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Why do the equally spaced dots in figure 1 appear regularly spaced? The answer ‘because they are’ is naive

and ignores the existence of sensory noise, which is known to limit the accuracy of positional localization.

Actually, all the dots in figure 1 have been physically perturbed, but in the case of the apparently regular

patterns to an extent that is below threshold for reliable detection. Only when retinal pathology causes

severe distortions do regular grids appear perturbed. Here, we present evidence that low-level sensory

noise does indeed corrupt the encoding of relative spatial position, and limits the accuracy with which

observers can detect real distortions. The noise is equivalent to a Gaussian random variable with a

standard deviation of approximately 5 per cent of the inter-element spacing. The just-noticeable differ-

ence in positional distortion between two patterns is smallest when neither of them is perfectly regular.

The computation of variance is statistically inefficient, typically using only five or six of the available dots.
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1. INTRODUCTION
The idea that perceptual systems are tuned to look for regu-

larities and structures in the environment was proposed by

the Gestalt psychologists [1], but we know little about the

mechanisms for perceiving regularities, or their limits. Pat-

terns such as those in figure 1 are perceived by normal

observers as more-or-less regular, but we do not know

what mechanisms they use to decide whether the patterns

are completely regular or not. In particular, it is not clear

how the observer treats sensory noise in the representation

of regularity. The existence of this noise can be demon-

strated using dots similar to the individual texture

elements in figure 1. When observers are shown three

dots in a row and have to decide whether the centre one

is ‘up’ or ‘down’ relative to the position of the flankers,

they do not always give the same answer at a given physical

displacement of the centre dot. Sensory noise is responsible

for this variability [2].

It is conventional to represent performance with a

‘psychometric function’ that relates response probabilities

to the physical stimulus. An example for the alignment of

three dots is shown in figure 2. Good fits to psychometric

functions for such alignment tasks are usually obtained by

assuming the sensory noise is Gaussian, with a standard

deviation equal to a size difference of approximately

5 per cent [3,4].

If this sensory noise were included in the percep-

tual representation of a pattern with regularly spaced

elements, then we would expect to see local irregularities

throughout the pattern, even when none is physically pre-

sent. The alignments between elements would all seem

different. Some of the differences, by chance, would be
r for correspondence (michael.morgan@nf.mpg.de).
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larger than the standard deviation of the noise, and

should thus be conspicuous. However, this is not what

happens. Instead, a regular pattern appears regular. We

now consider two alternative hypotheses to account for

this finding.

— The undersampling model. Observers are unable to

measure the spatial relationships between all the

elements during a brief glimpse of the pattern.

Instead, they take a restricted sample of elements,

and use these elements only to calculate the positional

variance. They can use the computed variance to

decide whether one pattern is more regular than

another. However, the variance is represented in per-

ception only if it exceeds the amount expected from

sensory noise. Thus, all patterns with physical var-

iances smaller than the sensory noise will appear

completely regular, even if they can be discriminated.

It may seem paradoxical that an observer could dis-

criminate differences in patterns that ‘look’ the

same, but there are many examples of this in the ‘dis-

crimination without awareness’ literature [5–7]. The

key to this dissociation is that in the discrimination

case the observer is forced to decide which of two pat-

terns is more regular: a decision they can make

without adopting any absolute standard of complete

regularity. In the ‘appearance’ case, they have to

decide whether a given pattern is completely regular

or not. To make this decision, they have to adopt

some criterion, and this may well depend upon their

own sensory noise.

