genes and control cellular proliferation.28

BRAF—Mutation in the BRAF gene occurs in about 66% of melanoma tumors and are
commonly found in non-chronically sun-exposed skin.29 BRAF mutation is uncommon in
acral-lentiginous melanoma, but we have observed several cases bearing the BRAF mutation
at our institution. The BRAF mutation confers increased kinase activity that can lead to
increased tumor proliferation.30 Inhibition of the mutated BRAF gene has been shown to be
the most effective treatment for melanoma at this time and should be considered first-line
treatment for melanoma bearing this mutation. In a recently published phase III trial of oral
vemurafenib (Genentech/Roche), a new recently FDA approved BRAF selective inhibitor
for metastatic patients bearing the BRAF V600E mutation, showed a 48% response rate for
vemurafenib compared to a 5% response rate for dacarbazine. A 6-month interim analysis
showed a 63% reduction in risk of death and a 74% reduction in risk of death and disease
progression in the vemurafenib versus the dacarbazine group (P<.0001 for both
comparisons). Another favorable aspect of treatment with vemurafenib is its relatively
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benign side effect profile.31 Common side effects of vemurafenib include rash, fatigue,
arthralgia, alopecia, photosensitivity, nausea, diarrhea, keratoacanthoma or SCC and to a
lesser extent liver function abnormalities and renal insufficiency.

The recent FDA approval of vemurafenib has changed the landscape for management of
metastatic melanoma and has caused significant excitement in the melanoma community.
Unfortunately, what is not clearly understood is why there is variable response to the
medication despite presence of the BRAF mutation, implying that other important factors
play a role in melanoma tumorigenesis. Also, among the initial responders, most patients
eventually progress on treatment. Some mechanisms of resistance have been proposed but
have thus far not been validated.32

MEK—MEK is a downstream target of Raf in the signaling cascade. It has been shown to
have mixed results in melanoma. A phase I trial with AZD6244 (AstraZeneca) showed
tumor shrinkage in 6 out of 11 patients.33 However a subsequent phase II trial showed PR in
some patients, mainly those with BRAF mutations, but there was no benefit in PFS when
compared to temozolomide, which is an oral alkylating chemotherapy commonly used in
melanoma.34 MEK in combination with temozolomide, docetaxel, or temsirolimus has been
shown to be associated with tumor regression in only BRAF mutants and delayed
progression in BRAF and NRAS mutants.35 This suggests possibly that MEK plays a bigger
role in tumorigenesis in BRAF mutants than NRAS mutants. Studies are currently underway
comparing AZD6244 in combination with dacarbazine (in BRAF mutant melanoma only)36

or docetaxel versus chemotherapy alone.37 Two other studies hope to compound the MEK
inhibiting effects of AZD6244 by targeting parallel growth pathways with an mTOR and
VEGF inhibitor temsirolimus (BRAF mutant melanoma only)38 or a VEGF inhibitor
cediranib.39 A newer MEK inhibitor GSK1120212 is currently under investigation in a
phase I trial in combination with a BRAF inhibitor GSK2118436 for metastatic BRAF
mutant melanoma.40 It is showing great promise, indicating possibly that dual targets in the
same pathway are more effective than a single one.

PI3K/AKT Pathway—The PI3 kinase (PI3K) pathway is a prosurvival pathway,
antagonizing apoptosis. PI3K is activated by growth factor receptors. It has 2 actions: to
regulate cell proliferation via control of entry into the cell cycle and to activate AKT via
PDK1. AKT then directly activates transcription factors that cause transcription of
prosurvival genes. The PI3K/AKT pathway is constitutively activated in melanoma although
mutations in AKT are found in only a small proportion of melanomas.41 Mammalian target
of rapamycin (mTOR) is a serine/threonine kinase downstream in this pathway that leads to
increased cell growth. Increased activation of mTOR was found in 73% of melanoma cell
lines.42 This pathway can be opposed by PTEN.43 Mutation in PTEN has been found in 11%
of melanoma tumors44 and 43% of melanoma cell lines.45 A number of inhibitors of this
pathway are in the early stages of development, all targeting this pathway from different
angles. Thus far, none of the inhibitors of this pathway have demonstrated an objective
response.

