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Neuronal Learning of Invariant Object Representation in the
Ventral Visual Stream Is Not Dependent on Reward
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Neurons at the top of primate ventral visual stream [inferior temporal cortex (IT)] have selectivity for objects that is highly tolerant to
variation in the object’s appearance on the retina. Previous nonhuman primate (Macaca mulatta) studies suggest that this neuronal
tolerance is at least partly supported by the natural temporal contiguity of visual experience, because altering that temporal contiguity
can robustly alter adult IT position and size tolerance. According to that work, it is the statistics of the subject’s visual experience, not the
subject’s reward, that instruct the specific images that IT treats as equivalent. But is reward necessary for gating this type of learning in the
ventral stream? Here we show that this is not the case—temporal tolerance learning proceeds at the same rate, regardless of reward
magnitude and regardless of the temporal co-occurrence of reward, even in a behavioral task that does not require the subject to engage
the object images. This suggests that the ventral visual stream uses autonomous, fully unsupervised mechanisms to constantly leverage
all visual experience to help build its invariant object representation.

Introduction
Neurons at the top of the ventral stream, inferior temporal cortex
(IT), have shape selectivity that is remarkably tolerant to varia-
tions in each object’s appearance (e.g., object position, size vari-
ation) (Logothetis and Sheinberg, 1996; Tanaka, 1996; Vogels
and Orban, 1996). This neuronal tolerance likely underlies the
primate ability to recognize objects in the face of image variation
(Hung et al., 2005; Li et al., 2009). How IT neurons obtain this
tolerance remains poorly understood. One hypothesis is that the
ventral stream leverages natural visual experience to build toler-
ance, and temporal contiguity cues can participate in “instruct-
ing” tolerance— because each object’s identity is temporally
stable, different retinal images of the same object tend to be tem-
porally contiguous. The ventral stream could take advantage of
this natural tendency and learn to associate neuronal representa-
tions that occur closely in time to yield tolerant object selectivity
(i.e., optimizing the “slowness” of visual representation)
(Foldiak, 1991; Stryker, 1991; Wiskott and Sejnowski, 2002). We
previously reported evidence for this hypothesis—the position
and size tolerance of IT neurons are predictably reshaped by tar-
geted manipulations of temporally contiguous experience. In
particular, visual experience can both destroy existing tolerance
and build new tolerance, depending on the details of the provided

experience [i.e., “unsupervised temporal tolerance learning”
(UTL)] (Li and DiCarlo, 2008, 2010).

In this study, we ask: does UTL depend on the reward (R)
contingencies of the animal? This question is central because it
assesses the relevance of UTL to natural vision, and it informs
computational models of the ventral stream that incorporate
temporal contiguity learning (Wallis and Rolls, 1997; Wiskott
and Sejnowski, 2002; Wyss et al., 2006; Masquelier and Thorpe,
2007). One hypothesis is that reward plays a “permissive” role
and the ventral stream only learns tolerance from visual experi-
ence during elevated reward states. Alternatively, the ventral
stream continually leverages all visual experience to build toler-
ance, regardless of reward state. Intuitively, our central underly-
ing question is: does UTL take place in animals that are naturally
experiencing the world in which external rewards may be few and
far between?

We first note that we termed UTL “unsupervised” because the
statistics of the visually arriving images (not the external reward)
instruct what will be learned—images that occur in close spatio-
temporal proximity are gradually learned to be treated as equiv-
alents in the IT representation. However, our previous work was
done in the context of water-restricted animals receiving liquid
co-occurrent with all experimentally controlled visual experience
(Li and DiCarlo, 2008, 2010). Thus, those studies cannot rule out
the hypothesis that reward is required to gate UTL.

Here we examine the effect of reward on gating UTL by
strongly varying the magnitude and the timing of rewards to
monkey subjects during visual experience previously shown to
induce UTL. We used behavioral measures to confirm reward
state changes in the animals, and we measured the strength of
UTL under different reward contingencies. We found that UTL
proceeded at the same, experience-driven rate as previous re-
ports, regardless of the reward contingencies.
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Materials and Methods
Animal subjects
All animal procedures were performed in accordance with NIH guide-
lines and the MIT Committee on Animal Care. Two male rhesus mon-
keys (Macaca mulatta, 8 and 6 kg) were used in the study. Aseptic surgery
was performed to implant a head post and a scleral search coil. After brief
behavioral training (1–3 months), a second surgery was performed to
place a recording chamber (18 mm diameter) to reach the anterior half of
the temporal lobe.

Visual stimuli
In each experimental session, visual stimuli were presented on a 53 cm
CRT monitor (85 Hz refresh rate; �48 cm away; background gray lumi-
nance: 22 Cd/m 2; maximum white: 46 Cd/m 2). Pairs of object stimuli
were chosen from a pool of 96 images to ensure IT neuronal responsivity
and selectivity (described in Experimental design). Eye position was
monitored using standard sclera coil technique (Robinson, 1963), and
was used in real time to support the presentation of object images in
retinal coordinates, with the details depending on the particular experi-
ment (see below, Experimental design).

Neuronal recording
Multiunit activity (MUA) was recorded using single-microelectrode
methods (Li and DiCarlo, 2010). MUA was defined as all voltage wave-
forms in the spiking band (300 Hz to 7 kHz) that crossed a threshold set
to �2 SDs of the background activity. That threshold was held constant
for the entire session. MUA has the important advantage of allowing
reliable monitoring of the same IT site for several hours. In this study, we
leveraged this advantage to directly assess (before vs after) the change in
IT tolerance induced by experience over 1–2 h. We focused on MUA here
because we have previously shown that UTL is quantitatively similar
when measured using isolated single units or MUA (Li and DiCarlo,
2008, 2010).