— The sensory threshold model. The observer calculates a

variance signal from all or some of the pattern elements,

but all variances falling below some arbitrary ‘sensory

threshold’ are set to zero. This is not the same as the
This journal is q 2012 The Royal Society
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(a) (b) (c)

Figure 1. All three patterns contain 11 � 11 dots spaced on a regular grid with individual dot positions independently
perturbed by addition of a random positional shift. (a) The random perturbation is so small as to be invisible. (b) It is
twice as great and just visible. (c) It is twice that of the middle panel and is clearly visible.
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Figure 2. An example of a psychometric function for dis-
crimination with the best-fitting cumulative Gaussian fit
(solid curve) to the data points. The observer decided

whether the centre dot in a row of three dots was displaced
‘up’ or ‘down’ relative to the flanking dots. Each data point
shows the probability of responding ‘up’ (ordinate) as a func-
tion of the actual physical displacement (abscissa). The
vertical bars represent 95% confidence limits from the

binomial distribution.
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threshold implicit in the undersampling model, because

the threshold in the latter case does not affect the

discrimination process, only the conscious decision

whether a pattern is, or is not, regular.
To decide between these two models on a quantitative

basis, we measured the ability of observers to discriminate

between pairs of patterns such as those in figure 1 when

they were both irregular, but to different extents. One of

the patterns had a variance s2 and the other a variance

s2þ Ds2. A key prediction of the sensory threshold

model is that the best performance (the lowest Ds) will

be obtained when V is non-zero. In other words, two

patterns will be more easily discriminated when both

are slightly irregular than when one of them is comple-

tely regular. Exactly this effect, referred to as ‘pedestal

facilitation’, has been reported for the discrimination

of luminance contrast, and has been conventionally
Proc. R. Soc. B (2012)
explained by a sensory threshold [8]; for recent review,

see Solomon [9]. The undersampling model does

not predict pedestal facilitation of variance, although as

we shall see, this depends on the exact measure we

take of the threshold. The final decision between the

two models can be taken only by their goodness-of-fit

to the data, which we assess using the calculation of

maximum likelihood.

A second question we addressed in these experiments

is how the presence of task-irrelevant variance in the pat-

terns would affect variance discrimination along the

relevant dimension. In all cases, the relevant dimension

was the positional variance of the dots. In one manipu-

lation, we added irrelevant variance of contrast between

the elements comprising the patterns. In another manipu-

lation, we arranged the dots around a circle and

instructed observers to report the variance in either

their angular separation or their distance from the

centre, ignoring the other dimension. These investi-

gations bear on the general theory of camouflage.

Previous psychophysical investigations of camouflage

have used variance in an irrelevant dimension to mask a

pattern defined by its mean difference from the back-

ground [10]. Here, we see if this generalizes to the

masking of variance by variance.
2. METHODS
(a) Observers

The observers were two of the authors (M.M. and I.M.),

and a third (G.M.) who was unaware of the specific aims

of the experiment.

(b) Apparatus

Stimuli were presented on the LCD screen of a Sony Vaio

(PGC-TR5MP) laptop computer using MATLAB and the PSY-

CHTOOLBOX [11] for WINDOWS. Screen size was 1280 � 768

pixels (230 � 14 mm). Only the green LCDs were used,

and the mean luminance was 56 Cd m22. The viewing dis-

tance was approximately 57 cm, so that the pixel size was

approximately 0.0188 of visual angle.

(c) Stimuli

Different kinds of regular patterns were used in different

experiments. In square arrays, the dots were regularly

spaced in an 11 � 11 lattice (figure 1). In circular patterns,

11 dots were equally spaced around a notional circle. In

linear patterns, 11 dots were equally spaced along a notional

line. The position of each dot in the array was selected from a

uniform probability density function (PDF) with mean m and
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range v, where m was the position it would have if the pattern

were completely regular. In the square arrays, the spatial per-

turbation was independently sampled in dimensions x and y.

In the circular patterns, the perturbation was either radial

or angular in different experiments. We also included

‘camouflage’ conditions where (i) observers had to ignore

irrelevant variation to the radial position of the dots while

responding to variation in their angle and (ii) observers

ignored random contrast polarity (black versus white) of

the dots in the circular array while responding to variance

in angular position. All dots had a Gaussian profile with a

space constant of one quarter of the inter-dot separation,

making them look slightly fuzzy.

