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Abstract
To overcome difficulties in evaluating cognitive function in mouse models of genetic disorders, it
is critical to take into account the background strain of the mouse and reported phenotypes in the
clinical population being studied. Recent studies have evaluated cognitive function across a
number of background strains and found that spatial memory assayed by the water maze and
contextual fear conditioning often does not provide optimal results. The logical extension to these
results is to emphasize not only spatial, but all attributes or domains of memory function in
behavioral phenotyping experiments. A careful evaluation of spatial, temporal, sensory/perceptual,
affective, response, executive, proto-linguistic, and social behaviors designed to specifically
evaluate the cognitive function each mouse model can be performed in a rapid, relatively high
throughput manner. Such results would not only provide a more comprehensive snapshot of brain
function in mouse disease models than the more common approach that approaches nonspecific
spatial memory tasks to evaluate cognition, but also would better model the disorders being
studied.
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In the evaluation of behavioral phenotypes in mouse models of genetic disorders, the
background of the mouse provides a major contribution to the interpretation of any
behavioral results (Moy, et al., 2008). This is not a trivial point as the FVB/N strain is
commonly used for the creation of mouse models of genetic disorders, and the SJL/J mouse
has been used in studies evaluating neurotoxicological effects on neurocognition (cf.,
Berman, et al., 2008; Hornig, et al., 2004). The SJL/J and FVB/N strains, however, are
prone to early onset blindness, precluding many researchers from evaluating any behavioral
phenotypes of founder generations of novel mouse models (Errijgers, et al., 2007). This is
problematic because it is highly impractical for researchers to backcross a newly developed
genetic model mouse with C57BL/6J mice until congenic prior to being able to determine if
the mouse serves as a valid model for the disorder being studied.

As a step toward ameliorating this difficulty, Farley et al. (2011) applied a collection of
behavioral tasks emphasizing nonspatial information processing to evaluate memory in
FVB/N mice. Their focus was on the use of common behavioral paradigms that do not
require visual function to demonstrate that FVB/N mice do not show poor memory or
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impaired hippocampal function, just poor vision. The primary strength of this report was that
most of the tasks they used can easily be applied by most laboratories set up for behavioral
analysis. What remained overlooked, however, was the applicability of the tasks they used
as de facto models for human cognitive tasks evaluated in mouse models of disease as well
as what specific domains beyond “memory” were being tested by each of the tasks they
employed.

Research into mouse models of genetic disease tend to use the water maze, passive/active
avoidance, or contextual fear conditioning as the primary index of “learning and memory”
(Llano Lopez, et al., 2010; Stewart, Cacucci, & Lever, 2011), even though spatial memory is
not always analogous to the learning and memory impairments reported in a number of
genetic disorders. Furthermore, inherent in the use of the water maze as a measure of
memory is the idea that memory has a direct relationship with hippocampal integrity, which
is not true across all domains. In addition to spatial processing, the hippocampus has been
implicated in temporal processing in humans and rodents (Chiba, Kesner, & Reynolds,
1994; Hopkins, Kesner, & Goldstein, 1995; Fouquet, Tobin, & Rondi-Reig, 2010). This is
important because temporal processing deficits, have been linked to damage or impaired
function to a number of brain areas, including (but by no means limited to): hippocampus
(Fortin, Agster, & Eichenbaum, 2001; Hunsaker, et al., 2008), anterior thalamus (Wolff, et
al., 2006), infralimbic/prelimbic (IL/PL) cortices (Mitchell & Laiacona, 1998), parietal
cortex (Marschuetz, 2005), basal ganglia (Coull, Cheng, & Meck, 2011), and cerebellum
(Pakaprot, Kim, & Thompson, 2009).