Experimental design
Each experimental session (day) began by lowering a single microelec-
trode into anterior IT cortex (for details on recording locations, see Li
and DiCarlo, 2010). Once a site was found that showed clear visual drive
in the measured MUA, we began the recording session with an initial
screening in which the site was probed with object images (4.5°) each
presented for 100 ms on the animals’ center of gaze (interleaved in
pseudo-random order with a 100 ms blank period between each image,
five to eight object images presented per trial). We used 96 achromatic
images of two classes of visual objects: 48 cutout natural objects and 48
silhouette shapes, both presented on gray background. These two classes
of objects are substantially different from each other in their pixel-wise
similarity, and we have previously shown that neuronal plasticity in-
duced among one object class does not “spill over” to the other class (Li
and DiCarlo, 2010). Based on the response of each recording site within
one class of objects (natural or silhouette), we chose the most preferred
(P) and least preferred [i.e., nonpreferred (N)] objects among the objects
that drove the site significantly (t test against background response, p �
0.05, not corrected for multiple tests). Typically, only one such pair of
objects was chosen to be further tested and manipulated (“swap” ob-
jects). In some sessions (R1 � R2 sessions) (see Fig. 2a, described below),
we ran two experiments in interleaved fashion within the session, and
thus two pairs of swap objects were chosen to be manipulated. For these
sessions, we always chose the two pairs of objects from separate object
classes (e.g., one object pair from the “natural” class used for R1 and one
pair from the silhouette class used for R2), and the assignment of object
class to R1/R2 was strictly alternated across sessions. In addition, six
other images (three natural, three silhouette) were chosen as control
images, and IT selectivity among these control images served as a mea-
sure of recording stability (see Data analyses). The animals were provided
with altered visual experience with the swap-object pairs in the exposure
phase, and the details of that experience and the animals’ tasks are pro-
vided below. IT selectivity was measured for both the swap-object pairs
and control images during two test phases— one before the exposure
phase and one following the exposure phase. Further details of the exper-

imental design and stimuli are as previously described (Li and DiCarlo,
2010) (outlined in Fig. 1).

Each test phase was used to probe IT neuronal selectivity. During the
test phase, each animal was engaged in a slightly different task, but we and
others have previously found that both tasks lead to very similar testing
results (DiCarlo and Maunsell, 2000; Li and DiCarlo, 2008, 2010). Spe-
cifically, Monkey 1 performed a passive fixation task while object images
were presented on the center of gaze (100 ms duration followed by 100
ms blank, five to eight object images per fixation trial). Monkey 2 per-
formed a visual foraging task in which it freely searched an array of eight
small dots (0.2° in size, vertically arranged) in a manner like the visual
foraging task used in some exposure phases (R3, described below). Dur-
ing free viewing, object images were presented for 100 ms on the animals’
center of gaze during brief periods of natural fixations. The retinal stim-
ulation produced by each object image in the two tasks was essentially
identical (DiCarlo and Maunsell, 2000). Fifty to 60 repetitions per object
image were collected.

During each exposure phase, visual experience of the object images
was delivered as punctate exposure events on the animals’ center of gaze
in the context of free viewing. Specifically in one exposure event, one
object image was presented for 100 ms, after which it was immediately
replaced by a second object image at a different size for another 100 ms.
This flow of image presentation is illustrated as one arrow in Figure 1a.
There were four different exposure event types: some of the exposure
events contained object identity change across the size change (so-called
swap exposures; Fig. 1a, red arrows), while others maintained object
identity over a different size change (“nonswap” exposures; Fig. 1a, blue
arrows). Unless stated otherwise, the animals typically received a total of
800 swap and 800 nonswap exposures (randomly interleaved) for each
swap-object pair. We strictly alternated the object size (1.5° or 9°) at
which the swap exposure was deployed between experimental sessions.
In sum, to induce neuronal learning, we used the same visual experience
delivery paradigm as in our previous study (Li and DiCarlo, 2010). For
different experimental sessions, we aimed to make the visual experience
delivery identical (albeit with different object pairs), but we manipulated
the delivery of reward accompanying the exposure events (the main vari-
able of interest in this study, described next).

Reward magnitude was operationally defined as juice volume deliv-
ered in short pulses (17–117 �l) to water-restricted animals (see reward
condition details below). Juice delivery was controlled via a solenoid
valve with its opening time and duration under computer control. There
was a linear relationship between the juice volume delivered and the
duration of the solenoid valve opening (calibrated before the experi-
ments), such that the juice volume delivery could be precisely controlled.
In separate experimental sessions, we tested four different ways of deliv-
ering the reward and exposure events to the animals (conditions R0, R1,
R2, and R3, described below) (Fig. 2b). Condition R0 was published data
from Li and DiCarlo (2010) reanalyzed in the current study. Conditions
R1, R2, and R3 were newly collected data. Sessions of R1/R2 were con-
ducted first. Then, sessions of R3 were conducted (Fig. 2a).

Reward condition R0. Object images appeared at random positions on
a gray computer screen and free-viewing animals naturally looked to the
objects. Visual exposure events were deployed upon the animals’ fove-
ation, and a drop of apple juice in a fixed volume (17 �l) was delivered
immediately after each exposure event (Fig. 2b). Unlike conditions R1,
R2, and R3, the exposure phase only consisted of 800 swap exposures in
condition R0 (no nonswap exposures). The R0 condition was not de-
signed to redemonstrate the basic UTL phenomenology (see Results);
thus, this condition did not include the nonswap control condition.
Rather, data from this condition were collected in a previous study, here
reanalyzed with the only aim of comparing the rate of IT selectivity
change under visual experience conditions that are exactly matched to
those used in reward conditions R1–R3 (swap condition).

