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The human capacity to acquire language is an outstanding scientific challenge to understand.
Somehow our language capacities arise from the way the human brain processes, develops and
learns in interaction with its environment. To set the stage, we begin with a summary of what is
known about the neural organization of language and what our artificial grammar learning
(AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory
of computation and formal learning theory. Finally, we outline a neurobiological model of language
acquisition and processing based on an adaptive, recurrent, spiking network architecture. This
architecture implements an asynchronous, event-driven, parallel system for recursive processing.
We conclude that the brain represents grammars (or more precisely, the parser/generator) in its con-
nectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence
processing. The acquisition of this ability is accounted for in an adaptive dynamical systems frame-
work. Artificial language learning (ALL) paradigms might be used to study the acquisition process
within such a framework, as well as the processing properties of the underlying neurobiological
infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results
by theoretical models and empirical studies on natural language processing. Given that the faculty of
language is captured by classical computational models to a significant extent, and that these can be
embedded in dynamic network architectures, there is hope that significant progress can be made in
understanding the neurobiology of the language faculty.

Keywords: implicit artificial grammar learning; fMRI; repeated transcranial magnetic stimulation;
language-related genes; CNTNAP2; spiking neural networks
1. INTRODUCTION
Recent years have seen a renewed interest in using arti-
ficial grammar learning (AGL) as a window onto the
organization of the language system. It has been
exploited in cross-species comparisons, but also in
studies on the neural architecture for language. Our
focus is on the role AGL can play in unravelling the
neural basis of human language. For this purpose, its
role is relatively limited and mainly restricted to mod-
elling aspects of structured sequence learning and
structured sequence processing, uncontaminated by
the semantic and phonological sources of information
that co-determine the production and comprehension
of natural language. Before going into more details
related to the neurobiology of syntax and the role
of AGL research, we outline what we think are
the major conclusions from the research on the
neurobiology of language:
r for correspondence (karl-magnus.petersson@mpi.nl).

ic supplementary material is available at http://dx.doi.org/
/rstb.2012.0101 or via http://rstb.royalsocietypublishing.org.

tribution of 13 to a Theme Issue ‘Pattern perception and
tional complexity’.

1971
— The language network is more extensive than the
classical language regions (i.e. Broca’s and
Wernicke’s regions). It includes the left inferior
frontal gyrus (LIFG), substantial parts of the
superior-middle temporal cortex, the inferior parie-
tal cortex and the basal ganglia. Homotopic regions
in the right hemisphere are also engaged in language
processing [1,2].

— The division of labour between Broca’s (frontal
cortex) and Wernicke’s (temporal cortex) region is
not that of production and comprehension [3–6].
The LIFG is at least involved in syntactic and
semantic unification during comprehension and
the superior-middle temporal cortex is involved in
production [7]. Here, unification refers to real-
time combinatorial operations (i.e. roughly ŝ ¼
U(s, t), where U is the unification operation, s the
current state of the processing memory, t an in-
coming, retrieved structural primitive (treelet)
from the mental lexicon and ŝ the new state of
the processing memory (unification space); see
[8] for technical details).

— Broca’s region plays a central role in what we have
labelled unification [8,9]. However, this region’s
contributions to unification operations are neither
syntax- nor language-specific. It plays a role in
This journal is q 2012 The Royal Society
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Figure 1. Left inferior frontal regions related to phonological,
syntactic and semantic processing [9]. The spheres are

centred on the mean activation coordinate of the natural
language fMRI studies reviewed in [17] and the radius indi-
cates the spatial standard deviation. The brain activation
displayed is related to artificial syntax processing [18].
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conceptual unification [10], integration operations
in music [11,12] and in integrating language and
co-speech gestures [13,14]. The specificity of the
contribution of Broca’s region in any given context
is determined by dynamic connections with pos-
terior (domain-specific) regions as well as other
parts of the brain, including sub-cortical regions.

— None of the language-relevant brain regions or
neurophysiological effects appear to be language-
specific. All language-relevant event-related poten-
tial effects (N400, P600, LAN) are also triggered
by other than language input (e.g. music, pictures,
gestures) and all known language-relevant brain
regions seem to be involved in processing other
stimulus types as well [1].

— For language, as for other cognitive functions, the
function-to-structure mapping as one-area-one-
function (as currently conceptualized) is likely to
be incorrect. Brain regions typically participate
dynamically as nodes in more than one functional
network. For instance, the processing of syntactic
information depends on dynamic network
interactions between Broca’s region and the
superior-middle temporal cortex, where lexicalized
aspects of syntax are stored, while syntactic unifica-
tion operations are under the control of Broca’s
region [5,6].

Although language processing combines information
at multiple linguistic levels, in the following we focus
on syntax. This is somewhat artificial, because syntac-
tic processing never occurs in isolation from the other
linguistic levels. Here, we take natural language to be a
neurobiological system, and paraphrasing Chomsky
[15], two outstanding fundamental questions to be
answered are:

— What is the nature of the brain’s ability for syntactic
processing?

— How does the brain acquire this capacity?

An answer to the first question is that the human brain
represents knowledge of syntax in its connectivity (i.e.
its parametrized network topology with adaptable
characteristics; see §8). This network is closely interwo-
ven with the networks for phonological and semantic/
pragmatic processing [3,4,16], all operating in close
spatio-temporal contiguity during normal language pro-
cessing (figure 1). We have therefore used the AGL
paradigm as a relatively uncontaminated window onto
the neurobiology of structured sequence processing.
In this context, we take the view that natural and artifi-
cial syntax share a common abstraction—structured
sequence processing [19]. AGL was originally
implemented to investigate implicit learning mechan-
isms shared with natural language acquisition [20]
and has recently been used in cross-species compari-
sons to understand the evolutionary origins of
language and communication [21–25].