An important consideration in selecting an attribute to study in mouse disease models is to
directly model what is being evaluated in human clinical populations. Temporal processing
has been evaluated explicitly in a number of disorders, even being shown to be prodromal to
full disease onset/progression in a number of disorders. For example, temporal ordering or
sequencing deficits have been reported in Alzheimer’s Disease (Bellassen, et al., 2012),
Parkinson’s Disease (Sagar, et al., 1988), Huntington’s Disease (Pirogovsky, et al., 2009),
fragile X-associated disorders (Johnson-Glenberg, 2008; Simon, 2011), schizophrenia
(Davalos, et al., 2003a,b), and autism spectrum disorders (Allman, et al., 2011)--in some
cases, in the absence of memory deficits. Behavioral paradigms emphasizing temporal
processing, when carefully parameterized, serve as appropriate models for these prodromal
deficits seen in clinical populations.

In moving beyond simple memory tests in mice, it is important to evaluate all aspects of
brain function in mouse models of genetic disorders, not just simple memory function--as
clinical research has moved beyond using solely intelligence testing and into defining
collections of quantitative traits that scale with either the severity of disease progression or
dosage of the underlying genetic mutation, referred to as “endophenotypes”.
Endophenotypes are collections of quantitative traits hypothesized to represent risk for
genetic disorders at more biologically (and empirically) tractable levels than the full clinical
phenotype which often contains more profound deficits shared across numerous genetic
disorders. This behavioral endophenotyping approach this review emphasizes facilitates the
identification of behavioral deficits that are specifically associated with both the specific
genetic mutation and the pathological features observed in the clinical populations being
modeled (cf., Hunsaker, 2012). When designed to evaluate specific disease related
hypotheses, behavioral endophenotypes model quantitative patterns of behavioral deficits
that scale with the size and/or severity of the genetic mutation (Gottesman & Gould, 2003).
Importantly, although this behavioral or cognitive endophenotyping strategy does deviate
slightly from the strict definition of an endophenotype as outlined by Gould and Gottesman
(2006), the basic process and the underlying theory is the same.
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To evaluate behavioral or neurocognitive endophenotypes in mice, it is critical to first define
what is known concerning neurocognitive function in the population being studied,
preferably through direct interactions with clinical scientists directly studying the disorder in
question. The second step is to develop a set of mouse behavioral tasks to explicitly model
the pattern of cognitive strengths and weaknesses present in the clinical populations in
collaboration or consultation with the clinical scientists. The final step is to continue task
refinement to evaluate the mouse model across the maximal number of features present in
the clinical population to develop either risk prodrome for later disease progression/onset or
biomarkers that can be used as outcome measures for interventional studies (cf., Hunsaker,
2012). The resulting data should provide a quantitative pattern of strengths and weaknesses
that scale with the dosage of the mutation in question.

This review expands upon Hunsaker (2012) by moving beyond simply providing an
underlying theoretical foundation for behavioral endophenotyping of mouse models of
genetic disease. This is important as the review from Hunsaker (2012) proposed the
theoretical foundation for behavioral endophenotyping in an abstract sense, but the
information therein is difficult to apply to all but the highly experienced behavioral
phenotyping laboratory. The present review will explicitly outline an intuitive, practical, and
readily applicable methodology that can be applied by experienced behavioral
neuroscientists, behavioral phenotyping laboratories, as well as molecular biologists in a
relatively straightforward manner.

Approaches to Endophenotyping
Since the tacit acceptance of the water maze, passive/active avoidance and contextual fear
conditioning as the standard memory tasks for mouse models of disease (cf., Llano Lopez, et
al., 2010; Stewart, Cacucci, & Lever, 2011), the development of behavioral tasks to dissect
the role of brain regions affected by the mutation for memory processing has stalled--at least
in mice. In contrast, during this same period the research into the neural systems underlying
learning and memory processes has reached a boon in rats. Quite recently, an effort has been
made to translate the paradigms developed in rats into the mouse disease research
(Hunsaker, et al., 2009, 2010; Nakazawa, et al., 2004; Rondi-Reig, et al., 2006).