Reward conditions R1 and R2. Visual exposure events were delivered
the same way as R0. However, in each experimental session, we manip-
ulated visual experience with two pairs of swap objects. All exposure
events were immediately followed by juice reward (as in R0). However,
that reward was nearly seven times larger for exposures to images from
one object pair (R1, “high reward,” 117 �l) than to exposures of images
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from the other object pair (R2, “low reward,” 17 �l). The R1 exposures
and R2 exposures were delivered in blocks (Fig. 3a; 200 exposure events
per block), and small colored dots (0.4°) on the four corners of the
monitor indicated the block type to the animal (green indicated high
reward, red indicated low reward). This block design was used under the
logic that it would give us the best chance to detect a dependency of IT
tolerance learning on reward magnitude, even if the hypothetical under-
lying reward state mechanisms had low temporal resolution. The rate of
the exposure event delivery was calibrated based on pilot data, such that
the total duration of the two types of blocks was equal, this was done
before the beginning of the experiment to ensure that any would-be
observed difference in the induced selectivity change magnitude could
not be due to a longer or shorter time interval for selectivity change to
unfold. Only Monkey 1 was tested in this condition (see logic described
in Reward condition R3).

Reward condition R3. Each animal freely searched an array of 16 small
dots looking for hidden reward (Fig. 4a), and our goal was to insert
exposure events during natural visual fixations that were retinally iden-
tical to those provided under reward conditions R0 –R2. The dots never
changed in appearance, but on each “trial” one dot would be randomly
baited, in that a juice reward was given when the animals foveated that
dot, and the next trial continued uninterrupted. During this foraging
task, exposure events were deployed on a subset of the animals’ natural
fixations. Each exposure event’s onset time was the detected end time of

a saccade (see Fig. 4a). One such exposure event was provided on approx-
imately every fourth fixation, and no two exposure events were provided
on back-to-back fixations. Because the delivery of the exposure events
was unrelated to the animals’ performance in the foraging task, the tem-
poral contingency of the exposure events and the animals’ reward was
strongly disrupted (Fig. 4d). Our goal was to provide at least 800 com-
plete exposure events per exposure phase. However, because a complete
exposure event is 200 ms in duration (100 ms for each image in the event)
and some of the natural fixation durations turned out to be shorter than
this (minimum fixation duration was 80 ms), a fraction of the intended
exposure events (�30%) were terminated early (i.e., removal of the cur-
rently displayed image at the end of the fixation). For example, the short-
est natural fixation could produce an exposure event that only displayed
the first image for 80 ms and the second image was not shown—an event
that clearly fails to deliver the intended image-pair experience. We en-
sured that each exposure phase contained exactly 800 complete swap
exposure events, plus some number of incomplete ones (same for the
nonswap exposures). Because we did not know whether some of these
incomplete exposure events induced any additional neuronal learning
(beyond the learning induced by the 800 complete exposures), we used
off-line analyses to control for that possibility. Specifically, we counted
an incomplete swap exposure event as valid if the second object image
was shown for at least 24 ms (i.e., natural fixation �124 ms). On average,
our data include �200 such partial but “valid” exposure events in the

Figure 1. UTL. a, Experimental design: on each recording day, the animals received experience with a pair of objects (P, N) in the altered visual world in the exposure phase, and IT selectivity was
tested in the test phases before and after this exposure. The top chart shows the full exposure design for one object pair. Each arrow shows one temporally contiguous image event (“exposure event”
in the text), and the arrowheads point to the retinal images that occurred later in time (e.g., in this example 100 ms exposure to the medium size dog image was consistently followed by 100 ms
exposure to the large size rhinoceros). These 200 ms duration exposure events were presented immediately after the free-viewing animals made a saccade to an appearing object (R0, R1, R2), or in
the context of a foraging task (R3; Fig. 4). The object size (1.5° or 9°) at which the swap manipulation took place was strictly alternated across different recording sessions. b, Prediction for IT responses
collected in the test phases: the swap exposure should cause incorrect grouping of two different object images (P, N) at different object sizes; thus, the object selectivity at the swap size (outlined in
red) should decrease with increasing exposure (in the limit, reversing object preference), with little or no change in object selectivity at the nonswap size. c, Mean � SEM IT response to P (solid
square) and N (open circle) as a function of object size for four example IT sites. Red arrows point to the swap size. Gray dotted lines show the response to a blank image. d, The rate of IT selectivity
change, �(P � N), at the swap size ( y-axis) plotted against the rate of selectivity change at the nonswap size (x-axis). Each dot represents data from one tested object pair, and the red dot shows
the mean. The prediction of the temporal contiguity hypothesis (confirmed previously and replicated here) is that the red dot should sit below zero on the y-axis and near zero on the x-axis. Data from
the reward conditions R1, R2, and R3 are pooled to illustrate this mean effect (n � 73).
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exposure phase (�25%). Thus, the total mag-
nitude of learning we report was normalized by
the total number of valid exposure events (so
that the reported magnitude of learning rate
could be compared with the results from other
reward conditions; Fig. 2b). Because these in-
complete swap exposure events may induce
less learning than complete exposure events,
our reported learning rate could have underes-
timated the R3 learning rate by as much as 20%
(Fig. 2c). Both Monkey 1 and Monkey 2 were
tested in this condition. Monkey 1 was tested in
the R3 condition after first being tested in the
R1/R2 condition. Then, Monkey 2 was tested
in the R3 condition. Because manipulation of
reward time (R3) is the most powerful test for
any permissive role of reward, having tested
both animals in the R3 condition and observed
neuronal learning that was at least as strong as
our original R0 conditions (see Results), we did
not further test Monkey 2 in the R1/R2
sessions.

