
Proc. R. Soc. B (2012) 279, 2736–2743
* Autho
and Evo
USA (ve

Electron
10.1098

doi:10.1098/rspb.2011.2464

Published online 7 March 2012

Received
Accepted
Modelling seasonal variations in the age and
incidence of Kawasaki disease to explore

possible infectious aetiologies
Virginia E. Pitzer1,2,*, David Burgner3, Cécile Viboud2,

Lone Simonsen2,4, Viggo Andreasen2,5, Claudia A. Steiner6

and Marc Lipsitch1,7

1Department of Epidemiology and Center for Communicable Disease Dynamics,

Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
2Fogarty International Center, National Institutes of Health, 31 Center Dr MSC 2220,

Bethesda, MD 20892, USA
3Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington Road,

Parkville, Victoria 3052, Australia
4Department of Global Health, School of Public Health and Health Services,

George Washington University, 2300 I St NW, Washington, DC 20037, USA
5Department of Science, Roskilde University, 4000 Roskilde, Denmark

6US Department of Health and Human Services, Healthcare Cost and Utilization Project,

Center for Delivery, Organization and Markets, Agency for Healthcare Research and Quality,

540 Gaither Road, Rockville, MD 20850, USA
7Department of Immunology and Infectious Diseases, Harvard School of Public Health,

665 Huntington Avenue, Boston, MA 02115, USA

The average age of infection is expected to vary during seasonal epidemics in a way that is predictable

from the epidemiological features, such as the duration of infectiousness and the nature of population

mixing. However, it is not known whether such changes can be detected and verified using routinely col-

lected data. We examined the correlation between the weekly number and average age of cases using data

on pre-vaccination measles and rotavirus. We show that age–incidence patterns can be observed and pre-

dicted for these childhood infections. Incorporating additional information about important features of

the transmission dynamics improves the correspondence between model predictions and empirical

data. We then explored whether knowledge of the age–incidence pattern can shed light on the epidemio-

logical features of diseases of unknown aetiology, such as Kawasaki disease (KD). Our results indicate

KD is unlikely to be triggered by a single acute immunizing infection, but is consistent with an infection

of longer duration, a non-immunizing infection or co-infection with an acute agent and one with longer

duration. Age–incidence patterns can lend insight into important epidemiological features of infections,

providing information on transmission-relevant population mixing for known infections and clues about

the aetiology of complex paediatric diseases.
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1. INTRODUCTION
Interest has grown recently in the role of infectious causes

for diseases of complex or unknown aetiology [1]. How-

ever, identifying and confirming the etiological agent

are often difficult for diseases with multiple necessary or

strongly predisposing causes, such as infection by one

or more pathogens in a host with a genetic predisposition

to disease [1]. Identifying a definitive link between an

infectious agent and a disease of unknown aetiology

can lead to improved diagnostics and treatment, includ-

ing the development of vaccines or antimicrobials,
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rather than relying on non-specific treatments aimed at

mitigating disease pathogenesis.

Epidemiological evidence that supports an infectious

aetiology includes seasonality in incidence and a young

age distribution indicative of the acquisition of immunity

(or resistance to symptomatic disease) following infection

[2,3]. The incidence and age distribution of cases may

vary seasonally in a manner dependent on important epi-

demiological features of the infection, including the

duration of infectiousness and the nature of transmission-

relevant population mixing [4]. These ‘age–incidence

patterns’ can be understood in terms of age-related fluctu-

ations in the susceptible population resulting from the

epidemic dynamics [4]. However, it has yet to be demon-

strated whether seasonal changes in the average age of

cases can be detected using routinely collected data, or

that the correlation patterns between the incidence and
This journal is q 2012 The Royal Society
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average age of cases can predicted from models for the trans-

mission dynamics of infection. If this approach can be

validated using diseases with a well-understood infectious

aetiology, then examining the age–incidence pattern for dis-

eases with a suspected infectious aetiology may help in

narrowing the search for the agent(s) involved.