What has remained elusive in the field of behavioral genetics is a clear theoretical rationale
underlying the choice of experiments performed on each given model (i.e., water maze does
not test all types of spatial memory, let alone all types of memory). In order to complete the
goal of comprehensively evaluating learning and memory processes across all mouse
models, it becomes critical to step back and separate learning and memory into component
attributes that can be evaluated in turn (cf., Kesner & Rogers, 2004; White & McDonald,
2002). Such an approach allows the murine researcher to evaluate brain function at a level
more sophisticated than previously possible using more standard behavioral tasks not
developed with any particular cognitive domain in mind (cf., Hunsaker, 2012).

Before moving into a closer analysis of the proposed approach, it is important to mention the
pitfalls with the common memory tasks used in mice: the water maze, passive/active
avoidance, and contextual fear conditioning. All of these tasks can be useful as a component
of a phenotyping approach, but in themselves, do not allow researchers to specifically
determine the nature of impaired memory in mouse models. For all these tasks there are
confounding factors relating to anxiety and, more importantly, the use of negative
reinforcement as the primary motivation for task performance (cf., Barkus, et al., 2010).
Additionally, it has been suggested on numerous occasions that the water maze may not be
an appropriate task for use in mice, as their performance relative to rats is poorer than would
be predicted when compared to performance on non-water based paradigms (Frick, Stillner,
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& Berger-Sweeney, 2000; cf., Whishaw & Tomie, 1996)--and dry land alternatives are often
slow to be adopted (cf., Kesner, Farnsworth, & DiMattia, 1989; Llano Lopez, et al., 2010).
Furthermore, when negative reinforcement is used for motivation, especially using assays
such as contextual fear conditioning to evaluate spatial memory, models demonstrating
disorders in affect (i.e., depression or anxiety disorders) may demonstrate memory deficits
for reasons other than impaired spatial processing (cf., Banik & Anand, 2011).

Attributes of Memory Processing
Table 1 outlines the first consideration in developing or choosing behavioral experiments to
test mouse disease models, which is to consider what type of memory needs to be tested in
the mouse. Briefly, one has to consider if the disorder being studied primarily results in an
episodic (Event-Based) memory deficit, Knowledge-Based memory deficits, or executive
function (Rule-Based) deficits (Kesner & Hunsaker, 2010; Kesner & Rogers, 2004).
Knowledge-based memory is often referred to as semantic memory in the human episodic
memory literature. This review will use the term knowledge-based memory because
semantic memory has an implicit language component that cannot be evaluated directly in
rodents. It is more analogous to the reference memory system proposed by Olton et al.
(1979). Once that is determined, then the component memory domains can be identified and
tested using experiments designed with each disorder and model in mind (Hunsaker, 2012;
Simon, 2007, 2011).

Table 2 outlines a collection of simple tasks based on each component attribute that can be
used to test cognitive dysfunction in mouse disease models. Aside from spatial attribute
commonly tested, along with the temporal, response, social, and sensory/perceptual
attributes tested thoroughly by Farley et al. (2011), it is also critical to evaluate the role of
affect, proto-language, and executive functioning attributes in mouse models of
neurodevelopmental disorders, as these domains are often profoundly affected in these
populations (Hunsaker, 2012; Simon, 2007, 2011).

An often overlooked, but critical consideration in choosing behavioral assays is that of the
neuropathology associated with any disorder being modeled. It seems an obvious point that
one would choose behavioral paradigms that emphasize spatial (and temporal) processing to
evaluate disorders with known hippocampal pathology (e.g., Alzheimer’s Disease) and tasks
emphasizing response learning in tasks showing clear basal ganglia pathology (e.g.,
Parkinson’s Disease), but unfortunately this is not consistently taken into consideration in
experiments using mouse models of genetic disorders (cf., Taylor, Greene, & Miller, 2010;
Wesson, et al., 2011).