The neurobiology of implicit sequence learning,
assessed by AGL, has been investigated by means of
functional neuroimaging [2,18,26–28], brain stimu-
lation [29–31] and in agrammatic aphasics [32].
Frontostriatal circuits are generally involved [26,33].
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The same circuits are also involved in the processing
and acquisition of natural language syntax [34]. More-
over, the breakdown of syntax processing in agrammatic
aphasia is associated with impairments in AGL [32]
and individual variability in implicit sequence learning
correlates with language processing [35,36]. Taken
together, this supports the idea that AGL taps into
implicit sequence learning and processes that are
shared with aspects of natural syntax acquisition and
processing. However, we stress one caveat relevant to
much AGL work. A common assumption in the field
is that if participants, after exposure to a grammar,
are able to distinguish new grammatical from non-
grammatical items, then they have learned some aspects
of the underlying grammar. However, there is some-
times a tendency to assume more that participants
process the sequences according to the grammar rules
and strong claims are made about the representation
acquired. However, this need not be the case. The
use of a particular grammar does not ensure that sub-
jects have learned and use this, instead of using a
different and perhaps simpler way of representing the
knowledge acquired. Several AGL studies have not
sought to determine the minimal machinery needed
to account for the observed performance, often leaving
open questions about the nature of the acquired
knowledge ([37] for additional remarks).
2. MULTIPLE REGULAR AND NON-REGULAR
DEPENDENCIES
AGL is typically used to investigate implicit learning
[20,38]. However, during the last decade, it has also
been used in explicit procedures in which, for instance,
participants are instructed to figure out the underlying
rules while they receive performance feedback. The
implicit version is closer to the conditions under
which nature language acquisition takes place
([39], pp. 275–276) [40] and we therefore focus on
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Figure 2. Classification performance in endorsement rates.
Black bars, preference classification, which was also in the
baseline (grey bars) test. White bars, grammaticality classifi-
cation. Error bars indicate standard deviations [41,44].
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studies of implicit AGL. The implicit AGL paradigm
is based on the structural mere exposure effect and it
provides a tool to investigate the aspects of structural
acquisition from exposure to grammatical examples
without any type of feedback, teaching instruction or
engaging subjects in explicit problem-solving [41,42].
Generally, AGL paradigms consist of acquisition and
classification phases. During acquisition, participants
are exposed to a sample generated from a formal gram-
mar. In the standard AGL version [20,38], subjects
are informed after acquisition that the sequences
were generated according to a complex set of rules
and are asked to classify novel items as grammatical
or not (grammaticality instruction), based on their
immediate impression (guessing based on gut feeling).
A well-replicated AGL finding is that subjects perform
well above chance after several days of implicit acqui-
sition; they do so on regular [41,42] and non-regular
grammars [43,44].

An alternative way to assess implicit acquisition,
structural mere exposure AGL, is to ask the partici-
pants to make like/not-like judgements (preference
instruction) and therefore it is not necessary to
inform them about the presence of a complex rule
system before classification, which can thus be
repeated [41,42]. Moreover, from the subject’s point
of view, there is no correct or incorrect response, and
the motivation to use explicit (problem-solving) strat-
egies is minimized. This version is based on the finding
that repeated exposure to a stimulus induces an
increased preference for that stimulus compared with
novel stimuli [45]. We investigated both grammatical-
ity and preference classification after 5 days of implicit
acquisition on sequences generated from a simple
right-linear unification grammar [2,41]. The results
showed that the participants performed well above
chance on both preference and grammaticality classifi-
cation. In a follow-up study [43,44], we investigated
the acquisition of multiple nested (context-free type)
and crossed (context-sensitive type) non-adjacent
dependencies, while controlling for local subsequence
familiarity, in an implicit learning paradigm over
nine days. This provided enough time for both abstrac-
tion and knowledge consolidation processes to
take place. Recently, it has been suggested that
abstraction and consolidation depend on sleep [46],
consistent with results that naps promote abstraction
processes after artificial language learning (ALL) in
infants [47].

In one experiment [43], we employed a between-
subject design to compare the implicit acquisition
of context-sensitive, crossed dependencies (e.g.
A1A2A3B1B2B3), and the more commonly studied con-
text-free, nested dependencies (e.g. A1A2A3B3B2B1).
The results showed robust performance, equivalent to
the levels observed with regular grammars, for both
types of dependencies. Similar findings were reported
in [44] (figure 2), which demonstrates the feasibility
of acquisition of multiple non-adjacent dependencies
in implicit AGL without performance feedback.
Taken together with additional results on implicit
AGL [41,42], we concluded that the acquisition of
non-adjacent dependencies showed quantitative, but
little qualitative difference compared with the
Phil. Trans. R. Soc. B (2012)
acquisition of adjacent dependencies: non-adjacent
dependencies took some days longer to acquire [44].
These findings show that humans implicitly acquire
knowledge about the aspects of structured regularities
captured by complex rule systems by mere exposure.
Moreover, the results show that when given enough
exposure and time, participants show robust implicit
learning of multiple non-adjacent dependencies. How-
ever, these results do not answer the question to what
degree AGL recruits the same neural machinery as
natural language syntax does. For this, we have to
turn to neuroimaging methods, including functional
magnetic resonance imaging (fMRI) and transcranial
magnetic stimulation (TMS).
3. FUNCTIONAL MRI FINDINGS
In a recent fMRI study [2], we investigated a simple
right-linear unification grammar in an implicit AGL
paradigm. In addition, natural language data from a
sentence comprehension experiment had been acquired
in the same subjects in a factorial design with the factors
syntax and semantics (for details see [2,48]). The main
results of this study replicate previous findings on
implicit AGL [18,26]. Moreover, in contrast to claims
that Broca’s region is specifically related to syntactic
movement in the context of language processing [49–
51] or the processing of nested dependencies
[27,28,52], we found the left Brodmann’s area (BA)
44 and 45 to be active during the processing of a
well-formed sequence generated by a simple right-
linear unification grammar.