Kawasaki disease (KD) is a paediatric inflammatory

syndrome for which an infectious trigger is strongly sus-

pected, but for which no causative organism(s) have

been reliably identified [2,5,6]. KD is an acute systemic

vasculitis of young children that is diagnosed by the

presence of prolonged fever together with a constellation

of clinical signs, including rash, changes to the mucous

membranes and peripheries, lymphadenopathy and

non-purulent conjunctival injection [7]. KD specifically

and uniquely damages the coronary arteries in a mino-

rity of cases. It is the leading cause of acquired heart

disease in children in asset-rich countries and may be

pro-atherosclerotic [2]. Epidemiological and microbiolo-

gical studies have attempted to link KD to a variety of

infectious and environmental exposures, but no reliable

association has been found [5,6].

The consensus is that KD is caused by a widely distrib-

uted infectious agent (or multiple agents) that evokes an

abnormal immune response in genetically predisposed

individuals [5,6]. There is considerable evidence to

suggest a genetic component of risk. Annual incidence

rates among children less than 5 years of age vary

from 4 to 20 per 100 000 in the United States [8,9]

to 218 per 100 000 in Japan [10] and the incidence

remains as high among children of Japanese descent

living in other countries [11]. Siblings of KD patients

have a 6–10-fold greater incidence than the general

population [12], and KD-affected children are more

likely to have parents who had the condition [13]. Other

aspects of the epidemiological evidence, including season-

ality and spatiotemporal clustering of cases, together with

the clinical features, suggest an infectious aetiology

[2,5,6,14,15]. The age distribution of KD cases is similar

to that of many childhood infections [2]. Most cases

occur in children less than 5 years of age, but the inci-

dence rate is relatively low in children less than six

months of age, suggesting there may be protection by

maternal antibodies [2,5,6]. The dramatic decline in inci-

dence in older children implies the putative infection is

widely distributed.

To determine whether examining the relationship

between seasonal variation in the number and average

age of cases can lend insight into the nature of the infec-

tious trigger(s), we sought to extend and validate previous

work on age–incidence patterns [4], then apply this

theory to KD. We first examined observed age–incidence

patterns for two acute childhood infections, measles and

rotavirus, for which the aetiology is known and the trans-

mission dynamics have been well-characterized [16–18].

We determined the extent to which the observed patterns

could be predicted by mathematical models, exploring a

hierarchy of models ranging from simple to more epide-

miologically realistic representations of the transmission

dynamics. We then examined the age–incidence pattern

of KD hospitalizations in the United States and compared

the observed pattern to those predicted by models con-

sistent with hypotheses about the aetiology of this

complex disease.
Proc. R. Soc. B (2012)
2. METHODS
(a) Data

We examined data on measles notifications from Copenhagen,

Denmark from 1905 to 1918, rotavirus hospitalizations in the

United States from 1997 to 2005, and KD hospitalizations

in the United States from 1989 to 2003. Measles data were

obtained from weekly case reports by primary care physicians

[19]. For rotavirus and KD, we analysed data from the

state inpatient databases (SID) of the Healthcare Cost and

Utilization Project (HCUP) (http://www.hcup-us.ahrq.gov/

databases.jsp) maintained by the Agency for Healthcare

Research and Quality (AHRQ), which include all hospital

discharge records from community hospitals in participating

states. HCUP databases bring together the data collection

efforts of state data organizations, hospital associations,

private data organizations and the Federal government

to create a national information resource of patient-level

health-care data [20].