Table 3 outlines neuroanatomical substrates underlying each attribute in mice that can be
consulted to guide the development or application of behavioral tasks for mouse models of
disease. Importantly, although these anatomical structures have been shown to underlie the
attributes as mentioned in Table 3, this description is more of a blueprint of structures that
are critically involved with these processes (for references pertaining to the structures
mentioned in Table 3 cf., Arns, Sauvage, & Steckler, 1999; Dere, et al., 2007; Fischer &
Hammerschmidt, 2011; Fukabori, et al., 2012; Harvey, Cohen, & Tank, 2012; Hunsaker and
Kesner, 2010; Johansen, et al., 2011; Kargo, Szatmary, & Nitz, 2007; Lalonde & Strazielle,
2003; Madsen, et al., 2012; Matzel & Kolata, 2010; Simpson, Kellendonk, & Kandel, 2010).
Stated another way, when one brain region is shown to underlie or be involved in a process,
it is more likely than not that a larger network involving the candidate neuroanatomic
structure actually underlies the process, and that the contributions of the larger network is
more poorly understood than the role for the single structure. An example is the
hippocampus: hippocampal ablations result in profound deficits for spatial and temporal
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processing (cf., Jerman, Kesner, & Hunsaker, 2006; Hunsaker, et al., 2008), but removal of
inputs/outputs from the entorhinal cortex and septal nuclei result in qualitatively similar
deficits (cf., Hunsaker, Tran, & Kesner, 2008). As such, it can be said the neural networks
that include the hippocampus, and not the hippocampus in isolation, subserve spatial and
temporal processing.

Application of the Attributes to Behavioral Endophenotyping
Despite the need to move beyond limiting behavioral research to the standard behavioral
paradigms (i.e., water maze, contextual fear conditioning), it is by no means necessary to
avoid these tasks all together. Rather, it is important to integrate these tasks into more
through behavioral analysis necessary for elucidating behavioral endophenotypes.

To begin, it is important to evaluate the basic sensory function in all mice, as any deficits in
basic sensation or perception confound interpretations of behavioral results (Crawley, 2007).
Sensory deficits do not preclude the behavioral analysis of a mouse model. When a mouse
shows sensory deficits, either the model can be bred onto a different background strain over
numerous generations--commonly >10 generations backcrossed onto the C57BL/6J strain--
or else behavioral tasks can be chosen that minimize the contribution of the particular
sensory modality that is not being processed, as Farley et al. (2011) demonstrated in their
report emphasizing behaviors not requiring vision in mice that are blind from an early age.

After evaluating basic sensory function in the mouse model, it is critical to determine the
pattern of behavioral strengths and weaknesses in the population being modeled by the
mouse. With these information from the clinical population, it is important to either create or
adopt behavioral tasks to evaluate the same cognitive attributes or domain as tested in the
clinical population. For example, if a disorder being modeled shows global memory deficits
(measured by intelligence (IQ) and neuropsychological tests) without concomitant
impairments for executive function, then the mouse model needs to be tested for memory
across a number of domains or attributes evaluated by the neuropsychological tests to better
dissect cognitive function in the model. In this example, executive function should also be
evaluated, but in this case to verify intact executive function in the model.

More concretely, a general memory deficit may be mediated by an inability to encode new
information, consolidate/retrieve encoded information, or an inability to understand the rules
required to perform correctly on a given test. All of these factors can be tested in mice, and
can further be evaluated across domains: spatial, temporal, and response memory can be
specifically evaluated in the mouse, as can the contribution of affect to memory, anxiety,
and depressive behaviors. With these data, research into the mouse model may actually
serve to inform the clinic as to more specific domains that can be tested in the clinic--
emphasizing a direct interaction across the research in the clinic and the behavioral genetics
laboratory (cf., Hunsaker, 2012).