Data analyses
Neuronal data collected from 164 IT sites were
first screened for recording stability. As in our
previous work, we deemed a multiunit site’s
recording to be “stable” if the selectivity among
the control object images (see Experimental
design) was “unchanged” (r � 0.7 for Pear-
son’s correlation between the responses to the
six control images measured in the first and last
test phases). We have previously verified the
robustness of our results to this criterion (Li
and DiCarlo, 2010). After this screen, we were left with the following
dataset presented below: R0, n � 31 sites; R1 /R2, n � 25 sites; R3, n � 23
sites.

The IT response to each image was taken as the spike count in a time
window of 100 –250 ms post-stimulus onset (test phases only). Neuronal
selectivity was computed as the response difference in units of spikes per
second between images of objects P and N at different object sizes. To
avoid bias in this estimate of selectivity, for each IT site we used a portion
of the pre-exposure data (10 repetitions per image, pooled across object
size) to determine the object labels P and N, and the remaining indepen-
dent data to compute the selectivity values reported in the text (Li and
DiCarlo, 2010). To address possible adaptation concerns, we reper-
formed the key analysis (Fig. 2c) after discarding the first image presen-
tation in each test phase trial, and the result was qualitatively unchanged.
The key results were evaluated statistically using a combination of t tests,
ANOVAs, and nonparametric bootstraps, as described in the Results.

Single-unit sorting
We performed principle component analysis (PCA)-based spike sorting
on the waveform data (sampled every 0.07 ms) collected during each test
phase to isolate single units (Li and DiCarlo, 2010). K-mean clustering
was performed in the PCA feature space to yield multiple units. The
number of clusters was determined automatically by maximizing the
distances between points of different clusters. Each unit obtained from
the clustering was further evaluated by its signal-to-noise ratio (SNR:
ratio of peak-to-peak mean waveform amplitude to the SD of the noise).
We set an SNR threshold of 4.0, above which we termed a unit “single
unit.” Then, from the pools of single units, we determined stable units
across the two test phases within a recording session. A unit was deemed
to be stable if its response pattern among the control object images (un-
exposed during the exposure phase) remained unchanged (Pearson’s
correlation, r � 0.9), and its waveform maintained a consistent shape
(r � 0.9). Each recording session yielded at most one such stable unit,
and we were able to isolate 18 such units from 48 stable recording sessions
(as defined in the Data analyses section) (Fig. 5a).

Results
We focused on a form of neuronal learning that ventral stream
neurons may rely on to build their tolerance (UTL): manipulat-
ing the temporal contiguity of animals’ experience with object
images can predictably reshape the size and position tolerance of
IT neuronal responses (Li and DiCarlo, 2008, 2010). In all exper-
iments reported here, we focused on size tolerance, and we used a
very similar experimental paradigm as in our previous work (see
Materials and Methods) (Li and DiCarlo, 2010), which is briefly
summarized as follows. We exposed two animals to an altered
visual world where we gave each animal temporally contiguous
experience with object images from two objects (P and N objects)
at different object sizes (exposure phase). For half of such expo-
sure events, images of each object were correctly paired in time
(e.g., a small size image of a dog was followed by a medium size
image of a dog) (Fig. 1a, blue arrows, nonswap exposures). As in
our previous work, we tested the strength of UTL by using the
other half of the exposure events to consistently pair the images of
two different objects across two sizes (e.g., a medium size image
of a dog was followed by a large size image of a rhinoceros) (Fig.
1a, red arrows, swap exposures). If the ventral stream is learning
to associate temporally contiguous visual representations, the
prediction, confirmed previously by Li and DiCarlo (2010), is
that the selectivity at each IT site for P and N objects will begin to
reverse primarily for the object size where the swap exposure was
deployed (i.e., “swap size”) as IT neurons incorrectly associate
the representations for P and N (Fig. 1b; a change in selectivity
among large size dog and large size rhinoceros in the above ex-
ample). While the temporal contiguity learning hypothesis
makes no quantitative prediction for the selectivity change at the
medium size (Fig. 1b, gray oval) (Li and DiCarlo, 2010), it does

Figure 2. Summary figure. a, Timeline of how the experimental data were collected in this study. b, Schematic summary of how
the magnitude and timing of reward and exposure events were delivered in each experimental condition: R0, the animals received
a fixed amount of reward immediately following each exposure event during the exposure phase, according to the design of Li and
DiCarlo (2010); R1, the animals received a large reward immediately following each exposure event; R2, the animals received a
small reward immediately following each exposure event; R3, the animals received a medium reward at the completion of a
foraging task (Fig. 4), and the exposure events were deployed during brief periods of natural fixation while that task was ongoing.
c, The mean rate of the neuronal learning, �(P � N), across all four reward conditions. Number of IT recording sites in each
condition: R0, n � 31; R1, n � 25; R2, n � 25; R3, n � 23. Error bars show SEM computed across recording sites.
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predict that there should be no reduction in selectivity at the
nonswap size.

The above learning phenomenology has been previously de-
scribed, and we have previously explored key issues that are not
re-explored here (e.g., order of stimulus presentation, effects on
nonexposed stimuli) (Li and DiCarlo, 2010). Instead, our first,
control goal was to replicate the basic UTL phenomenology: a
decrease in the original object preference (P over N) at the swap
size. The second, primary goal of this study was to examine the
effect of reward on the rate of UTL to gauge the potential permis-
sive role of reward. To achieve these goals, we performed exper-
imental sessions in which we always provided the animals with
the same kind of temporal contiguity experience (described
above) to induce UTL, but in some sessions we strongly varied the
reward magnitude (Fig. 2a; R1/R2, n � 25 recording sessions),
and in other sessions we strongly varied the reward timing (Fig.
2a; R3, n � 23 recording sessions) accompanying that visual
experience (see Materials and Methods).