The data had differing degrees of age resolution; see

electronic supplementary material for details. To limit the

influence of atypical cases in older individuals during periods

of low incidence, we restricted our analysis to an age range in

which greater than 90 per cent of cases occurred.
(b) Statistical analysis

Age–incidence patterns were detected by calculating the

Pearson correlation coefficients between the number of

cases in a given week (t) and the mean age of such cases at

a lag of 226 to 26 weeks (t þ l ). The primary outcome

variable was the lag time associated with the maximum cor-

relation (lmax). To determine the significance of these

patterns, we calculated 95% bootstrap confidence intervals

by randomly permuting the average age time series 10 000

times and estimating the maximum and minimum corre-

lation coefficients between the original case data and the

permuted average age time series. We analysed the relation-

ship looking (i) longitudinally across all years of available

data, and (ii) at the cumulative data aggregated by week

of the year.
(c) Model-predicted patterns

We determined the extent to which the empirical age–

incidence patterns corresponded to model predictions, first

using simple models to represent the transmission dynamics,

then adding more complexity consistent with previously

developed models (see electronic supplementary material

for details). We did not explicitly fit the models to the

data because of the difficulty in doing so for KD (see elec-

tronic supplementary material), but rather used the best-fit

parameters for similar measles and rotavirus datasets

[16,17,19]. We assumed reported cases were directly pro-

portional to the underlying incidence (i.e. did not vary by

age), and adjusted the baseline transmission rate to corre-

spond to the average age of cases in our datasets. The

simple models were intended to give a range for the expected

lag times when we know only the most basic characteristics of

the infection (or presumed infection, in the case of KD),

while the more complex models were meant to demonstrate

how well we can reproduce the observed age–incidence pat-

terns given full knowledge of important aspects of the

transmission dynamics (which is not possible at this time

for KD).

http://www.hcup-us.ahrq.gov/databases.jsp
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Figure 1. Relationship between the average age and incidence of measles notifications in Copenhagen, Denmark. (a) The
number of weekly measles notifications (blue) among children less than 15 years of age in Copenhagen from 1905 to 1918,
and the average age of measles cases (red). We smoothed the data using a five week moving average. (b) Mean number and
average age of measles notifications by week of the year. (c) Correlation coefficients between the number of notifications at

time t and the average age of cases at time t þ l for the longitudinal analysis and aggregate analysis. The dotted lines represent
the range within which 95% of the maximum and minimum correlations fell when we randomly permuted the average age time
series. (d) Model-predicted relationship between the number and average age of cases assuming an SEIR structure and
RAS-like mixing with school-term forcing.
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3. RESULTS
(a) Detection and validation of age–incidence

patterns for measles and rotavirus

Measles epidemics occurred approximately annually from

1905 to 1918 in Copenhagen, Denmark (figure 1a) [19].

The mean number of reported measles cases (averaged

by week of the year) varied between 16.9 and 139.1

cases per week, while the weekly average age of cases

varied between 4.6 and 6.9 years old (figure 1b). The

average age peaked just prior to the number of cases,

such that a maximum correlation of 0.47 for the longi-

tudinal analysis and 0.73 for the aggregate analysis were

associated lag times of lmax ¼ 24 weeks and 23 weeks,

respectively; these correlations were highly significant

(p , 0.001; figure 1c).

To model the predicted dynamics of measles, we

used seasonally forced age-structured differential equa-

tion models (see electronic supplementary material; [4]).

We initially explored an susceptible-exposed-infectious-

recovered (SEIR) model with simple sinusoidal forcing.

We used a seasonal amplitude of b ¼ 0.15, and adjusted

the baseline transmission rate such that the model pre-

dicted annual epidemics with an average age of infection

between 4 and 6 years old. We explored four mixing

assumptions: (i) homogeneous mixing, (ii) assortative

mixing, (iii) mixing based on self-reported contact patterns

[21,22], and (iv) classical ‘realistic age-structured’ (RAS)

model mixing [16]. We found RAS mixing offered the clo-

sest correspondence with the observed age–incidence

pattern with a predicted lag time of 211 weeks, reflecting

the importance of increased rates of transmission
Proc. R. Soc. B (2012)
among school-aged children in the epidemiology of

measles. Other types of mixing produced lag times varying

from three weeks (homogeneous mixing) to 13 weeks

(self-reported mixing).