A prime example of applying these attributes to develop an appropriate behavioral
endophenotype of a mouse model is the elucidation of the BTBR T+tf/J mouse as a putative
model of behavioral related to autism spectrum disorders (Moy, et al., 2007, 2008). Autism
spectrum disorders are behaviorally diagnosed using on three core criteria: aberrant
reciprocal social interactions, deficits in social communication, and repetitive, perseverative
behaviors. As can be imagined, the typical battery of behavioral tasks present in behavioral
phenotyping labs were initially unable to model these core features, as memory deficits,
profound motor dysfunction, and impaired fear processing are not core criteria for an autism
spectrum disorder diagnosis.
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Recently, however, these three core features were broken down into component processes
and each tested in turn to determine how well the mouse models autistic-like features.
Reciprocal social interactions were reduced into the social recognition, social anxiety, and
sociability domains that can be tested in turn. The evaluation of repetitive, perseverative
behaviors did not require breaking the behaviors into component attributes, but rather
required the development of novel behavioral paradigms to specifically model the results
seen in the tests commonly administered to individuals with autism spectrum disorders. The
evaluation of abnormal social communication was more difficult, as it required the careful
analysis of vocalizations made by mice using tools from other disciplines. In short,
ultrasonic vocalizations have been collected and their rate used as a measure of affect or
stress (Moy, et al., 2007, 2008), but it was determined that if the individual vocalizations
were analyzed spectrographically, differences among strains were possible, and any
systematic differences unique to certain trains may be interpreted as abnormal
communication. Altered scent marking behaviors also serve as communication deficits in
mice.

To evaluate impaired social interactions, it was not only necessary to evaluate the general
sociability of mice, but also to evaluate in more detail the interactions among the mice
modeling autistic features and mice that do not. It has been demonstrated that the BTBR T
+tf/J mouse shows reduced social approach to other BTBR T+tf/J mice, as well as to
C57BL/6J mice, that the BTBR T+tf/J mice show elevated levels of social anxiety, and
behaviors analogous to gaze avoidance, a commonly reported behavior in individuals with
autism spectrum disorders (Bolivar, Walters, & Phoenix, 2006; Defensor, et al., 2010;
McFarlane, et al., 2007; Pobbe, et al., 2010, 2011; Yang, et al., 2012). It has also been
demonstrated that the BTBR T+tf/J mouse shows abnormalities in proto-linguistic processes
as measured using social and nonsocially evoked ultrasonic vocalizations. These
vocalizations are both reduced in quantity, and show abnormal structure when evaluated
spectrographically (Scattoni, Ricceri, & Crawley, 2011; Scattoni, et al., 2008). Similar
findings have been reported in communicative behaviors involving scent marking, an
important method of communication among rodents (Wohr, Roullet, & Crawley, 2011). To
evaluate repetitive and stereotyped behaviors as well as perseverative behavior reported in
autism spectrum disorders, a number of paradigms were developed. These range from
perseverative, restricted search patterns in the holeboard and impaired response reversal
learning on a T maze (Moy, et al., 2007, 2008). One recent report of intact reversal learning
with predictable reward shifts, but impaired probabilistic reversal with 80/20 reward
contingencies directly models results of clinical research into autism spectrum disorders
(Amodeo, et al., 2012). Motor and cognitive stereotypies have also been reported in the
BTBR T+tf/J mouse (Pearson, et al., 2010).

As another example of the approach to behavioral endophenotyping, one can use the
evolution of the research into one of the fragile X-associated disorders, the fragile X
premutation. The fragile X premutation is the result of a tandem trinucleotide repeat on the
5′ untranslated region of the FMR1 gene that results in excess FMR1 mRNA and slight
reductions in the FMR1 protein (FMRP) levels. Initially, it was thought the carriers of the
premutation were cognitively unaffected by the mutation (Hunter, et al., 2008), but more
recently a cognitive phenotype has been evaluated that includes altered hippocampal-
dependent episodic learning, reduced affect, and spatiotemporal processing that is negatively
modulated by increasing CGG repeat length (Goodrich-Hunsaker, et al., 2011a,b,c; Hessl, et
al., 2011; Koldewyn, et al., 2008). There are two mouse models of the premutation, the
CGG KI mouse (Willemsen, et al., 2003), and the CGG-CCG mouse (Entezam, et al., 2007).
Both models have been cognitively evaluated using the traditional approach, using the water
maze or passive avoidance to evaluate memory function. Despite identifying cognitive
deficits and elevated anxiety in the CGG KI (van Dam, et al., 2005) and CGG-CCG mice
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(Qin, et al., 2011), the results are difficult to interpret in light of the phenotypes reported in
premutation carriers, who do not consistently show memory deficits or anxiety disorders
(Hunter, et al., 2010).