Furthermore, Broca’s region was engaged to a
greater extent for syntactic anomalies and these effects
were essentially identical when masked (i.e. the spatial
intersection) with activity related to natural syntax pro-
cessing in the same subjects (figure 3). The results are
highly consistent with functional localization of natural
language syntax in the LIFG (figure 1) [9,17]. These,
and other findings, suggest that the left inferior frontal
cortex is a structured sequence processor that unifies
information from various sources in an incremental
and recursive manner, independent of whether there
are requirements for syntactic movement operations
or for nested non-adjacent dependency processing [2].
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Figure 3. Brain regions engaged during correct preference classification in an implicit AGL paradigm. Preference classification
after 5 days of implicit acquisition on sequences generated by a right-linear unification grammar: (a) main effect non-
grammatical versus grammatical sequences in Broca’s region BA 44 and 45; (b) when masked (spatial intersection) with
the same main effect from grammaticality classification [2]; and (c) masked with the natural language syntax related variability
observed [48] in the same subjects. Reproduced with permission from [53].
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4. TRANSCRANIAL MAGNETIC STIMULATION
FINDINGS
Given that fMRI findings are correlative, a way to test
whether Broca’s region (BA 44/45) is causally related
to artificial syntax processing is to test whether repeated
TMS (rTMS) applied to Broca’s region modulates
classification performance. This approach has been
used to investigate natural language processing (for a
review [29]). Previous results show that Broca’s region
is causally involved in processing sequences generated
from a simple right-linear unification grammar [29].
A recent follow-up [31] showed that after participants
had implicitly acquired aspects of a crossed dependency
structure (multiple non-adjacent dependencies of a
context-sensitive type similar to the ones described in
§2), rTMS applied to Broca’s region interfered with
subsequent classification (figure 4). Together, these
suggest that Broca’s region is causally involved in pro-
cessing both adjacent and non-adjacent dependencies.
0.10

LIFG
gram

vertex
gram

chance

se
ns

iti
v

Figure 4. The difference in endorsement rates between
grammatical and non-grammatical items with rTMS applied
to the left inferior frontal gyrus (LIFG) or vertex. *rTMS to

Broca’s region (BA 44/45) leads to significantly impaired
classification performance compared with control stimu-
lation at vertex. The zero level on the y-axis ¼ chance
performance.
5. GENETIC FINDINGS
A recent implicit AGL study [53] explored the poten-
tial role of the CNTNAP2 gene in artificial syntax
acquisition/processing at the behavioural and brain
levels. CNTNAP2 codes for a neural trans-membrane
protein [54] and is downregulated by FOXP2, a gene
that codes for a transcription factor [55]. Transcrip-
tion factors and their genes make up complex gene
regulatory networks, which control many complex bio-
logical processes, including ontogenetic development
[56–58]. The expression of CNTNAP2 is relatively
increased in developing human fronto-temporal-
subcortical networks [59]. In particular, CNTNAP2
expression in humans is enriched in frontal brain
regions, in contrast to mice or rats [60], and has
been linked to specific language impairment [55]. A
recent study investigated the effects of a common
single nucleotide polymorphism (SNP) RS7794745
in CNTNAP2 (the same as investigated in [53]) on
the brain response during language comprehension
[61]. This study found both structural and functional
brain differences in language comprehension related to
the same SNP sub-grouping used in [53].

The behavioural findings showed that the T group
(AT- and TT carriers) was sensitive to the grammatical-
ity of the sequences independent of local subsequence
familiarity. This might suggest that individuals with
this genotype acquire structural knowledge more
Phil. Trans. R. Soc. B (2012)
rapidly, use the acquired knowledge more effectively
or are better at ignoring cues related to local subse-
quence familiarity in comparison with the non-T
group (AA carriers). Parallel to these findings, signifi-
cantly greater activation in Broca’s region (BA 44/45)
as well as in the left frontopolar region (BA 10) in the
non-T compared with the T group was observed
(figure 5). Assuming that the structured sequence
learning mechanism investigated by AGL is shared
between artificial and natural syntax acquisition, these
results suggest that the FOXP2–CNTNAP2 pathway
might be related to the development of the neural



Figure 5. Brain regions differentiating the T and the non-T

groups. Group differences related to grammaticality classifi-
cation (non-T . T). Reproduced with permission from [53].
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infrastructure relevant for the acquisition of structured
sequence knowledge.