Given the importance of transmission among school-

aged children in measles epidemiology, it may be more

accurate to model seasonality in the transmission rate

using a step function reflecting the school holiday sche-

dule rather than a sinusoidal function. We examined the

model-predicted age–incidence pattern using ‘school-

term forcing’ reflecting the known holiday schedule in

Copenhagen [19] and assuming that the transmission

rate among school-aged children (7–14 years old) was

equal to that among preschool-aged children during holi-

day periods and approximately nine times higher during

school periods, according to the best-fit seasonal forcing

parameter for England and Wales [16]. We found the

lag time corresponding to the maximum correlation was

now predicted to be 23 weeks, which is very close to

the observed lmax of 23 to 24 weeks, although the

large decrease in the average age of cases during the

non-summer holidays predicted by the model was not

as evident in the data (figure 1d).

Rotavirus exhibited a different pattern from measles,

with strong seasonal variation in the number of cases, ran-

ging from a week-of-the-year average of 106–6800 cases

per week, and a younger average age (1.2–1.6 years old;

figure 2a,b). The mean number of rotavirus hospitaliz-

ations peaked in mid-March, while the average age of

patients tended to be greatest slightly after the peak of the

epidemic, such that the maximum correlation of 0.59 for
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Figure 2. Relationship between the average age and incidence of rotavirus hospitalizations in the United States. (a) The number
of weekly rotavirus hospitalizations (blue) among children less than 5 years of age in 16 US states from 1997 to 2005, and the
average age of rotavirus patients (red). We smoothed the data using a five week moving average. (b) Mean number and average

age of rotavirus cases by week of the year. (c) Correlation coefficients between the number of hospitalizations at time t and the
average age of patients at time t þ l for the longitudinal analysis and aggregate analysis. The dotted lines represent the range
within which 95% of the maximum and minimum correlations fell when we randomly permuted the average age time
series. (d) Model-predicted relationship between the number and average age of rotavirus cases assuming an SIRS-like
structure for a best-fit model [17].
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the longitudinal analysis and 0.72 for the aggregate analysis

both occurred at a lag of six weeks; again, these correlations

were highly significant (p , 0.001; figure 2c).

If we modelled the dynamics of rotavirus using a simple

susceptible-infectious-recovered-susceptible (SIRS) model

assuming cases represent first infection (see electronic

supplementary material) and adjusted the baseline

transmission rate such that the mean age of cases was

approximately 1.5 years old, we found that the lag times

associated with the maximum correlation varied from 28

to 25 weeks depending on the mixing assumption.

However, such a model could not capture the strong

seasonality in rotavirus incidence.

Epidemiological studies suggest the dynamics of rota-

virus are more complex [17,23]. When we examined the

age–incidence pattern predicted by a best-fitting model

for rotavirus dynamics in the USA, which assumes an

SIRS-like structure with reduced susceptibility to infec-

tion and disease following one to two infections and

homogeneous mixing with higher rates of acquisition

among infants [17], we found the lag time corresponding

to the maximum correlation was predicted to be five

weeks (figure 2d), which is very close to the observed

lmax ¼ 6 weeks.

In summary, it was possible to approximate the corre-

lation pattern between seasonal variation in the incidence

and mean age of infection within +12 weeks using

simple models for two diseases with different transmission

dynamics and empirical age–incidence patterns. Adding

detail to such models to improve their biological realism

increased the accuracy of the predicted age–incidence
Proc. R. Soc. B (2012)
patterns. These findings encouraged us to use simple

models to assess which sorts of infections would produce

the age–incidence pattern observed for KD in order to

place restrictions on possible infectious aetiologies/triggers.
(b) Age–incidence pattern for Kawasaki disease

On average, the mean number of KD hospitalizations

peaked in February–March at 31.2 hospitalizations per

week and was lowest in September (16.7 hospitalizations

per week); the hospitalization rate increased slightly over

the 15-year period (figure 3a,b). The weekly mean age of

patients ranged from 3.2 to 3.8 years old when averaged

over the time series (figure 3b). Examining the data longi-

tudinally, we found the correlation between the number

and average age of KD cases varied from a maximum

of 0.20 occurring at lmax ¼ 216 weeks to a minimum of

20.20 occurring at a lag of four weeks (figure 3c). Aggre-

gating the cases by week of the year yielded a similar

result, with the maximum correlation of 0.42 occurring

at lmax ¼ 219 weeks (figure 3c). The maximum corre-

lations were significantly greater than those expected by

chance (p , 0.05).