(d) Procedure

A 2AFC (two-alternative forced-choice) procedure was used.

On each trial, two patterns were shown, each for 200 ms and

with a 200 ms blank interval in between. Observers had to

decide which of the two had the greater degree of spatial irre-

gularity. The reference pattern with pedestal range v was

presented randomly either first or second. The standard devi-

ation of the range is related to its width v by the expression

s ¼ v=
ffiffiffiffiffiffiffiffiffi
ð12Þ

p
. The position of each dot in the other pattern,

the test, had a range of v þ Dv, where Dv was varied by an

adaptive procedure [12] to determine the just-noticeable

Dv (JND) at which the observer was 84 per cent correct.

There was no feedback to indicate whether the response

was correct or not. The pedestal range was randomly selected

on each trial from a set of preset values. A block of trials ter-

minated when each of these preset values had been presented

50 times. Confidence limits for the JND (95%) were deter-

mined by exactly simulating the experiment 80 times with a

bootstrapping procedure [13].

(e) Modelling

The model assumes that the observer samples elements

(dots) from the grid and compares their positions with

those predicted from a template. We admit that this version

of the model is unrealistic. It is more likely that the observer

has access to sensory signals representing the alignment

between pairs of dots (figure 2) or their separations. How-

ever, such a model is difficult to compute, particularly in

the two dimensions of a grid. The model we actually use

should be thought of as an ideal observer model in which

the observer knows the positions of all the dots in a template.

In the undersampling model, the observer on each trial

samples n dot positions from each of the two patterns and

selects the pattern having the greater sample variance of

these positions from the template positions. In the case of

the standard pattern, each of the n dots is taken from a dis-

tribution with variance v2/12 þ i2, where i is the standard

deviation of the internal noise; and in the case of the test pat-

tern, each is taken from a distribution with variance

ðvþ DvÞ2=12þ i2. Recall that the external perturbations

were taken from a uniform distribution of width v that has

variance v2/12). The units of v are the distance between

elements in the unperturbed pattern. When the underlying

PDF for signal, pedestal and noise are Gaussian it is easy

to compute the probability that var(test)/var(ref) . 1 and

thus that the observer is correct [14]. However, departures

from regularity in our stimuli did not form Gaussian distri-

butions, so we resorted to simulation to produce the fits

shown in figure 2. The fits had only two free parameters,

the number of dots per sample (n) and the range of the
Proc. R. Soc. B (2012)
internal noise in the same units as v. The sensory threshold

model was the same as the undersampling model, except that

all internal variances below a threshold value were set to zero

before the two stimuli were compared. This latter model has

three parameters: the internal noise, the number of dots per

sample and the threshold.
(f ) Significance testing

The experimental data for each condition consisted of a 3 �
N matrix, where N was the number of trials in the condition

to be analysed. The first row of the matrix contained the ped-

estal value v, the second the value of Dv and the third the

observer’s response (0 for wrong, and 1 for correct). The

model used the values of v and Dv along with the estimated

values for the number of dots per sample, and the internal

noise to predict the probability correct, which was then com-

pared with the actual observer’s responses to calculate the

joint likelihood over all N trials.

The MATLAB function fminsearch was the used to find

values of internal noise (i) and sample size (n) to maximize

the joint likelihood. In practice, to avoid non-integral

values of n, we used fixed values of sample size to find the

best-fitting internal noise, and repeated this procedure over

a range of sample sizes to find the best overall fit.

The calculation of probability correct for a particular

combination of fn,i,v,Dvg was calculated from 10 000 simu-

lated trials. To make possible an orderly gradient descent, we

seeded the random number generator used by the simulator

so that each combination of fn,i,v,Dvg always produced

exactly the same probability correct. To test the reliability

of the fits, we carried out 80 independent fits with different

seeds for the random number generator, and used the result-

ing distribution of fits to calculate 95% confidence limits.