In summary, quite an amount of knowledge has
accumulated concerning the neurobiological infra-
structure for implicit AGL, and firm evidence shows
that the processing of artificial and natural language
syntax is largely overlapping in Broca’s region (BA
44/45). This lends credence to the claim that some
aspects of natural language processing and its neuro-
biological basis can be fruitfully investigated with the
help of well-designed artificial language paradigms.
Before sketching a neurobiological framework for situ-
ating and interpreting results such as those reviewed
here, we briefly review and comment on the Chomsky
hierarchy, recursion and the competence–performance
distinction to make explicit the connection between
neurobiologically inspired dynamical systems and
models of language formulated within the classical
Turing framework of computation.
6. RECURSION, COMPETENCE GRAMMARS AND
PERFORMANCE MODELS
In this and the following sections, we make explicit
that the (extended) Chomsky hierarchy attains its
meaning in the context of infinite memory resources.
However, any physically realizable, classical compu-
tational system is finite with respect to its memory
organization. Following Chomsky [62], we call
these machines strictly finite1 (i.e. finite automata or
finite-state machines, FSMs). Chomsky states that
‘performance, must necessarily be strictly finite’
([62], pp. 331–333) and argues (p. 390) that the ‘per-
formance of the speaker or hearer must be
representable by a finite automaton of some sort.
The speaker–hearer has only a finite memory, a part
of which he uses to store the rules of his grammar (a
set of rules for a device with unbounded memory),
and a part of which he uses for computation. . .’. The
apparent contradiction is explained in this section.
We argue that important issues in the neurobiology
of syntax, and language more generally, are related to
the nature of the neural code (i.e. the character of
Phil. Trans. R. Soc. B (2012)
neural representation), the properties of processing
memory, as well as finite precision (noisy) neural
computation. We suggest that (bounded) recursive
processing is a broader phenomenon, not restricted
to the language system, and conclude that one central,
not yet well-understood, issue in neurobiology is the
brain’s capacity to process bounded patterns of
non-adjacent dependencies.

A grammar G is roughly a finite set of rules that spe-
cifies how items in a lexicon (alphabet) are combined
into well-formed sequences, thus generating a formal
language L(G) [39,62–64]. The sequence set L(G)
is called G’s weak generative capacity and two grammars
G1 and G2 are weakly equivalent if L(G1) ¼ L(G2).
To take a recently much discussed example in the
AGL literature, the Chomsky hierarchy distinguishes
between the regular L(G1) ¼ f(ab)n j n a positive natu-
ral numberg and the context-free language L(G2) ¼
fanbn j n a positive natural numberg. These are gener-
ated by, for example, the grammars G1 ¼ fS! aB,
B! bA, A! aB, B! bg and G2 ¼ fS! aB, B!
Ab, A! aB, B! bg. We note two properties, to
which we will return in the following: (i) there is
little complexity difference between the competence
grammars G1 and G2 (they contain the same number
of rules, terminal and non-terminal symbols) and (ii)
the regular language L(G1) can be described by a
grammar G1 that recursively generates hierarchical
phrase-structure trees (in this case right-branching);
thus neither the concept recursion nor hierarchical dis-
tinguish between regular and supra-regular languages
(nor does the concept non-adjacency or long-distance
dependencies [65]).

In the context of natural language grammars, it is
important that G generates (at least) one structural
description for each sequence in L(G) (e.g. labelled
trees or phrase-structure markers; so-called strong gen-
erative capacity). A structural description typically
represents ‘who-did-what-to-whom, when, how, and
why’ relationships between words (lexical items) in a
sentence, and these relationships are important to
compute in order to interpret the sentence. Thus,
the structural descriptions capture that part of sen-
tence-level meaning that is represented in syntax.
This information is partly encoded (decoded) in the
corresponding word sequence during production
(comprehension) with the help of procedures that
incorporate, implicitly or explicitly, the knowledge of
the underlying grammar. Two grammars G1 and G2

are strongly equivalent if their sets of generated struc-
tural descriptions are equal, SD(G1) ¼ SD(G2).
Many classes of grammars are described in the litera-
ture (see [63] for a review of some normal forms and
the (extended) Chomsky hierarchy; grammar/language
formalisms are however not restricted to these,
[64,66,67]). Some important types of grammars gen-
erate classes of sequence (or string) sets that can be
placed in a class hierarchy, the (extended) Chomsky
hierarchy.

From a neurobiological point of view (i.e. with a
focus on neural processing), it is natural to reformulate
the Chomsky hierarchy in terms of equivalent
algorithms, or more precisely, computational machine
classes [62,64,68], because a central goal is to identify
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the neurobiological mechanisms that map between
‘meaning and sound’ (generators/transducers/parsers).
In these terms, the Chomsky hierarchy corresponds to:
finite-state (T3) , push-down stack (T2) , linearly
bounded (T1) , and unbounded Turing machines
(T0; where , means strict inclusion). Thus, (in
terms of the theory of computation, the Chomsky hier-
archy is a memory hierarchy that specifies the
necessary (approx. minimal) memory resources
required to process sequences of a formal language
from a given class of the hierarchy, typically in a recog-
nition paradigm. However, it is not a complexity
hierarchy for the computational mechanism (approx.
algorithm or processing logic) involved—these are all
FSMs2 ([62], see also [69–74]). However, the distinc-
tions made by the hierarchy in terms of minimal
memory requirements, in particular the infinite
memory requirements, are of unclear status from a
neurobiological implementation point of view. For
instance, Miller & Chomsky ([75], p. 472) state that
‘obviously, (finite memory) is beyond question’ (see
also ([62], pp. 331–333). In this case, all levels in
the hierarchy are special cases of the class of Turing
machines with finite memory (i.e. strictly finite
machines, SFMs). In order to abstract away from the
finite memory limitation of real systems, Chomsky
[39,62,75] introduced the competence–performance
distinction. A competence grammar [76,77] is ‘a device
that enumerates [. . .] an infinite class of sentences
with structural descriptions’ ([62], device A in fig. 1,
pp. 329–330). The competence grammar is taken to
be distinct from both the language acquisition and
processing (i.e. performance) systems ([62], device C
and B, respectively, in fig. 1, pp. 329–330). However,
Chomsky also suggested that ‘any interesting realiz-
ation of B [a performance system] that is not
completely ad hoc will incorporate A [a competence
grammar] as a fundamental component’, for example,
Turing machines with finite tapes and register
machines with a finite number of bounded registers.3