We examined a variety of models consistent with

hypotheses about the aetiology of KD, including: (i) an

SIR model, in which people are immediately infectious

upon infection and there is life-long immunity following

infection, (ii) an SEIR model, in which there is a week-

long latent period following infection (during which

individuals are not yet infectious) and life-long immunity,

(iii) an SIRS model, in which immunity to infection
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Figure 3. Relationship between the average age and incidence of Kawasaki disease hospitalizations in the United States. (a) The
number of weekly KD hospitalizations (blue) among children less than 10 years of age in 10 US states from 1989 to 2003, and
the average age of KD patients (red). We smoothed the data using a five week moving average. (b) Mean number and

average age of KD cases by week of the year. (c) Correlation coefficients between the number of hospitalizations at time t
and the average age of patients at time t þ l for the longitudinal analysis and the aggregate analysis. The dotted lines represent
the range within which 95% of the maximum and minimum correlations fell when we randomly permuted the average age time
series. (d) Age distribution of KD hospitalizations among children less than 10 years of age in 10 US states compared with
model-predicted age distributions under different population mixing assumptions. Black bars, KD hospitalizations; blue

bars, homogeneous mixing; yellow bars, assortative mixing; pink bars, self-reported mixing; green bars, RAS mixing.
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wanes after 2 years, but immunity to clinical symptoms is

life-long, and (iv) a model for co-infection with two

agents in which each produces life-long immunity to

itself but no cross-immunity (see electronic supplemen-

tary material). We varied the duration of infectiousness

(D) from one week to 16 weeks, and examined four

different types of population mixing, as described

above. The baseline transmission rate was adjusted

such that the average age of cases was between 3 and 4

years old.

In general, the patterns predicted by these models were

inconsistent with the observed age–incidence pattern for

KD when the duration of infectiousness was short (D ¼ 1

week; table 1). The average age of cases was predicted to

be greatest near or slightly after the peak of the epidemic,

such that lag times corresponding to the maximum corre-

lation varied from 21 to 12 weeks for the SIR, SEIR and

co-infection models. Furthermore, these models often

predicted strong seasonal or multi-annual epidemics

when the infectious period was short, which does not

reflect the seasonality of KD. The only exception was

the SIRS model with self-reported mixing, for which

lmax ¼ 211 weeks. When we assumed primary school

children mix with each other at much higher rates as in

the RAS model, the average age of cases was also greatest

prior to the peak in incidence (lmax ¼ 212 weeks) when

D ¼ 1 week. However, under this type of mixing, a dispro-

portionate number of cases occurred among 6 year olds

(i.e. during the first year of primary school), which is not

consistent with the age distribution of KD (figure 3d).
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As the duration of infectiousness increased, the lag

times changed little under homogeneous or RAS mixing,

but tended to increase if mixing was at least somewhat

assortative (table 1). When mixing was highly assortative

and D ¼ 16 weeks, the average age of cases reached a

maximum during the trough of the epidemic (lmax ¼ 224

weeks; table 1), which is more consistent with the

pattern exhibited by KD hospitalizations (figure 3c,d).

This was also true for the model for co-infection with an

acute agent and one with a long duration under all

mixing assumptions.

If we consider all model-predicted lag times within

+12 weeks of the observed 216 to 219 week range as

possibly consistent with the pattern exhibited by KD hos-

pitalizations in the USA (table 1), we are able to rule out a

number of scenarios. A single acute infection is unlikely to

be the triggering agent of KD unless it is imperfectly

immunizing and mixing reflects self-reported contact pat-

terns. Otherwise, the age–incidence pattern exhibited by

KD is most consistent with a long duration infection or

co-infection with an acute and long duration infection.
4. DISCUSSION
The average age of infection is expected to vary during sea-

sonal epidemics in a manner dependent on important

epidemiological features, such as the duration of infec-

tiousness and the nature of transmission-relevant mixing.