In the following results presentation, we first check for
the replication of the basic UTL phenomenology by analyzing
the newly collected dataset, ignoring the reward structure (Fig.
2a; R1,R2, R3, pooled). Next, we examine the strength of UTL
separately for each reward condition to isolate the effect of
reward. As a reference, we also compare the rate of UTL in the
current study to data collected as part of our previously
published work (Li and DiCarlo, 2010), reanalyzed here (Fig. 2a,

R0, which has nominally identical visual
experience to R1, R2, and R3 swap
conditions).

Replicate basic UTL phenomenology
To assess changes in the tolerance of IT
responses, we recorded IT multiunit ac-
tivity in short test phases before and after
each exposure phase (see Materials and
Methods) (Fig. 1). As expected, we repro-
duced the previously reported UTL in
that, after exposure to the altered visual
object size statistics, IT object selectivity
changed in a specific way—it tended toward
reversal at the swap size, while remaining
largely unchanged at the nonswap size (for
the central idea, see Fig. 1b). This effect was
large enough to be observed in some indi-
vidual multiunit sites after just 1 h of expo-
sure (Fig. 1c). To quantify the effect for each
IT site, we measured the difference in IT
response to object P and N (P � N, in
units of spikes per second) at each object
size, and we took the difference in this se-
lectivity before and after exposure to the
altered visual statistics. This �(P � N) re-
flected the rate of IT selectivity change per
800 exposure events. Across all the tested
object pairs (n � 73), �(P � N) at the
swap size was highly significant (mean:
�12.2 spikes/s change per 800 exposures;
p � 0.001, t test against zero), and there
was no significant change at the nonswap
size (mean: �2.7 spikes/s; p � 0.17) (Fig.
1d). The size specificity was further con-
firmed statistically in the following two
different ways: (1) a direct t test on �(P �

N) between the swap and nonswap size (p � 0.001, two-tailed;
Monkey 1: p � 0.01; Monkey 2: p � 0.019); and (2) a significant
interaction of “exposure 	 object size” on the raw selectivity
measurements (P � N)—that is, IT selectivity was decreased by
exposure only at the swap size (p � 0.001, repeated-measures
ANOVA, with “exposure” and “object size” being the within-
group factors; Monkey 1: p � 0.01; Monkey 2: p � 0.014).

In this study, we concentrated on multiunit response data
because it had a clear advantage as a direct test of our hypothe-
sis—it allowed us to longitudinally track IT selectivity during
altered visual experience across the entirety of each experimental
session. We have previously shown that both single-unit and
multiunit data reveal the UTL phenomenology (Li and DiCarlo,
2008, 2010). Nevertheless, we here also examined underlying
single-unit data to confirm its consistency with the multiunit
results. Single units have a limited hold time in awake primate
physiology preparations. In 18 of the 48 recording sessions, we
were able to track the same single unit across an entire (1–2 h)
recording session (see Materials and Methods). Figure 5a shows
six such IT single units. The judgment that we were recording
from the same unit came from the consistency of the waveform of
the unit and its consistent pattern of response among the nonex-
posed control object images (Fig. 5a). Across the single-unit pop-
ulation, the P � N selectivity at the swap size was significantly
reduced, whereas the selectivity at the nonswap size remained
stable (Fig. 5b; p � 0.003, t test, swap vs nonswap size), thus

Figure 3. Manipulating reward magnitude. a, Behavioral data from one example R1 � R2 session. Running average (com-
puted over 40 trials) of saccade latency to fixate a visually presented object (see Materials and Methods) is plotted as a function of
trial number in the session. The top bar indicates high- (black) and low-reward blocks (gray), which were randomly interleaved. b,
Pooled behavioral data from all R1 � R2 sessions. Mean � SEM saccade latency is plotted as a function of trial number in the high-
and low-reward blocks. c, Top, Each R1 � R2 session was evaluated by the animal’s change in saccade latency (mean saccade
latency in the low-reward blocks � the high-reward blocks), such that large values indicate large behavioral sensitivity to reward
manipulation. Bottom, The mean rate of the neuronal learning, �(P � N), for the high- and low-reward blocks. d, Top, The
distribution of the animal’s mean saccade latency over the whole session (n � 81 sessions, conditions R0, R1, and R2 pooled).
Bottom, �(P � N) for sessions with mean saccade latency between 150 and 175 ms, 175 and 200 ms, and �200 ms. Error bars
show SEM computed across recording sites.
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reconfirming the multiunit results at the
single-unit level (Fig. 1d).

Since �(P � N) at the swap size quan-
tifies the rate of IT selectivity change in-
duced by our manipulation, we use it as
our measure of IT neuronal tolerance
learning in the rest of this article. The re-
sult presented so far is from the pooled
data and ignores the reward condition un-
der which the change in IT tolerance was
induced. Next, we answer the main ques-
tion of this study by breaking out the data
to determine the rate of learning under
three reward conditions: low reward (R1),
high reward (R2), and temporally de-
coupled reward (R3). Because the animals
received the same type and amount of vi-
sual experience with each swap pair of ob-
jects under each reward condition (see
Materials and Methods), this enabled us
to use the change in IT selectivity for each
swap-object pair to independently mea-
sure and then directly compare the rate of
IT tolerance learning under each reward
condition.

Reward magnitude does not affect the
rate of UTL
We first manipulated the magnitude of re-
ward accompanying visual experience
(Fig. 2a, R1 and R2). During the exposure
phase, the animal naturally looked to each
object image that we presented at arbi-
trary positions on the display screen.
Here, all key exposure events took place
after this foveation, and each exposure
event was immediately followed by a juice reward, as in our pre-
vious work (Fig. 3) (Li and DiCarlo, 2010). However, here we
systematically varied the magnitude of that reward. Specifically,
the exposure phase consisted of alternating blocks: a high-reward
block (condition R1, 117 �l of juice per exposure event) and a
low-reward block (condition R2, 17 �l of juice per exposure
event). Each block was �5 min in duration, each contained 200
exposure events, and each included a peripheral visual cue to
indicate the current block type to the animal (Materials and
Methods).