In both cases, one can view the finite-state controller
(i.e. the processing logic or computational mechan-
ism) as representing the knowledge of a competence
grammar with an unbounded recursive potential,
neither of which can be expressed or realized because
of memory limitations. Chomsky [62] argued that if
hardware constraints are disregarded, then the
system can be understood as instantiating the equival-
ent of a competence grammar. A consequence of
focusing on competence grammars is that the
Chomsky hierarchy retains its meaning and this
allows, among other things, the theoretical investi-
gation of asymptotic properties of finite rule systems.

Formal ideas of hierarchy and recursion, intrinsic to
cognition, have been present (at least) since the formali-
zation of these concepts in computational terms
[70–72]. Unbounded recursion [78] achieves discrete
infinity [62,76]; or in contemporary terms, ‘since
merge can apply to its own output, without limit, it gen-
erates endlessly many discrete, structured expressions,
where ‘generates’ is used in its mathematical sense, as
part of an idealization that abstracts away from certain
performance limitations of actual biological systems’
([79], p. 1218). Obviously, infinite recursive capacity is
Phil. Trans. R. Soc. B (2012)
not realizable ([62], pp. 329–333, 390). Illustrations
are empirical results showing that sentences with more
than two centre embeddings are read with the same into-
nation as a list of random words [80], cannot easily be
memorized [81,82], are difficult to paraphrase [83,84]
and comprehend [85–88], and are sometimes paradoxi-
cally judged ungrammatical [89]. It is arguable that over-
generation is one consequence of models that support
unbounded recursion, a property not shared by the
underlying object, the neurobiological faculty of
language [90]. This might or might not be a problem,
depending on perspective. The best that can be hoped
for is that classical models in some sense are abstractions
(or more realistically, approximations) of the underlying
neurobiology.

Another, natural view on the competence–perform-
ance distinction is simply to consider bounded
versions of the memory architectures entailed by, for
example, the Chomsky hierarchy (or any other classi-
cal computational models). Nothing (essential) is lost
from a neurobiological implementation point of view,
and this shift in perspective makes explicit the role of
processing memory in computation. To take one
example, the unbound push-down stack (first-in-last-
out memory) naturally correspond to the class of
context-free grammars. It is conceivable that neural
infrastructure can support, and make use of, bounded
stacks during language processing, as suggested by
Levelt ([66], vol. III, Psycholinguistic applications)
as one possibility.4 The point here is that computation
is intimately dependent on processing memory. More-
over, the computational capacities of SFMs does not
have to be described by a regular (e.g. language/
expression) formalism.5 Nevertheless, to the extent
that classical models are relevant (in the final analysis),
SFMs can represent and express all (bounded)
relations and recursive types that are relevant from
an empirical as well as theoretical point of view (see
ch. 3, Machines with memory, in [91]). However, if
one disregards memory bounds, then any SFM can
be captured by a finite rule-system and investigated
as a competence grammar.

The properties of memory used during processing
is of central importance from a neurobiological per-
spective. More fundamentally, two factors enter into
the notion of computation: (i) processing logic (algor-
ithm) and (ii) processing memory; there can be little
interesting (recursive) processing without either of
these factors; processing logic and memory are tightly
integrated in computation, both in classical ([91],
pp. 110–115) and non-classical models (§8). How-
ever, the algorithm equivalent to the finite-state
controller is of interest and captures the essential
aspect of the competence notion. In this context, cer-
tain aspects of the computational complexity theory
might be more useful than the Chomsky hierarchy
itself [68,78,91–93]—in particular, the standard com-
plexity metrics, which are closely related to processing
complexity (roughly, the memory-use during compu-
tation and the time of computation). There are often
interesting complex trade-offs between processing
time and memory use in computational tasks, and
understanding these might be of importance to
neurobiology.
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Neurobiological short- and long-term memory is an
integral part of neural computation and given the
co-localization of memory and processing in neural
infrastructure (§8), it is natural to expect that the
characteristics of processing memory will be central
to: (i) a characterization of neural computation in gen-
eral, including those supporting natural language
processing; (ii) a realistic neural model of the language
faculty; and (iii) provide natural bounds and expla-
nation for human processing limitations (see [94],
for an illustration in a spiking network model).
What is relevant from a neurobiological perspective is
the representational properties of language models
(roughly, their capacity to generate internal interpret-
ations) and their capacity to capture neurobiological
realities. These issues are orthogonal to issues related
to unbounded recursion and memory (which are of
little, if any, consequence [65]). Instead, more realistic
neural models will shed light on, and explain, errors
and other types of breakdown in human performance.