Age–incidence patterns result from fluctuations in the

susceptible population that vary by age combined with



Table 1. Predicted lag times associated with the maximum correlation (lmax; in weeks) for models- representing hypotheses

regarding the aetiology of Kawasaki disease.

model mixing

duration of infectiousness

one week four weeks eight weeks 16 weeks

SIR homogenous 21a 21 21 0
assortative 10 15 20 224c

self-reported 8 11 12 11
RAS 212bc 212bc 212bc 213bc

SEIR homogenous 21a 1 1 1
assortative 12 15 19 26c

self-reported 11 13 15 15
RAS 212bc 211bc 212bc 213bc

SIRS homogenous 21 21 21 21

assortative 21 0 24 212c

self-reported 211c 211c 211c 211c

RAS 213bc 212bc 211bc 211bc

co-infection homogenous 22d 3a 20 225c

assortative 10a 15a 18 23c

self-reported 9d 19a 16 22c

RAS 211bc 213bc 217bc 221bc

aEpidemics occurred biennially.
bAge distribution of cases predicted under realistic age-structured (RAS) mixing is inconsistent with the age distribution of Kawasaki
disease hospitalizations.
cPredicted lag time within +12 weeks of the observed lag time for Kawasaki disease.
dEpidemics occurred triennially.
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age-dependencies in the transmission rate, both of which

influence what age group is responsible for initiating seaso-

nal epidemics (see electronic supplementary material) [4].

We have shown here that seasonal changes in the average

age of cases could be detected using routinely collected

data, and were consistent with model predictions. Examin-

ing age–incidence patterns can lend insight into important

epidemiological features of infections.

We found that simple models for the transmission

dynamics of measles and rotavirus could predict the lag

time associated with the maximum correlation with a

margin of error of +8–12 weeks. Improving the models

by incorporating more information about the epidemiol-

ogy of infection led to a better correspondence between

models and data, such that predicted lag times were

within +1 week of those observed. The amplitude of

seasonal fluctuations in the observed average age of cases

was typically greater than that predicted by models,

suggesting stochastic and discrete effects serve to amplify

rather than obscure seasonal changes in the average age.

Since age–incidence patterns vary in a predictable

manner, they may aid in the identification of unknown

infections. At least one infection is thought to be

involved in the aetiology of KD, but a specific agent

has yet to be identified [2,5]; it is possible that a pre-

viously unidentified virus is involved [6,24]. Examining

seasonal changes in the age and incidence of KD hospi-

talizations in the USA, we found that periods of high

incidence corresponded to a low average age of cases,

and vice versa. This pattern is in stark contrast to

those exhibited by measles and rotavirus. By comparing

the observed pattern to those predicted by a suite of

models consistent with hypotheses about the aetiology

of KD, we found that the age–incidence pattern of

KD suggests the involvement of an imperfectly immu-

nizing infection and/or an infectious agent that has a

long duration of infectiousness.
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For immunizing infections, both the SIR and SEIR

models suggest that in order for the average age of cases

to be highest during the summer/fall when the incidence

of KD is low, the period of communicability would have

to be long, i.e. on the order of four months or more,

and mixing would have to be highly assortative. There

has been considerable debate over whether KD results

from an immunological cascade triggered by bacterial

superantigens [25–27]. Immunity following such bac-

terial infections is typically not life-long. For such an

infection, we considered an SIRS model in which immu-

nity wanes after 2 years. In order for cases to occur

primarily in childhood, we assumed that KD is the

result of an abnormal immune response that occurs

upon first infection in genetically predisposed individuals

and subsequent infections are not associated with symp-

tomatic illness. We cannot discard this hypothesis for an

etiologic agent with any duration of infectiousness assum-

ing transmission-relevant mixing reflects self-reported

contact patterns, which is likely the case for many res-

piratory infections. It is also possible that infection is

imperfectly immunizing, but that cases are limited to chil-

dren because of age-related susceptibilities. However, in

this case, the transmission rate is inestimable without

a priori information on how risk varies with age.