Behaviorally, we found that the animal was sensitive to this
difference in reward magnitude. For example, the object-
foveating saccade was faster during the high-reward block (Fig.
3a). The latency of primates’ foveating saccades to visual stimuli
has previously been used as an overt, objective measure of the
animals’ internal reward state, and this behavioral attribute is
correlated with neuronal measures of dopaminergic release in
basal ganglia (Hikosaka, 2007; Bromberg-Martin et al., 2010).
Across all the experimental sessions, we observed overall shorter
saccade latency for the high-reward blocks, confirming that we
had successfully manipulated each animal’s reward state (Fig. 3b;
mean saccade latency; high reward, 170 ms; low reward, 200 ms;
p �� 0.001, t test).

To measure experience-induced UTL under each reward con-
dition, we used two pairs of objects— one pair was exposed (Fig.
1a) during the high-reward block, and the other pair was exposed
during the low-reward block. We chose these objects based on the

activity at each IT site using an objective procedure such that, on
average, they were equivalent in terms of each IT site’s selectivity
and size tolerance (Materials and Methods). Importantly, we
have previously shown that UTL learning from exposure to one
such pair does not transfer, on average, to the nonexposed object
pair when the pairs are chosen using these same pools of objects
and same methods (Li and DiCarlo, 2010). As a further confir-
mation of this, we found that there was, on average, no significant
change in IT selectivity among pairs of control objects unexposed
to the animal during the exposure phase (�(P � N) � �2.4
spikes/s, p � 0.12, t test; see “control object images” in Materials
and Methods, six control objects were randomly split into three
pairs here). In contrast to the strong behavioral effect of reward,
we found that our visual exposure paradigm induced robust UTL
of nearly identical rate in both the high-reward block and the
low-reward block (Fig. 2c; �(P � N), R1: �12.1 spikes/s; R2:
�11.7 spikes/s; pooled: �12 spikes/s change per 800 exposures;
p � 0.01, t test). In both reward conditions, the experience-
induced selectivity change was specific to the swap size with no
significant change at the nonswap size (R1: �3.0, p � 0.46; R2:
�5.3, p � 0.18, t test).

We considered the possibility that our analyses of mean
effect size might hide a subtle effect of reward magnitude on
UTL. Specifically, we performed three additional analyses to
leverage the most power from our data. First, we took notice of
the fact that the animal’s behavior was not consistent from day
to day. On some days, the animal was highly sensitive to re-

Figure 4. Visual experience during a task that is unrelated (“orthogonal”) to the visual exposure events. a, The animals visually
searched for a reward randomly hidden under 1 of 16 dots (see text). The three panels show three example “trials” from Monkey 1.
Eye movement traces are overlaid on the visual display. The end points of the traces show the locations where the animal found the
hidden reward. Exposure events (200 ms duration) were delivered during brief periods of natural fixation. The eye traces high-
lighted in red indicate the periods when the exposure events occurred on these example trials. b, Schematic of an example swap
exposure event. c, Position of all the animal’s natural fixations (exposure events were delivered only on a subset of these fixations)
during a single R3 session. Data from Monkey 1. d, Histograms of the time interval between the exposure event and the nearest
reward.
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ward magnitude (i.e., a large difference in saccade latency),
whereas on other days, the animal was not overtly sensitive to
our reward manipulation (little difference in saccade latency)
(Fig. 3c, top). Leveraging this day-to-day variation in the ani-
mal’s sensitivity to reward, we reasoned that if UTL proceeds
at a faster rate under a heightened reward state, then any dif-
ference in UTL between the high-reward (R1) and low-reward
(R2) states should be the greatest in sessions with the largest
behavioral difference. However, plotting the mean UTL rate
[mean �(P � N)] from sessions with the largest saccade la-
tency difference in the two reward blocks revealed that this was
not the case—sessions with larger behavioral difference did
not lead to greater UTL in the high-reward condition (Fig. 3c,
bottom). Instead, the data showed a slight, nonsignificant
trend in the opposite direction ( p � 0.46, t test).

Second, due to daily variation in the animal’s thirst level,
we found a great amount of day-to-day variation in the ani-
mal’s mean motivational state, as measured by its mean sac-
cade latency during that day, collapsing over our reward
blocks (Fig. 3d, top). Leveraging this day-to-day variation in
the animal’s motivational state, we asked whether higher mo-
tivational states led to higher (or lower) rates of neuronal
tolerance learning during the day (relative to other days).
However, when we plotted the rate of UTL as a function of the
animal’s mean saccade latency, we saw no such relationships
(Fig. 3d, bottom; slope � 0.05, p � 0.56).

Third, we evaluated the statistical power of our dataset using
bootstrap. By resampling with replacement the raw response data
from the test phases, we determined the confidence interval
around the ratio of the measured effect size in �(P � N) between
the high- and low-reward conditions (Fig. 2c, R1/R2) due to trial-
by-trial response variability. That analysis showed that our exper-
iment should have (i.e., with 95% probability) detected
modulation of UTL by reward magnitude if that modulation was
outside the range of 59 –173%. In sum, these results argue that
UTL is not substantially gated by reward magnitude.

Next, we aimed to compare the rate of UTL in our present
study to our previous work. If the magnitude of reward does not
gate UTL, we expect the same rate of UTL, as long as we provide
the animal with the same kind of visual experience (note that
UTL rate is defined as selectivity change per exposure event; Fig.
1a). To test this prediction, we reanalyzed our previously pub-
lished data, which was collected under the same kind of temporal
contiguity experience followed by a fixed amount of reward that
approximates the low-reward condition used here (Fig. 2b, con-
dition R0) (Li and DiCarlo, 2010). We found that, the rate of UTL
induced in our present study is nearly identical to that found in
our previous work. When quantified as �(P � N) per 800 expo-
sures, the mean rate of the selectivity change was remarkably
similar across all the conditions (Fig. 2c, R0, R1, R2; p � 0.99,
one-way ANOVA).