It follows from the earlier-mentioned reasoning that
we are free to choose a formal framework to work with,
as long as this serves its purpose.6 Ultimately, it is the
study object that will determine what is visible in any
given formalism. This flexibility is useful when addres-
sing the inner workings of syntax, or language, from a
neurobiological point of view. Central issues in the
neurobiology of syntax, and language more generally,
are related to the nature of the neural code (i.e. the
character of representation), the character of human
processing memory and finite precision (noisy)
neural computation [95,96] (see §8). Finally, we
note that recurrent connectivity is a generic brain fea-
ture [97]. Therefore, it seems that (bounded) recursive
processing is a latent (i.e. not necessarily realized)
capacity in almost any neurobiological system and it
would be surprising, indeed, if this would turn out to
be unique to the neurobiological faculty of language
([37], pp. 591–599, for several examples of recursive
domains outside language).
7. (NON-)LEARNABILITY
Results in formal learning theory [98] provide
additional reasons to examine the relevance of the
Chomsky hierarchy in the context of language acqui-
sition and AGL. For instance, if the class of
grammars representable by the brain, M, or the learn-
able subset, N # M, is finite, then there is little
fundamental connection between these and the
Chomsky hierarchy (the classes of which are infinite).
Theoretical learnability results are in general negative
[99,100]. For example, none of the language classes
of the Chomsky hierarchy are learnable in the sense
of Gold [101], that is, learnability in finite time from
a representative sample of grammatical (positive)
examples without performance feedback.7 The same
result holds for several other notions of learnability,
including notions of statistical approximation
[40,98–100,102]. For instance, only the class of
(deterministic) FSMs is tractably learnable (see ch. 8
in [40], which also reviews the role of computational
complexity in learnability). This suggests that the dis-
tinctions made by the Chomsky hierarchy might not
Phil. Trans. R. Soc. B (2012)
be natural from a learning perspective, whether in
AGL or in natural language acquisition. With respect
to the latter, a dominant theoretical position—the prin-
ciples and parameters model [100,103,104]—
proposes, based on poverty-of-stimulus arguments
[40,79,105,106], that natural language grammars are
acquired only in a very restricted sense in a finite
model-space, defined by principles and learnable
(bounded discrete) parameters.

If it is assumed that the brain has at its disposal a
fixed number of formats for representing grammars
(or alternative computational devices), and assuming
a finite storage capacity, then it follows that there is a
finite upper-bound, m, for the description length of
representable grammars.8 This set Mm is finite and
the set of learnable grammars Nm # Mm is thus also
finite. The finiteness of Mm renders the full set Mm

learnable in the sense of Gold as well as in several
other learning paradigms [40,98,100]. It is the finite
number of grammars representable by the brain that
is critical here ([19] for an argument based on analogue
systems leading to the same conclusion). The point of
these remarks is that the class of grammars represent-
able by the human brain, M, or the learnable subset
N, might have little fundamental connection to the
Chomsky hierarchy, as seems to be the case if M or N
are finite. On independent grounds, based on consider-
ations of the evolutionary origins of the language
faculty, Jackendoff argues ([37], p. 616) that ‘what is
called for is a hierarchy (or lattice) of grammars—not
the familiar Chomsky hierarchy, which involves un-
interpreted formal languages, but rather a hierarchy
of formal systems that map between sound and mean-
ing’. Finally, Clark & Lappin ([40], p. 94) emphasize
that ‘the traditional classes of the Chomsky hierarchy
are defined with reference to simple machine models,
but we have no grounds for thinking that the human
brain operates with these particular models. It is
reasonable to expect that a deeper understanding of
the nature of neural computation will yield new
computational paradigms and corresponding classes
of languages’.
8. NEURAL COMPUTATIONS AND ADAPTIVE
DYNAMICAL SYSTEMS
Analogue dynamical systems provide a non-classical
alternative to classical computational architectures,
and importantly, it is known that any Turing comput-
able process can be embedded in dynamical systems
instantiated by recurrent neural networks [107] that
are closer in nature to real neurobiological systems.
The fact that classical Turing architectures can be for-
malized as time-discrete dynamical systems provides a
bridge between the concepts of classical and non-
classical architectures [74,108,109]. The possibility
of reducing classical architectures to neurobiological
models is crucial, given the scientific challenge to
understand how syntactic knowledge is represented
in (noisy) spiking neural networks and how such net-
works come to develop this capacity. This reduction
presupposes a neurobiologically informed theory of
the language faculty. The adaptive dynamical systems
framework, which we outline below, is an attempt to
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Figure 6. An adaptive dynamical system framework. A rep-
resentation of equations (8.1) and (8.2) from the text.
Conceptually, the graphical representation shows that learn-

ing is a dynamic consequence of information processing
[111,112], and conversely, that information processing is a
dynamic consequence of learning/development, typically on
different time scales (for details [108]).
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unify formal language theory with neurobiology, simi-
lar to the way in which chemistry and physics were
unified during the 1920s. The framework represents
a neurobiological implementation of the relevant
aspects of formal language theory in order to make
precise, from a neurobiological point of view, compu-
tational issues related to acquisition and processing
of language, and structured sequences more generally.

The classical notions representation and processing are
formalized within the framework of time-discrete
dynamical systems9 as a state–space of internal states
and a transition mapping, T, that maps pairs of an
internal state, s, and an input, i, to a new internal
state, ŝ, and (optionally) an output, l, given by
(ŝ, l) ¼ T(s, i); the transition mapping T governs
how input is processed in a state-dependent manner.
Thus, processing is represented by an input-driven
state–space trajectory constrained by T; at time-step
n, the system receives input i(n), being in state s(n),
and as a result of processing, the system changes
state to s(n þ 1) ¼ T[s(n), i(n)]. This also captures
the idea of incremental recursive processing (cf. the
unification operation ŝ ¼ U(s, t) mentioned in §1). In
an entirely analogous manner, the notion of incremen-
tal recursive processing is captured in analogue noisy
time-continuous systems by s(t þ dt) ¼ s(t) þ ds(t),
where ds(t) is given by

dsðtÞ ¼ Tðs;m; iÞ dt þ djðtÞ; ð8:1Þ

where a noise process j(t) has been added to the coupled
multivariate stochastic differential equation (e.g. [110];
we will return to the role of the parameter m).