Another hypothesis is that KD is caused by co-infection

with two infectious agents, such as an acute viral infection

that interacts with colonizing bacteria, leading to bacterial

proliferation and toxin production [2]. Data from an

animal model of KD suggest that two triggers might be

responsible for KD pathogenesis [28]. Similar inter-

actions have been hypothesized to be involved in the

aetiology of invasive pneumococcal disease [29] and

meningococcal disease [30,31]. We explored this using a

model for co-infection with two immunizing agents, and

found that the age–incidence pattern for KD is consistent

with such a hypothesis provided at least one of the
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infections has a long period of communicability. This

relationship held true for a variety of mixing assumptions,

making it perhaps the most robust hypothesis. Since

co-infection tends to be a rare event, the low incidence

rate of KD in the USA could be consistent with

co-infection among individuals with a relatively

common rather than rare genetic predisposition. Know-

ing the prevalence of the genetic determinants of KD

would help distinguish between some of the hypotheses

presented here.

While there are likely age-related biases in the reporting

of many diseases, including KD [32], such biases are unli-

kely to affect the observed age–incidence patterns unless

they vary by season. Underreporting of cases, such as fail-

ure to account for cases of ‘incomplete’ KD (in which

two or more of the diagnostic criteria are not met), will

create bias only if the age–incidence pattern among such

cases differs from that among those in our dataset. Approxi-

mately, 15 per cent of patients may not meet the full

diagnostic criteria, and these cases tend to be concentrated

at the extremes of the age distribution [33]. However, there

is no evidence that seasonal patterns differ between incom-

plete and typical KD. Errors in coding of hospitalization

records for KD may be constant throughout the year

(rather than proportional to the true incidence) and inde-

pendent of patient age. The influence of coding errors

will be greater during periods of low incidence and may

bias our estimates of the average age of cases. In this case,

the bias is expected to vary by season, and therefore may

confound our results. While this may contribute to the pat-

tern observed for KD, by excluding all cases greater than or

equal to 10 years of age (6.6%), the effect should be lim-

ited. Similarly, readmissions for KD may follow a non-

seasonal pattern and be associated with an older average

age, thereby generating a bias that could account for the

observed pattern. However, an analysis of readmissions

data from a subset of states in our dataset revealed that

readmissions accounted for less than 10 per cent of all

admissions, and 87 per cent of readmissions occurred

within one month of the primary admission (see electronic

supplementary material). Thus, this is unlikely to account

entirely for the pattern we observed.

It would be interesting to test whether our findings

are replicated in other populations. In Japan, where the

incidence of KD is approximately 10–15 times higher

than in the USA [34], nationwide surveys have been con-

ducted every 2 years since 1970 [35]. There have been

three nationwide epidemics in Japan, occurring in 1979,

1982 and 1986 [15] and more localized outbreaks have

occurred regularly since then. A shift in the age distri-

bution of KD cases towards younger individuals during

these epidemics has been noted [12]. Furthermore, a

bimodal seasonality has been observed over the past 20

years, with peaks in January and again in June/July [15].

It would be interesting to see if the average age of cases

changes in a bimodal fashion as well. If the pattern we

observe in the USA also characterizes seasonal changes

in the age distribution of KD cases in other countries, it

could lend further insight into the aetiology.

The models we present here were parametrized and

structured to represent the transmission dynamics of

measles and rotavirus or to address specific hypotheses

about possible etiological agent(s) of KD, and are by

no means exhaustive. Other possibilities include, but
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are not limited to, models for strain–variable infections

with complex immunity, e.g. rhinoviruses and group A

streptococci. However, we believe the method proposed

here based on age–incidence patterns might be applicable

to other diseases with a suspected infectious aetiology,

and could be used to gain a better understanding of the

transmission dynamics of known infections.
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