Perifosine (Aeterna Zentaris) is an AKT inhibitor, inhibiting AKT phosphorylation and
translocation to the cell membrane. Unfortunately, a phase II trial using this drug in
metastatic melanoma showed only stabilization of disease in 3 out of 14 patients and was
associated with side effects requiring missed, delayed, or reduced dose in all patients.46

UCN-01 (Kyowa Hakko Kogyo) is an inhibitor of PDK-1, whose role is activation of AKT
thus leading to decreased apoptosis. A phase I trial demonstrated PR in one patient on this
medication. A subsequent phase II trial of UCN-01 in metastatic melanoma accrued 16
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evaluable patients with 4 patients demonstrating SD and 12 progressive disease. Median
PFS was 1.3 months and median OS was 7.3 months. It was relatively well-tolerated.47

Various mTOR inhibitors are also being evaluated in patients with melanoma.
Temsirolimus, CCL-779, (Wyeth) is an mTOR inhibitor that has been tested in a melanoma
phase II clinical trial with disappointing results with only one PR lasting just 2 months.48

Everolimus (Abbott) is another mTOR inhibitor with dual activity against EGFR. It is
currently under investigation in a phase II trial which has thus far demonstrated 7 out of 24
patients with stabilization of disease in an interim analysis.49

Dual pathway inhibition—It is believed that both the MAPK and the PI3K/AKT
pathways play key roles in melanoma tumorigenesis. Inhibition of the PI3K/AKT pathway
alone has been disappointing without objective response. Raf inhibition, on the other hand,
is limited to those bearing the BRAF mutation and is not durable in the majority of cases.
There is hope that using a combinatorial approach with inhibitors in both pathways will have
an additive positive effect. In cell culture, the combination of sorafenib, a non-selective Raf
inhibitor, with sirolimus, an mTOR inhibitor, caused a two-fold increase in apoptosis of
melanoma cells relative to sorafenib alone. This was attributable to an upregulation in genes
associated with endoplasmic reticulum stress-induced apoptosis.50 BEZ235 (Novartis) is
another molecule with dual mTOR and PI3K inhibition that has shown greater activity than
temsirolimus in preclinical melanoma models.51 There is also currently a phase Ib study
underway combining BEZ235 with the MEK inhibitor MEK162.52

KIT—Kit is a cytokine receptor that belongs to the type III receptor tyrosine kinase family.
Kit signaling plays an important role in a number of physiological processes including
melanogenesis.53 Overall, this mutation is rare but is most commonly found in melanoma
located on chronically sun-damaged skin, mucosa, and acral skin.54 The overall incidence
rate of Kit mutant melanoma has been reported to be 8%.55

Imatinib (Novartis) was the earliest Kit inhibitor tested in clinical trials for melanoma. Two
previous trials in which imatinib was tested for efficacy against melanoma demonstrated no
treatment response.56-57 However, it is important to note that the patients were not tested for
Kit mutation and it was determined that most selected patients had tumors that demonstrated
little to no Kit expression by immunohistochemistry. A recent phase II open-label, single-
arm trial using imatinib only in Kit mutant metastatic melanoma recruited a total of 43
patients and resulted in 23 CR, 13 PR, and 10 patients with SD. The median PFS was 3.5
months.58 Based on this study, it can be concluded that Kit inhibitors can play an important
role in the armamentarium against selected melanoma bearing this mutation. Multiple trials
are ongoing using newer tyrosine kinase inhibitors such as nilotinib, sunitinib, dasatinib, and
masitinib against Kit mutated melanoma.