More recently, an endophenotyping approach has been applied to the CGG KI mouse,
designed to specifically model the spatiotemporal processing results from Goodrich-
Hunsaker et al. (2011a,b,c). The approach was to model the modulation of cognitive
function seen in carriers of the premutation rather than large-scale deficits, because in these
studies there were not consistent group differences between control participants and carriers
of the fragile X premutation. The CGG KI mouse shows impairments for spatial processing,
temporal processing, and reduced visuomotor function; furthermore, all these impairments
worsen as a function of increasing CGG repeat length--suggesting the experimental
paradigms may be useful to elucidate a behavioral endophenotype (Diep, et al., 2012;
Hunsaker, et al., 2009, 2010, 2011; cf., Gottesman & Gould, 2003; Gould & Gottesman,
2006; Hunsaker, 2012). What remains untested in the mouse models of the premutation are
any contribution of altered affect and executive function as has been reported in premutation
carriers (Hessl, et al., 2011; Hunter, et al., 2012)

A number of neurodegenerative disorders also have mouse models that have not been
throughly characterized beyond the traditional behavioral paradigms. Individuals with
Huntington’s Disease do not only show chorea, but also progressive deficits for cognitive
function. More precisely executive functioning deficits worsen across time into a subcortical
dementia, as do memory deficits and neuropsychiatric sequelae such as anxiety, depression,
and blunted affect (cf., Dorsey, et al., 2012). These features have been modeled in the mouse
models (Fielding, et al., 2011). However, the neuropathological features associated with
Huntington’s Disease, including reduced frontal-striatal connectivity, suggest the patients
should show difficulties with temporal ordering and temporal functioning, and this has been
proposed to underlie episodic memory deficits (Pirogovsky, et al., 2009). In Huntington’s
Disease, deficits in picture sequencing and sequential motor learning have been reported
(Feigin, et al., 2006; Foroud, et al., 1995; Ghilardi, et al., 2008; Snowden, et al., 2002), as
well as deficits for a temporal ordering paradigm designed initially for rodents (Pirogovsky,
et al., 2009). More importantly with the Pirogovsky et al. (2009) report, impaired
performance for temporal ordering was correlated with time to symptom onset in individuals
with the mutation underlying Huntington’s Disease--suggesting temporal ordering may be
an endophenotype or prodromal feature that can be used to characterize the disease. In fact,
temporal processing deficits have been reported in Alzheimer’s Disease (Bellassen, et al.,
2012), Parkinson’s Disease (Sagar, et al., 1988), Huntington’s Disease (Pirogovsky, et al.,
2009), fragile X-associated disorders (Hunsaker, 2012; Johnson-Glenberg, 2008; Simon,
2011), schizophrenia (Davalos, et al., 2003a,b), and autism spectrum disorders (Allman, et
al., 2011).

Unfortunately, to date these sequencing/temporal processing features of Huntington’s
Disease (among many others) have not been modeled in the respective mouse models. There
are a number of behavioral paradigms that have been used in mouse disease models that can
be use to test temporal processing in neurodegenerative disease, but they have yet to be
widely applied in behavioral genetics research (DeVito, et al., 2009; Hunsaker, 2012;
Hunsaker, et al., 2010).