Figure 5. Single-unit results. a, Six example IT single units tracked for an entire recording session. In each panel, Top, All the waveform traces from a test phase (red: mean); middle, mean � SEM
normalized response to P and N; bottom, normalized response to six control object images that were not exposed during the exposure phase. Response data from each test phase were normalized
to the mean firing rate of the neuron to all object images during that test phase. b, The rate of IT selectivity change, �(P � N), at the swap size ( y-axis) plotted against the rate of selectivity change
at the nonswap size (x-axis); compare with Figure 1d. Square, Units from condition R1; circle, R2; triangle, R3.
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Reward timing does not affect UTL
In the animals’ visual experience described so far and in all of our
previous work on UTL (Li and DiCarlo, 2010), reward was always
delivered immediately at the end of each visual exposure event.
That is, all exposure events were tightly temporally coupled with
reward. Dopaminergic neurons can be activated by stimuli pre-
dictive of an upcoming reward, and this modulation can be short
lived (200 –300 ms) (Schultz, 2007; Bromberg-Martin et al.,
2010). Thus, we considered the possibility that a tight temporal
contingency of reward and each visual experience event is critical
in allowing those visual events to drive UTL. Because all the pre-
vious work on UTL implicitly engaged the animals with the visual
object images to be learned (the animals had no task other than to
spontaneously look at the object images and then receive its re-
ward), we also wondered whether UTL would still occur even if
the animals were engaged in an explicit task unrelated to the
object images.

To examine these two related possibilities in a single exper-
iment, we trained animals to perform an orthogonal visual
foraging task while the key visual exposure events were deliv-
ered at times unrelated to the times of reward delivery. Specif-
ically, free-viewing animals searched for a hidden reward
randomly placed under 1 of 16 dots on the computer screen.
Reward was given only upon foveation of the baited dot (Fig.
4a; Materials and Methods). Behaviorally, the animals were
highly engaged in the task: the animals spent the majority of
their time looking from dot to dot (Fig. 4a), the majority of
their fixations were on or near one of the dots (Fig. 4c), and the
animals successfully located the reward in �95% of the trials.
By monitoring the animals’ eye position in real time, we de-
livered the exposure events during brief periods of natural
fixation (i.e., a retinal exposure event was begun as the ani-
mals’ gaze arrived at one of the dots; Fig. 4a) while the animals
were performing this task (Fig. 4b; see Materials and Meth-
ods). Critically, the fixation intervals chosen for visual expo-
sure delivery were randomly chosen independently of the
animals’ progress in finding the hidden reward (see Materials
and Methods). This strongly disrupted the temporal contin-
gency of the reward from the exposure events that drive UTL
in all previous work (Fig. 4d), and also made the exposure
events completely irrelevant to the animals’ acquisition of
reward.

Importantly, we kept the type of object retinal exposure
events and the number of such events virtually identical to the
other reward conditions in which reward was tightly tempo-
rally coupled (R0, R1, R2). Thus, we could directly compare
the rate of UTL induced in this condition (R3) with UTL
produced in those conditions (R0, R1, R2) (Fig. 2b). We found
that the rate of UTL in this condition was indistinguishable
from that found in all three previously tested conditions (Fig.
2c; p � 0.99, one-way ANOVA). Bootstrap analysis showed
that our data can rule out any difference in �(P � N) �3.8
spikes/s per 800 exposures with 95% confidence (Fig. 2c; R3 vs
R0, R1, R2 pooled, �32% modulation in the learning rate).
Therefore, we conclude that neither tight temporal contin-
gency of reward, nor task relevance of the object images is
required for visual experience to induce UTL.

Discussion
The objective of this study was to examine a form of visual
experience-induced neuronal learning (UTL) that appears to
support the ventral visual stream’s ability to tolerate object iden-
tity preserving image variation (Cox et al., 2005; Li and DiCarlo,

2008, 2010). The results reported here replicate those previous
results by showing that the temporal contiguity of visual experi-
ence can modify IT tolerance in a manner that is in qualitative
agreement with temporal contiguity (also termed “slowness”)
theories of learning invariance (Foldiak, 1991; Stryker, 1991;
Wallis and Rolls, 1997; Wiskott and Sejnowski, 2002; Wyss et al.,
2006; Masquelier and Thorpe, 2007). The main contribution of
this study is the finding that the rate of experience-induced learn-
ing is unaffected by strong changes in the animals’ reward state
(Fig. 2) or by strong changes in the temporal relationship of
reward to visual experience. Moreover, the visual experience pro-
duced the same rate of learning even when the animals performed
a foraging task that did not require engagement with the visual
stimuli.

While all of our experiments and analyses revealed no effect of
external reward on tolerance learning in the ventral stream, it
could still be argued that appropriate setting of internal state
variables (e.g., dopamine activity patterns) related to reward
“state” is somehow required to gate that learning, but that our
experiments did not explore the appropriate operating range to
expose that hypothetical gating. For example, one might argue
that “rewards” are much smaller, much larger, or more tempo-
rally dispersed in the natural world than we were able to achieve
in the laboratory with water-restricted animals. While experi-
mental results can never, in principle, dismiss all variants of this
hypothesis, the practical goal is to explore the relevant operating
range of the system. In that regard, we note that the magnitude
and the rate of reward delivery used in our study, as well as the
animal subjects’ measurable behavioral attributes (i.e., mean sac-
cade latencies) are in close agreement with other studies that
involved reward manipulations, and those studies have reported
similar modulation of behavioral attributes by reward, as well as
modulations of neuronal activity in other regions of the brain
(Hikosaka, 2007; Bromberg-Martin et al., 2010; Frankó et al.,
2010). Nevertheless, future study might resolve any remaining
uncertainty by directly measuring neuromodulatory signals asso-
ciated with reward in vivo (e.g., voltametrically recorded dopa-
mine concentration) (Schultz, 2007) in freely behaving animals
in husbandry settings. Such data could then be used to establish
the true natural range of reward-related signals in the brain, and
determine the relationship of that operational range to that which
can be achieved in laboratory settings similar to ours. Alterna-
tively, one could attempt to directly study UTL “in the wild,” but
this would require clever control and/or monitoring of the ani-
mals’ visual experience.