c-MET—c-Met is a receptor tyrosine kinase that is activated by its ligand hepatocyte growth
factor and is essential for normal development, cell migration, growth, survival,
differentiation, and angiogenesis.59 In normal skin, c-Met is expressed on epithelial cells
and melanocytes, whereas hepatocyte growth factor is produced mainly by mesenchymal
cells and interacts with c-Met in a paracrine manner.60 c-Met has been found to be expressed
in 88% of melanomas61 with overexpression correlating with the invasive growth of
melanoma cells. Many melanomas also secrete hepatocyte growth factor, which can induce
sustained activation of c-Met in an autocrine fashion.62 Cabozantinib, XL184, (Exelixis) is a
c-Met and VEGFR2 inhibitor found in a phase II randomized discontinuation trial of
patients with advanced solid tumors that demonstrated a 5% objective response rate in
melanoma. Patients with bony metastases from pancreatic, breast, or melanoma had an
objective response of 87%.63 Cabozantinib is currently in a phase II trial among patients
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with various solid tumors, including melanoma.64 Foretinib, XL880, (GlaxoSmithKline) is
another c-Met/VEGFR2 inhibitor that also has shown some objective response activity in
patients with melanoma in a phase I trial.65

Epidermal Growth Factor Receptor—The epidermal growth factor receptor (EGFR) is
a member of a family of transmembrane protein kinase receptors which consists of the 4
receptors: EGFR (HER1 or ErbB1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 (HER4).66

The EGFR gene resides on chromosome 7. Several different ligands activate these receptors,
which then relay signals to the parallel MAPK and PI3K pathways leading to growth effects,
angiogenesis, migration, and invasion. EGFR has been shown to play an important role in
the growth and survival of many tumors including cutaneous malignancies. Anti-EGFR
agents are monoclonal antibodies directed at the extracellular domain of the receptor and
low-molecular weight adenosine triphosphate (ATP)-competitive inhibitors of the receptor’s
intra-cellular tyrosine kinase (TKI).

ErbB1 has been found to be expressed in up to 96% of primary melanomas and in 90% of
metastatic tumors.67 There are gains in chromosome 7, where EGFR resides, in about 50%
of melanomas, and increased copy number of chromosome 7 has been associated with poor
prognosis in some studies.68-69 ErbB3 is also frequently expressed in melanoma and has
been associated with tumor progression and a worse prognosis.70-72 Evidence of the
importance of EGFR signaling has been seen in melanoma cell lines70 as well as in animal
models.73 A screen for somatic mutations in ErbB4 revealed that 19% of metastatic tumors
harbored this mutation.74

The ErbB1 inhibitor erlotinib hydrochloride (Genentech) has been evaluated in a phase II
trial of metastatic melanoma and showed no objective responses, but 4 of 14 patients had
SD.75 The ErbB1/B2 inhibitor lapatinib is currently under investigation for melanoma
bearing the ErbB4 mutation after preclinical data suggests its effectiveness in ErbB4 mutant
melanoma. The ErbB1/B2 inhibitor gefitinib (AstraZeneca) was tested, and only 2 of 50
evaluable patients had PR.76 A trial of erlotinib hydrochloride in combination with the
vascular endothelial growth factor A inhibitor bevacizumab (Genentech/Roche) showed
greater efficacy, with 2 of 23 patients having PR lasting less than 6 months and 5 patients
having SD lasting greater than 6 months.77 Toxic effects were greater with this combination,
with 1 patient each experiencing myocardial infarction and bowel perforation.

Vascular Endothelial Growth Factor Receptor—Angiogenesis plays a major role in
tumor growth. Targeting the vascular endothelial growth factor receptor (VEGF) makes
logical sense and has been shown to affect tumor growth by inhibition of angiogenesis.
Although this is considered targeted therapy, it does not specifically target melanoma cells.
Among the VEGF inhibitors, Bevacizumab is perhaps the most extensively studied anti-
VEGF antibody. It is under investigation in combination with immunotherapy,
chemotherapy, and other targeted treatments in metastatic melanoma. It appears to have a
synergistic effect when used in conjunction with other systemic modalities.