Practical Advice to Apply an Endophenotyping Approach
There are a number of difficult questions that must be answered in the development of a
comprehensive behavioral endophenotyping approach, including: how many of these
behavioral tests could be conducted on a single cohort of mice? Would multiple tests on the
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tasks listed lead to potential confounds? What are potential the contributions/confounds of
environmental effects such as housing conditions on mouse behavior? These are important
factors as small changes in experimental design can make the difference between the
successful analysis of a behavioral phenotype and the collection of uninterpretable data.

The question of testing the same group or mice across multiple is sometimes more
complicated as it seems, but a solution can be designed if viewed through the attribute
model. The most critical aspects that need to be taken into account when performing
multiple experiments on the same mice are twofold: any role for negative affect on task
performance, and the rule-based memory system succumbing to interference across tasks. It
is important to keep in mind the role for negative affect for task performance not only on the
present task, but also future tasks performed with the same group of mice. If a mouse is to
receive fear conditioning in the middle of an experimental design, it will take a week or so
of handling for the mouse to unlearn any associations between the fear conditioning and the
experimenter (cf., Rudy & O’Reilly, 2001).

For the rule based memory system, it is important to remember that mice and rats take a
significantly longer amount of time to learn and apply rules to guide behavior than humans.
As such, if a researcher wants to perform any experiments that require the mouse to learn a
rule or set of rules to guide behavior, and are not just exploiting the natural tendency of mice
to explore their environment and behaviorally respond to novelty across domains (i.e.,
novelty detection), then intervening tasks not requiring rule learning/implementation need to
be presented prior to the usage of another task taxing the rule-based memory system. Also
important in this case is the use of very different apparatus for each rule-based learning task.
or else previously learned rules will have to be explicitly extinguished prior to beginning
training on a new task (cf., Cohen & O’Reilly, 1996).

As a rule of thumb, it is best to perform at most a set of experiments evaluating basic
sensory function in mice (cf., Crawley, 2007), followed by tasks evaluating each attribute in
turn, followed potentially by the water maze/avoidance tasks and fear conditioning as the
final task to prevent carryover from experiments interfering with subsequent experiments. In
this, most likely more than one experiment tasking executive function/complex rule learning
can be performed. More than one of these tasks will result in interference that will confound
interpretation of subsequent rule-based tasks. Additionally, aside from the water maze and
fear conditioning experiments, it is recommended that series of experiments be
counterbalanced across animals and groups, preferably using a latin square design to reduce
the contribution of task order to any observed effects. Additionally, it is often worth testing
the ability of mice to perform the behavioral task battery by evaluating a few wildtype mice
of the background strain being used to verify they can perform all the tasks without being
overwhelmed by excessive testing.

In addition to genetic background, the treatment of mice prior to and during experimentation
is critical. It has been shown a number of times that alterations to the cage environment is an
important factor for later behavioral improvement--such that an enriched environment
results in better performance on behavioral tasks and increased grey matter and dendritic
complexity. As such, mice should preferably be housed in a standard fashion, either with a
set number of mice per cage or else singly housed--but it is important to note that mice do
not do as well singly housed as rats, they tend to show increased anxiety levels which may
affect task performance (cf., Van de Weerd, et al., 2002). As such, multiple housed is
recommended unless precise drug dosing or food deprivation is required that precludes
group housing. Furthermore, the amount of stimuli available to the mice within each cage
should be uniform as well across cages. As such, a standard environment needs to be
maintained among all mice during experimentation.
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Conclusions
An important consideration in the study of mouse models of any genetic disease is how well
the behavior of the mouse serves to actually model the behaviors present in the clinical
population being modeled. In order to optimally address this concern is to explicitly develop
a behavioral endophenotype of the mouse model in which the mouse is explicitly tested
using tasks rigorously designed to explicitly test the cognitive domains affected in the
clinical population.