These were always well within the confidence limits of the

thresholds estimated from the data by bootstrapping.
3. RESULTS
(a) Discrimination thresholds as function of

pedestal

We present first (figure 3) the results for one subject

(M.M.) in one condition (11 � 11 grid) in order to

establish some general points about the data and model-

ling. The figure shows, on the left, the JNDs in the

standard deviation of the added noise, as a function of

the standard deviation of the pedestal. Recall that the

pedestal refers to the noise in the less variable stimulus,

while the discrimination threshold is how much more

noise the other stimulus needs for the two to be discrim-

inable at the 84 per cent correct level. An important point

to note is that the models are constrained not just by the

points shown in this graph, but by all the points on the

psychometric function (figure 1) amounting to several

thousands of trials.

The data points show a clear ‘dipper’ effect with a

minimum threshold (best discrimination) at a non-zero

value of the pedestal. Thereafter, they show an increase

as a function of pedestal level, approximating a slope of

unity. This effect is conventionally called ‘masking’ of

the added signal by the pedestal and is related to

Weber’s Law, which states that the JND between two

stimuli is proportional to their absolute magnitude

(review by Solomon [9] and Laming [15]).
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Figure 3. The results (filled circles) for observer MM in the 11� 11 grid condition, and the fits of various models described more
fully in the text. (a) The data as a function of the standard deviation of the uniform distribution from which the dot positions were
sampled, in units of the canonical dot spacing. The red curve passing through all the data points is the best fit of the undersampling
model, with six dots per sample. The blue curve is a fit of the sensory threshold model with the threshold constrained to be the

same as the variance of the internal noise. The green curve is the best fit of the undersampling model with the number of samples
constrained to be the total number of dots (11� 11). The black curve with no dip is the fit of the undersampling model with n ¼
2. (b) Thresholds (s2) as a function of pedestal (s2). The black curve is the best fit of the undersampling model. The blue curve is
a fit of the sensory threshold model with the threshold constrained to be the same as the variance of the internal noise.
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The best fit to the data is the solid curve running

through all the data points. This is the fit of the under-

sampling model, which contains two parameters, the

internal noise of the observer and the number of dots

per sample used by the observer to calculate the variance

(in this case, six out of the 11 � 11 available). Note that

this model does not include a sensory threshold. It may

seem puzzling, therefore, that it produces a ‘dip’, which

is conventionally explained by a sensory threshold. The

reason for this is shown in the graph on the right, which

plots the same data in terms of the variance of the noise

and the pedestal, rather than its standard deviation. The

‘dip’ now disappears, both from the data and from

the model. The reason for the ‘dip’ in the standard devi-

ations (figure 3a) is that in the model the internal noise of

the observer and the external noise added to the stimulus

are assumed to be additive. In a linear system, two inde-

pendent noise sources are equivalent to a single noise

having the sum of the two variances. This squaring

means that the larger of the two noise sources is domi-

nant. When the two stimuli being compared have no

external noise, the internal noise predominates and the

observer is relatively insensitive. When both stimuli have

a pedestal equal to the internal noise, the latter is less

dominant and discrimination is easier. For example, let

the internal noise have unit standard deviation, let the

pedestal be zero, and let the other stimulus have a standard

deviation that is one more than the pedestal. The difference

in standard deviation between the two stimuli isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð0þ 1Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 þ 02Þ

p
¼ 0:4142. Now let the

pedestal also have unit standard deviation. The same

calculation produces the difference

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 þ ð1þ 1Þ2Þ

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12 þ 12Þ
p

¼ 0:8219:Therefore, the effect of the signal is

greater with a non-zero pedestal.