Our results here, taken in the context of earlier results (Li
and DiCarlo, 2008, 2010), show that tolerance learning ob-
served in IT is driven by the temporal contiguity of visual
experience and that this learning is fully unsupervised in that it
(thus far) shows no requirement of external supervision. That
is, the learning does not require explicit labels of what to learn
(e.g., no specific reinforcement signals such as rewards for
some object image associations). Similarly, it does not require
the subject to be in a highly rewarding environment, and it
does not show any dependence on the animals’ motivational
state (Fig. 2). Thus, we speculate that UTL reported here and
previous studies (Li and DiCarlo, 2008, 2010) reflects general,
autonomous sensory cortical plasticity mechanisms. More
concretely, it appears that the ventral visual cortical stream
uses such mechanisms to constantly leverage all visual experi-
ence to help build its highly tolerant object representation—
that is, a representation that supports object identification and
categorization with simple decoding schemes and few labeled

6618 • J. Neurosci., May 9, 2012 • 32(19):6611– 6620 Li and DiCarlo • Visual Experience Reshapes Neuronal Tolerance Irrespective of Reward



training examples (DiCarlo and Cox, 2007). Indeed, previous
computational work has shown that autonomous extraction
of slow varying features from unsupervised visual input can
effectively create tolerant object representations (Wallis and
Rolls, 1997; Wiskott and Sejnowski, 2002; Wyss et al., 2006;
Masquelier and Thorpe, 2007), such that a simple supervised
stage can be applied to the learned representation to achieve
high performance on demanding visual tasks (Legenstein et
al., 2010).

Beyond informing the neuronal mechanisms that underlie
invariant object representation in the cortical ventral stream, it is
also worth considering how the results reported here relate to our
understanding of learning at the level of sensory perception. A
few perceptual learning studies have investigated the role of re-
ward, and have reported that verbal feedback and experience-
contingent reward can enhance or gate perceptual learning in
human subjects (Seitz et al., 2009, Shibata et al., 2009). However,
such studies could not directly investigate the neuronal changes
in sensory cortices. Our group previously showed position toler-
ance learning in human subjects’ object perception under condi-
tions analogous to those used here for size tolerance (Cox et al.,
2005), and related human tolerance learning results have been
reported by others (Wallis and Bülthoff, 2001; Wallis et al., 2009).
It is noteworthy that our human study failed to induce such
learning when visual experience was delivered passively to fixat-
ing subjects (Cox et al., 2005), which suggests a role for some
internal state variable (e.g., “attention,” “arousal,” “reward”) on
gating tolerance learning. This finding does not dovetail with our
IT neuronal results reported here (which show that IT learning is
robust to a wide range of reward and some task conditions).
Many remaining differences between these two studies might
explain the apparent discrepancy, including differences in visual
stimuli and differences in tasks. Moreover, a failure to detect
learning in human subjects under some conditions (Cox et al.,
2005) does not mean that such learning does not exist at the
neuronal level. Nevertheless, existing psychophysical results sug-
gest caution in fully generalizing the neuronal results reported
here. Most importantly, the link between the IT neuronal learn-
ing reported here and human perception remains mysterious,
and a key direction going forward is combined psychophysical
and neuronal studies in monkeys.

Direct neuronal investigations of learning in sensory cortices
have revealed a large range of results on the role of reward—some
studies reported that reward-related manipulations can gate var-
ious forms of associative learning (Sakai and Miyashita, 1991;
Messinger et al., 2001) and sensory learning (Bao et al., 2001;
Froemke et al., 2007; Law and Gold, 2009; Frankó et al., 2010),
while others were able to induce learning in the absence of reward
(Yao and Dan, 2001; Li et al., 2008). This range of effects in the
literature may not be easily reconciled with a single learning
mechanism; rather, different types of learning may be at play.
Because instructions for some type of sensory learning cannot be
obtained from the sensory experience alone (e.g., learning cate-
gorical grouping of unrelated stimuli, or learning to privilege one
class of stimuli among many equally exposed ones), these types of
learning likely require feedback of some type, such as reward (Bao
et al., 2001; Froemke et al., 2007; Frankó et al., 2010). Other types
of learning rely on the statistical regularities in the sensory input
to shape neuronal representation (Yao and Dan, 2001; Li et al.,
2008). Our results suggest that UTL belongs in the latter category
in that instruction arises purely from the temporal contiguity in
the visual experience itself. UTL is closely related to the previ-
ously reported “paired associate” learning (Miyashita, 1988;

Messinger et al., 2001). Indeed, the fact that some studies have
reported paired associate learning in the absence of reward (Mi-
yashita, 1988; Erickson and Desimone, 1999), suggests that these
two phenomenologies may share some underlying mechanisms.
Furthermore, exposure to temporal pairing of visual stimuli can
induce UTL-like neuronal learning in the primary visual cortex of
the anesthetized cat (Yao and Dan, 2001). These accumulating
and converging results point to neuronal mechanisms that speak
to how the ventral stream may assemble its powerful adult object
representations at all levels of visual cortical processing during
visual development.
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