To achieve this goal, it is important to not only apply standard behavioral tasks to mouse
models of genetic disorders, but also to directly evaluate brain function across all cognitive
domains. Furthermore, it is critical for behavioral genetics labs to interact with clinical
research laboratories to develop comprehensive behavioral endophenotypes for the disorder
being modeled. The strength of behavioral genetics and the mouse models is the ability to
apply behavioral paradigms known to be subserved by known anatomical loci to determine
not only the behavioral phenotype of the model, but also to elucidate candidate brain regions
affected by the mutation (Robbins, et al., 2012). When research into mouse models of
genetic disorders emphasizes patterns of mnemonic strengths and weaknesses across
domains (i.e., the behavioral endophenotype), the results will not only directly model the
disorder being studied, but may serve both as risk prodrome for disease onset or progression
as well as outcome measures that can be applied by the clinic in interventional studies.
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TABLE 1

Description of the memory systems used in the attribute theory as applicable to research into mouse models of
disease

Event-Based Knowledge-Based Rule-Based

Encoding

• Pattern separation

• Transient representations

• Selective attention

• Associated with permanent
memory representations • Strategy selection

• Rule maintenance
• Short term memory

• Intermediate term memory
• Perceptual memory

Retrieval

• Consolidation • Long term memory

• Short term working memory

• Pattern completion • Retrieval based on flexibility and
action
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TABLE 2

Tasks that can be used to evaluate behavioral phenotypes in mice

Attribute Event-Based Knowledge-Based Rule-Based

Spatial

• Metric processing

• Topological
processing

• Magnitude
estimation

• Delay match to
place with
variable
interference

• Biconditional discrimination

• Delay match to place with
variable cues

• Declarative sequence learning

• Cheeseboard

• Covert attention tasks

Temporal

• Trace
conditioning

• Temporal ordering

• Sequence learning

• Sequence completion

• Duration discrimination

• 5 choice serial reaction
time

• Peak interval timing

• Time left task

Sensory Perceptual

• Delay match to
sample with
variable
interference

• Biconditional discrimination

Response

• Ladder walking
tasks

• Acquisition of
skilled reaching

• Working memory
for motor
movements

• Delay match to direction

• Direction discrimination

• Nondeclarative sequence learning

• Reversal learning

• Probabilistic reversal
learning

• Operant conditioning

• Stop signal task

• Serial reversal learning

Affect

• Reward contrast
with variable
reward value

• Classical conditioning

• Trace conditioning

• Conditioned preference

• Anticipatory contrast

• Operant conditioning

• Gambling Task

• Latent inhibition

Specific cross-domain tasks important for murine research into neurodevelopmental disorders

Executive Function

• Contextually cued biconditional discrimination

• 5 choice serial reaction time task

• Operant conditioning

• Covert attention tasks

• Reversal learning

• Probabilistic (80/20) reversal learning

• Serial reversal learning

• Stop signal task

• Gambling task

• Latent inhibition

Social • Social transmission of food preference
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Specific cross-domain tasks important for murine research into neurodevelopmental disorders

• Social novelty detection

Proto- Language • Spectrographic analysis of ultrasonic vocalizations
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Table 3

Neuroanatomical correlates underlying each attribute in mice

Attribute Event-Based Knowledge-Based Rule-Based

Spatial Hippocampus Parietal Cortex IL/PL*
Retrosplenial cortex

Temporal Hippocampus
Basal Ganglia

Anterior Cingulate

IL/PL* cerebellum

Anterior Cingulate

IL/PL*

Sensory/ Perceptual Sensory cortices
TE2 Cortex†
Perirhinal Cortex
Piriform Cortex

IL/PL*

Response Caudoputamen Precentral Cortex
Cerebellum

Precentral Cortex
Cerebellum

Affect Amygdala Agranular Insula#
Amygdala

Agranular insula#

IL/PL*

Executive Function
Basal Ganglia

IL/PL*
IL/PL*
Parietal cortex

IL/PL*
Parietal cortex

Social
Underlying neural networks still being elucidated

Proto-Language

Murine homologs of

†
 inferior temporal cortex

*
medial prefrontal cortex

#
orbitofrontal cortex
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