The apparent ‘dip’ disappears when variances are

plotted instead. The ‘dip’ on the left-hand side of figure 3

is therefore not evidence for a sensory threshold. To see

what the effect of a sensory threshold would actually be,

we plot the case where there is a sensory threshold equal

to the variance of internal noise. This produces the steeply
Proc. R. Soc. B (2012)
dipped function in figure 1a. It also produces a dip in the

variance plot (figure 1b).

Note that the undersampling model also predicts the

‘masking’ region of the dipper function, where thresholds

rise with the pedestal value. This is particularly clear in

the variance plot (figure 3b). The reason for this is that

the sampling variance of the variance rises with the true var-

iance. On each trial, the observer is comparing two sample

variances. The greater the true variance (the pedestal) the

more likely the two samples are to differ by chance, and

the larger the signal will have to be in order to be reliably

detected. All this is as predicted by the model.

Figure 3 also plots functions when the number of

samples is equal to the total number available (11 � 11)

or equal to only 2. These are significantly poor fits to the

data, as verified by a bootstrapping test based on likelihoods.

The model fits to the data for all conditions (e.g. 11

dots in a circle; single row of 11 dots) are shown in

table 1, and illustrative examples are shown in figure 4.

Table 1 shows that observers always used fewer than the

number of dots available, typically approximately 6, and

that the sensory threshold model was never a significantly

better fit to the data than the simple undersampling

model. In no case was the fitted threshold as high or

higher than the fitted internal noise.
(b) Camouflage

We collected two kinds of data relevant to camouflage. In

the first, a circular array of dots was used, and the

elements were perturbed in their angle from the centre.

Either all had the same contrast, or were randomly

black or white. The observers were M.M., G.M. and

I.M. As table 1 and figure 4 show, the contrast variation

caused an increase in thresholds, even though it was irre-

levant to the task. The effect on the model fits was that

contrast variation was equivalent to an increase in sensory

noise. This is also true of the second test, where a radial

variation in dot position was camouflaged by an irrelevant

perturbation in the angle (observers M.M. and G.M.),

except that there was a decrease in the number of samples

from five to four for M.M. in the camouflage condition.



Table 1. Best-fitting values for internal noise (i), sample size (n) and threshold (t) to the data for different observers and

conditions (key in second column) along with the log-likelihoods of these fits (column 6). The unit for i is the proportion of
nearest-neighbour spacings in each array. The final column (x2) shows the values for twice the difference in log-likelihoods of
two fits. Fits with a threshold such as row 2 are compared with fits without in the row above. Fits that combine two
conditions, such as row 5, which combines 1 and 3, are compared with the summed likelihoods of the two separate fits.

condition i threshold n log-likelihood x2

1 M.M. circ rad 1 0.07 5 2940.10
2 M.M. circ rad 2 0.07 0.02 5 2940.15
3 M.M. circ rad rand ang 1 0.09 4 2833.71

4 M.M. circ rad rand ang 2 0.09 0.01 2833.00
5 M.M. 1 and 3 combined 0.07 4 21785.60 223.58
6 G.M. circ rad 1 0.06 4 2699.59
7 G.M. circ rad 2 0.06 0.00 5 2699.20

8 G.M. circ rad rand ang 1 0.09 4 2821.34
9 G.M. circ rad rand ang 2 0.09 0.06 6 2821.27
10 G.M. 6 and 8 combined 0.08 4 21534.80 227.74

11 M.M. circ ang 1 0.11 5 21371.30
12 M.M. circ ang 2 0.20 0.38 5 21371.30
13 M.M. circ ang rand b/w 1 0.15 5 21895.40
14 M.M. circ ang rand b/w 2 0.15 0.12 5 21895.30

15 M.M. 11 and 13 combined 0.13 5 23350.70 2168.00
16 I.M. circ ang 1 0.11 5 2661.30
17 I.M. circ ang 2 0.11 0.08 5 2661.28
18 I.M. circ ang rand b/w 1 0.13 5 2703.17
19 I.M. circ ang rand b/w 2 0.13 0.05 6 2703.17