Bevacizumab with immunotherapy—Phase II trial of bevacizumab and high-dose
interferon alpha-2b, which has antiangiogenic properties via down-regulation of basic-
fibroblast growth factor, in metastatic melanoma resulted in a median PFS of 4.8 months
and OS of 17 months as compared to historical control of bevacizumab alone with PFS of 3
months and OS of 8.5 months. Six patients had PR and 5 patients had SD for greater than 24
weeks.78 In a phase I trial of bevacizumab and ipilimumab for stage III or IV melanoma, of
the 21 patients who were evaluable, there were 8 PR, all of whom had durable responses
greater than 6 months, and 6 SD. Post-treatment biopsies showed activated vessel
endothelium with extensive T-cell trafficking, which were not seen in patients treated with
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ipilimumab alone. These results suggest a synergistic effect of VEGF and CTLA4
blockade.79

Bevacizumab with chemotherapy—There have been many trials looking at
bevacizumab used in conjunction with various chemotherapeutic regimens which include
temozolomide, nab-paclitaxel, carboplatin/paclitaxel, and dacarbazine. They have shown a
modestly improved PFS and/or OS relative to previously reported survival for bevacizumab
alone.80-84

Bevacizumab with other targets—It is still too early to say that bevacizumab has a
synergistic effect when used in conjunction with other targeted treatment. In a phase II trial
of bevacizumab and everolimus, median PFS was 4 months and OS was 8.6 months.85 A
triple combination trial of temozolomide, sorafenib (Raf kinase inhibitor), and bevacizumab
of 11 patients with refractory acral advanced melanoma, resulted in 1 CR, 2 PR, and 6 SD.86

However an interim report of another triple combination regimen of bevacizumab,
oxaliplatin, and sorafenib in a phase I/II trial accruing 6 patients showed 1 PR, 3 mixed
response, and 3 progression of disease.87 Additionally, there are trials ongoing combining
dasatinib and bevacizumab.

Ranibizumab—Ranibizumab (Genentech) is a monoclonal antibody fragment derived
from the same parent mouse antibody as bevacizumab. It is much smaller than the parent
molecule and has been affinity matured to provide stronger binding to VEGF-A. There are
currently multiple trials using this molecule for choroidal and uveal melanoma as an
adjuvant for tumor control or for control of radiation retinopathy or maculopathy.

Squamous Cell Carcinoma
SCC has been shown to have an increased expression of EGFR, with about 92-100% of SCC
demonstrating binding to EGFR antibody.88-89 High EGFR signaling has been associated
with aggressive disease, poor response to therapy, increased development of resistance to
cytotoxic chemotherapy, poor survival, and poor prognosis.90 Another study found that
primary SCC tumors were immunohistochemically focally weakly positive for EGFR while
metastatic SCCs were diffusely strongly positive, suggesting that stronger expression of
EGFR had a higher potential for metastasis.91

Cetuximab (Merck) is an anti-EGFR monoclonal antibody approved by the FDA for SCC of
the head and neck. It binds with higher affinity than natural ligands TGF-α and EGF.
Cetuximab inhibits progression in the cell cycle at the G0/G1 phase, increases expression of
the cell cycle regulator p27KIP1, and induces apoptosis by increasing expression of pro-
apoptotic proteins or by inactivation of anti-apoptotic proteins.92 It can also inhibit
angiogenesis via inhibition of VEGF, interleukin-8, and basic fibroblast growth factor.93

Cetuximab has been shown to be effective in case reports for recurrent non-resectable
squamous cell carcinoma as well as metastatic disease.94-96 There have been several phase I
and II trials using cetuximab in combination with platinum-based chemotherapy
documenting safety and efficacy in the combination regimen in metastatic, recurrent, or
refractory SCC of the head and neck.97-99 However, larger studies have not been done
documenting effectiveness as a monotherapy. Predictive biomarkers for success with
cetuximab include presence of EGFR in the tumor and wild-type for K-Ras100 and
BRAF101. The rationale is that these mutations constitutively activate the downstream
MAPK pathway that is independent of EGFR activity.