Equation (8.1) is a generic noisy dynamical system,
C, that interfaces its (computational) environment
through an input interface i ¼ f(u) and an output inter-
face l ¼ g(s,i). Moreover, the increment ds(t), and
thereby s(t þ dt), is recursively determined by s(t)
through T(s, m, i) (and noise; cf. figure 6).
When the noise term dj(t) is deleted from equation
(8.1), the remaining terms (or more precisely T) can
be understood as the competence of the system,
while the full equation specifies its performance.
Equation (8.1) is also a description of a spiking recur-
rent network, which can be seen in the following way:
(i) the state s (a vector representing the information in
the system) is a finite set of dynamic analogue registers
(in the simplest case, membrane potentials, cf.
[95,113,114]); (ii) the recurrent network topology is
specified by the component equations of (8.1), which
is thus naturally an asynchronous event-driven parallel
architecture (i.e. the coupling pattern between the com-
ponents of s specified by T; the notion of a module is
captured by the notion of a sub-network) [109]; and
finally, (iii) the specifics of the transfer function of
the neural processing units, including synaptic charac-
teristics and the spiking mechanism (here implicit in T,
including for instance, membrane resetting, etc.). In
other words, the computation of the neural system is
essentially determined by T and its processing
memory (cf. below and footnote 10), as in the classical
case [108,115].

To incorporate learning and development, the
processing dynamics, T, needs to be parametrized
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with learning parameters, m (e.g. synaptic parameters
for development as well as memory formation and
retrieval) and a learning/development dynamics L (e.g.
spike-time dependent plasticity, Hebbian learning,
etc., figure 6). The learning parameters, m, live in a
model-space M ¼ fm jm can be instantiated by Cg. To
be concrete, let C be the neurobiological language
system and T the parser associated with C. Develop-
ment of the parsing capacity means that T changes its
processing characteristics over time. We conceptualize
this as a trajectory in the model-space M, where a
given m corresponds to a state of the language system;
at any point in time, C is in a model state m(t). If C incor-
porates an innately specified prior structure, we can
capture this in at least four ways: (i) by a structured
initial state m(t0) (e.g. a meaningful parsing capacity
present from the start); (ii) constraints on the model-
space M (e.g. M is finite or compact; domain-general/
specific principles); (iii) domain specifications incor-
porated in the learning/developmental dynamics L
(e.g. L is only sensitive to structural, and not
serial order, relations); and (iv) constraints on the
representational state–space or its dynamics T.

As C develops, it traces out a trajectory in M deter-
mined by its learning/development dynamics L
according to (figure 6):

dm ¼ Lðs;m; i; tÞ dt þ dhðtÞ; ð8:2Þ

where a noise process h(t) has been added and the
explicit dependence on time in L (non-stationarity)
captures the idea of an innately specified developmen-
tal process (maturation). If the input streams i and
the learning/development dynamics L are such that C
converges (approximately) on a final model, this
characterizes the end-state of the development process
(e.g. adult competence).

In summary, learning and development is the joint
result of two coupled dynamical systems, the represen-
tation dynamics T and the learning/development
dynamics L, which together form an adaptive dynami-
cal system (figure 6). In this analysis, language
acquisition is the result of an interaction between
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two sources of information: (i) innate prior structure,
which is likely to be of a pre-linguistic, non-language
specific type and, to some presumably limited extent,
language-specific; and (ii) the environment, both the
linguistic and extra-linguistic experience. Thus, the
underlying conceptualization is similar to that of
Chomsky [15,116] and other classical models of
acquisition [40,100,104,117], although the formu-
lation in terms of a spiking recurrent network is
clearly more natural to neurobiology [109,118].
Finally, we note that a suitable reinterpretation of
equation (8.2), and added in as an analogous equation
(8.3),10 would serve as a model for an online proces-
sing memory (beyond the memory capture by pure
state-dependent effects). Although there are several
important differences, it is interesting to note that
the form of equations (8.1)–(8.3) suggests that there
is little fundamental distinction between the dynamical
variables for information processing (equation (8.1))
and those implementing memory at various time
scales, equations (8.2)–(8.3). This suggests the pos-
sibility that memory in neurobiological systems might
be actively computing.