20 I.M. 16 and 18 combined 0.12 6 21370.70 212.46
21 G.M. circ ang 1 0.11 6 2753.02
22 G.M. circ ang 2 0.11 0.08 6 2753.02
23 G.M. circ ang rand b/w 1 0.12 5 2792.96
24 G.M. circ ang rand b/w 2 0.12 0.11 5 2792.84

25 G.M. 21 and 23 combined 0.11 5 21550.30 28.64

26 M.M. 11 � 11 1 0.08 6 21321.80

27 M.M. 11 � 11 2 0.13 0.07 6 2736.40
28 I.M. 11 � 11 1 0.13 11 2736.41
29 I.M. 11 � 11 2 0.13 0.11 11 2736.37
30 M.M. 1 � 11 1 0.07 5 2671.97
31 M.M. 1 � 11 2 0.07 0.00 5 2671.96

32 I.M. 1 � 11 1 0.07 5 1327.10
33 I.M. 1 � 11 2 0.07 0.00 5 1327.10
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4. DISCUSSION
We suggest two related conclusions. The first is that the

observer’s discrimination performance is limited by low-

level noise equivalent to physical perturbation in the

position of the dots. This means that a completely regular

pattern is not discriminable from one having a marked

degree of physical perturbation. However, both such pat-

terns appear completely regular (figure 1). The low-level

noise is not represented in awareness. We infer from this

that the internal noise in individual dot position is not rep-

resented in the conscious perception of a regular pattern.

Rather, what is represented is a regular template for the

pattern. If the computed perturbation from the template

does not exceed the internal noise level, then the pattern

is seen as regular.

This conclusion is reinforced by our estimates of the

number of dots (n) the observer is using in computing

variability. We estimate this number as approximately 6,

which is strikingly inefficient for a pattern with 11 � 11

elements. The efficiency is higher (approx. 50%) for the

circular patterns but n is still approximately 6, suggesting

a fixed sample size rather than a fixed efficiency. The only

exception to the ‘n ¼ 6’ rule is observer I.M., who
Proc. R. Soc. B (2012)
manages an impressive 11 dots for the 11 � 11 pattern.

The conclusion that observers use only a small amount

of the available information to compute irregularity is

further evidence that the perception of a regular pattern

is the perception of a template, because the actual phys-

ical position of most of the dots is not being represented

at all. In other words, we see a regular arrangement of

dots, even though the noisy position of many of them

has not been sampled.

Our findings also suggest a general theory of pattern

camouflage. In its most general form, the principle

of camouflage is that irrelevant variation along one-

dimension masks detection of variation along another. For

example, a region of high-orientation variance if a texture

is harder to see in the texture elements that are randomly

coloured red and green [10,16]. This is analogous to what

we find in our experiments for variance. The ability of obser-

vers to detect perturbations of radial position in circular

patterns is compromised by irrelevant contrast variation or

by angular variation. This is what we would expect if obser-

vers were computing variance from a fixed internal template.
We thank the UK EPSRC Research Council (grant no. EP/
H033955/1) and the Max Planck Society for support.
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Figure 4. (a) Show results for two observers (M.M., left; I.M., right) with two kinds of stimulus array: 11 � 11 dot matrices
(top) and a single line of 11 dots (bottom). The solid line is the best fit of the sampling model. (b) Show results for two obser-
vers (M.M., left; G.M., right) with arrays of 11 dots arranged in a circle. In the top two panels, the signal the observer was

instructed to compare between the two patterns in the 2AFC design was the difference in variance of the radial distance of
the dots. In the bottom two panels, observers detected differences in angular separation of the dots. In the condition indicated
by square symbols, only the relevant dimension was varied. In the condition indicated by circles, an additional source of vari-
ation (camouflage) was introduced. In the top two panels, this was variation in angular position; in the bottom two panels, it
was random variation in contrast polarity (white/black).
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