Panitumumab, ABX-EGF, (Amgen) is a human IgG2 monoclonal antibody against EGFR
that binds to EGFR like cetuximab. Phase I trials have shown it to be well-tolerated and

Chong et al. Page 8

Semin Cutan Med Surg. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



efficacious in colorectal carcinoma and non-small cell lung cancer. An open-label phase II
trial is currently underway to study the clinical efficacy in SCC. Matuzumab, EMD 72000,
(Merck/Takeda) is a humanized IgG1 monoclonal antibody against EGFR. It has been
shown to have tumor response against esophageal SCC, cervical carcinoma, ovarian
carcinoma, colorectal carcinoma, and head and neck SCC.102 A phase II trial of matuzumab
in patients with platinum-resistant ovarian carcinoma showed that matuzumab was well-
tolerated and demonstrated evidence of anti-tumor activity.103 There are currently no studies
at this time using this drug in the treatment of non-melanoma skin cancer.

EGFR TKI and Non-melanoma Skin Cancer
TKIs are synthetic low molecular weight molecules that interact with the intracellular
tyrosine kinase domain of several receptors including EGFR. They inhibit ligand-induced
receptor phosphorylation by competing for intracellular Mg-ATP-binding sites.104 Gefitinib
has been shown to inhibit EGFR and MAPK activation and Pak 1 activity in exponentially
growing cutaneous squamous carcinoma cells. It has been approved for the treatment of
non-squamous cell lung cancer after platinum-based or docetaxel based therapy failure and
has been shown to have modest activity in advanced skin SCC.105 Erlotinib is a potent
reversible, selective inhibitor of EGFR (ErbB1)106 which is also approved for non-squamous
cell lung cancer but has demonstrated effectiveness in other cancers as well.107 There are
several studies underway to investigate its utility in cutaneous SCC in combination with
radiotherapy, as an adjuvant, or as a neoadjuvant therapy.

Conclusion
Management of cutaneous malignancy has entered a new era. Understanding the molecular
basis for tumorigenesis has paved the way towards development of new molecules that
inhibit at critical sites necessary for neoplastic growth and survival. Some agents have
shown startling efficacy and yet others have equally surprised with their lack of efficacy,
making the poignant message that although the frontier of our understanding has advanced
significantly, the entire story is yet to be told.
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Figure 1.
Simplified schematic for pathways involved in melanoma tumorigenesis.
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Figure 2.
Hedgehog pathway in the pathogenesis of basal cell carcinoma.

Chong et al. Page 17

Semin Cutan Med Surg. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chong et al. Page 18

Systemic Therapy for Melanoma

Class Medication Mechanism of action

Immunotherapy High dose IL-2 IL-12 mediated killing of tumor via tumor-infiltrating lymphocytes

Ipilimumab CTLA-4 antibody

Intratumoral electroporation of IL-12 Gene transfer using in vivo DNA electroporation of IL-12 leading to IL-12
mediated killing of tumor

Targeted therapy Vemurafenib BRAF inhibitor

GSK118436 BRAF inhibitor

Sorafenib Non-selective RAF inhibitor

Selumetib (AZD6244) MEK inhibitor

GSK1120212 MEK inhibitor

MEK162 MEK inhibitor

Sirolimus mTOR inhibitor

Temsirolimus (CCL-779) mTOR and VEGF inhibitor

Everolimus mTOR and VEGF inhibitor

BEZ235 mTOR and PI3K inhibitor

Cediranib VEGF inhibitor

Perfosine AKT inhibitor

UCN-01 PDK-1 inhibitor

Imatinib KIT inhibitor

Nilotinib KIT inhibitor

Sunitinib KIT inhibitor

Dasatinib KIT inhibitor

Masitinib KIT inhibitor

Cabozantinib (XL184) c-MET and VEGFR2 inhibitor

Foretinib (XL880) c-MET and VEGFR2 inhibitor

Gefitinib ErbB1/B2 inhibitor

Bevacizumab EGFR inhibitor

Ranibizumab Monoclonal antibody fragment VEGF-A inhibitor
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Systemic Therapy for Squamous Cell Carcinoma

Medication Mechanism of action

Cetuximab EGFR monoclonal antibody

Panitumumab IgG2 monoclonal antibody against EGFR

Matuzumab Humanized IgG1 monoclonal antibody against EGFR

Gefitinib EGFR TKI

Erlotinib ErbB1 inhibitor
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