Several non-standard computational models have
been outlined (for reviews, see [107,119–121]). How-
ever, their dependence on unbounded or infinite
precision processing11 implies that their computations
are sensitive to system noise and other forms of pertur-
bations. In addition to system-external noise, there are
several brain-internal noise sources [95] and theoretical
results show that common noise types put hard limits on
the set of formal languages that analogue networks can
recognize [120,122,123]. Moreover, the state–space
(or configuration space) of any reasonable analogue
model of a given brain system will be finite dimensional
and compact (i.e. closed and bounded); compactness
[124] is the natural generalization of finiteness in the
Turing framework. Qualitatively, it follows from com-
pactness that finite-precision processing or realistic
noise levels have the effect of coarse graining the
state–space—effectively discretizing this into a finite
number of elements which then become the relevant
computational states. Thus, even if we model a brain
system as an analogue dynamical system including
noise, this would approximately behave as a finite-state
analogue [74]. This is essentially what the technical
results of Maass and co-workers [122,123,125] and
others [107,120,126] entail. Thus, under realistic
noise assumptions, the best these systems can achieve
is to ‘simulate. . .any Turing machine with tapes of
finite length’ [125]. The insight that the human brain
is limited by finite precision processing, finite processing
memory and finite representational capacity is originally
Turing’s ([70,71], for a review see [72]).
9. CONCLUSION
The empirical results reviewed suggest that the nature
of the brain’s ability for syntax is based on neurobiolo-
gical infrastructure for structured sequence processing.
Grammars (or more precisely, the parser/generator)
are represented in the connectivity of the human
brain (specified by T). The acquisition of this ability
is accounted for, in an adaptive dynamical system
Phil. Trans. R. Soc. B (2012)
framework, by the coupling between the representation
dynamics (T) and the learning dynamics (L). The neu-
robiological implementation of this system is still
underspecified. However, given that the faculty of
language is captured by classical computational
models to a significant extent, and that these can be
embedded in dynamic network architectures, there is
hope that significant progress can be made in under-
standing the neurobiology of the language faculty.
ALL paradigms might be used to study the acquisition
process within such a framework as well as the proces-
sing properties of the underlying neurobiological
infrastructure. However, it is necessary to combine
and constrain the interpretation of results from ALL
paradigms by theoretical models and empirical studies
on natural language processing. Only within this con-
text can investigations of ALL make a relevant, albeit
limited, contribution to our understanding of the
neurobiology of syntax (language).
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ENDNOTES
1The strictly finite machines (SFMs) are all characterized by the fact

that they can attain a finite number of configurations or states

(including the possible states of memory). Thus, independent of

any particular finite memory architecture (bounded stacks, finite

Turing-tapes, or a finite number of bounded registers), it is always

possible to construct a finite-state machine (FSM) that is equivalent

in terms of processing trajectories in configuration space (path-

equivalence). Conversely, the SFM can be viewed as a particular

implementation of the path-equivalent FSM. Thus, the transition

graph associated with the FSM specifies how a path-equivalent

SFM computes by specifying the processing trajectories in the con-

figuration space of the SFM. This also shows that a FSM has a finite

memory (coded for in the states of the transition graph; see the elec-

tronic supplementary material for technical details). Finally,

path-equivalence implies that path-equivalent systems generalize in

identical ways. The representation by computational paths or pro-

cessing trajectories makes the connection to dynamical systems

transparent (cf. §8).
2To see this, consider Turing machines (TMs), which—by defi-

nition—have their processing logic (i.e. the computational

mechanism) implemented as a finite-state machine (finite-state con-

trol) that reads and writes to the tape memory. The hierarchy is then

equivalent to finite memory TMs (T3); T2–0 are all infinite

memory TMs with first-in-last-out access (T2), linearly bounded

access (T1) and unrestricted access [64,68,69].
3A Turing machine, or any other classical computing device, with

finite memory is a strictly finite machine and its weak generative

capacity is therefore a regular language (see the electronic sup-

plementary material for technical details).
4If the brain makes use of a stack memory, it is likely that the brain

can support more than one stack. Two or more stacks entail full

Turing (T0) computability, unless the stack memories are bounded

[64,69].
5The class of strictly finite machines and the class of regular

languages are only weakly equivalent. For instance, the rewrite gram-

mar {S! aB, B! bA, A! aB, B! b}, which is in a context-free

format, specifies the regular language {(ab)n j n a positive natural
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number}. More generally, any finite rule system can be viewed as a

competence grammar, if memory bounds are disregarded.
6This includes the use of competence grammars in linguistics (e.g. to

abstractly characterize knowledge by finite rule systems) and the use

of infinite-state machines in the theory of computation (e.g. Turing

machines; a state here includes the state of the finite-state controller

and the state of the tape memory). Again, in the case of infinite-state

machines, the transition graph representation of the computational

paths in state-space makes the transition to the dynamical systems

framework straight forward.
7We use Gold’s paradigm as an explicit example of learning theoretic

results because it is relatively simple and well-understood, not

because it is necessarily a realistic model of language acquisition.

For instance, it is possible to ease the acquisition problem by assum-

ing that the child’s (language) environment can be modelled

appropriately as a structured stochastic input source ([40] for an

extensive discussion).
8It is possible to implicitly represent an infinite class of grammars by

finite means via, for example, Gödel enumeration ([79], ch. 5) and

universal machines ([79], ch. 5). This type of scheme depends on

the capacity to represent arbitrarily large (natural) numbers and

thus runs into the same finiteness barrier as outlined in §6, at the

stage of needing to decode or represent too large a number or the

stage of attempting to ‘unpack’ a too complex grammar. More pre-

cisely, the inverse image of a finite set is finite under an injection; so

the effective representational capacity of the brain, if it used such a

scheme, would still be a finite set of grammars.
9A dynamical system is a computing device if the dynamical variables

(which carries numerical values and therefore can be regarded as

analog registers) encode information or representations; thus the

temporal evolution of the dynamical variables (i.e. their numerical

values) is a reflection of information processing. This conceptualiz-

ation is identical with, and generalises, the standard view taken in

the Turing framework of classical computational architectures.
10To be explicit, a new set of dynamical variables, n, needs to be

introduced, and equation (8.3), with corresponding modifications

of (8.1) and (8.2), is of the type:

dn ¼ Kðs;m; n; iÞdt þ dgðtÞ; ð8:3Þ

the vector n instantiates the processing memory (e.g. rapid, short-

term synaptic plasticity) and K its dynamics.
11The difference between unbounded and infinite precision compu-

tation corresponds to computing with rational and real numbers,

respectively. For instance, discrete-time, recurrent networks comput-

ing with rational and real numbers (synapses/internal states)

correspond to Turing and super-Turing machines [107].
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