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Farming is the basis of our civilization yet is more damaging to wild nature than any other sector of human

activity. Here, we propose that in order to limit its impact into the future, conservation researchers and prac-

titioners need to address several big topics—about the scale of future demand, about which crops and

livestock to study, about whether low-yield or high-yield farming has the potential to be least harmful to

nature, about the environmental performance of new and existing farming methods, and about the measures

needed to enable promising approaches and techniques to deliver on their potential. Tackling these issues

requires conservationists to explore the many consequences that decisions about agriculture have beyond

the farm, to think broadly and imaginatively about the scale and scope of what is required to halt biodiversity

loss, and to be brave enough to test and when necessary support counterintuitive measures.
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1. INTRODUCTION
Farming—to produce food crops, animal feed, meat, eggs,

milk, fibres and biofuels—has transformed the Earth’s

capacity to support people but at the same time had a

greater impact on the rest of biological diversity than any

other human activity. Cropland and permanent pasture

cover an estimated 12 per cent and 26 per cent of ice-

free land, respectively [1], and affect a larger area still

[2]. Agriculture is by far the leading cause of deforestation

in the tropics [3] and has already replaced around 70 per

cent of the world’s grasslands, 50 per cent of savannahs

and 45 per cent of temperate deciduous forest [1,4].

Beyond land conversion, inorganic inputs to farming

through the Haber–Bosch process are the main reason why

rates of nitrogen fixation have doubled in a century [5]. Agri-

culture is responsible for roughly 70 per cent of freshwater

withdrawals and around one-third of greenhouse gas emis-

sions [1], and threatens more species with extinction than

any other sector [6]. Furthermore, despite some high profile

mitigationattempts (not least aspartof theEuropeanUnion’s

programme of agri-environment payments, now worth

approx.E5B per year; [7]), rising demand means these unin-

tended impacts of farming are still growing. Thus, conversion

of forest was the main source of new cropland in the tropics

during the 1980s and 1990s [8,9], while in South Africa

the recent expansion of just one minor but fashionable

crop—rooibos tea—has been responsible for 112 plant taxa

becoming threatened with extinction in just 12 years [10].

For all these reasons, conservation practitioners and

researchers need to think seriously about the consequences

of farming for biodiversity and ecosystem services. To gener-

ate clear insights, they also need to be explicit about what it is
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they want to conserve—whether that’s particular species,

communities or services, and whether their interest lies only

in what happens on farmland per se or in the consequences

of agricultural practices for species or ecosystems on non-

farmed land as well. Some researchers working in this area

focus on events on agricultural land [7,11,12]. In contrast,

because farming is not a closed system our work (and this

review) extends to the impact that farming decisions are

likely to have on the conservation value of currently non-

farmed land. Specifically, we are interested in how to retain

(or indeed restore) as much of an entire region’s native biodi-

versity and the services it provides as possible while

simultaneously meeting demand for agricultural products.

As such we are concerned not just with on-farm impacts,

but with the consequences of choices about farming for as-

yet unfarmed, relatively intact land. This in turn requires

thinking about overall demand for farm products, and

about how decisions that alter farm yields (i.e. production

per unit area) influence the total area used for agriculture.

This study is an attempt to identify five major issues that

arise when viewing farming through this lens, where we

think a step-change in understanding is needed if the

impact of farming on wild nature is to be mitigated. Present

understanding is limited and will anyway need re-examin-

ing as climate, water availability and patterns of economic

growth and demand alter. Our list deals in turn with the

drivers underpinning farming, with the specific threats it

poses, with an overarching framework for identifying how

to limit negative impacts, with evaluating specific agricul-

tural practices, and with developing farming policy (in its

broadest sense) so as to enable promising approaches to

flourish. In setting out these topics, we have considered

them in the context of the cultivation of crops, livestock,

animal feed and biofuels, but similar questions could use-

fully be asked for related activities such as production

and harvesting of wood, fish and other natural products.
This journal is q 2012 The Royal Society
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Figure 1. The relationship between per capita demand for
crop calories and per capita gross domestic product (GDP)
from 1961 to 2003, for groups of countries ordered from

richest (A) to poorest (G). The curve is fitted to the square
root of per capita GDP. From Tilman et al. [14].
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2. TOPIC 1. UNDERSTANDING FUTURE DEMAND
The scale and diversity of the effects of farming on wild

nature means that even if demand was unchanging it

would be imperative for conservation researchers to

explore ways to reduce its impact. However, food

demand is clearly expanding. The United Nations’

Food and Agriculture Organization (FAO) reckons,

based on expert assessment of national and regional

trends, that demand will rise by 70 per cent worldwide

between 2005 and 2050 [13]. A recent global analysis

combining statistically compelling relationships between

observed trends in per capita demand and wealth with

forecasts for economic and population growth suggests

this may be a substantial underestimate, with demand

for food calories and protein both predicted to increase

by 100–110% over the same interval [14] (figure 1).

Of course much could be done to address the issue of

food insecurity in developing countries without increasing

production. Getting more (and more nutritious) food to

the billion or more people who go to bed hungry or

undernourished each night has more to do with govern-

ance, distribution, food prices and protecting local food

production than it does with raising overall levels of farm-

ing output [13,15,16]. It is also important to take

measures to limit over-consumption, and to recognize

that some growth in global food demand could be met

by efforts to reduce post-harvest waste, which runs at

about 30–40% of production [1,17,18]. However, even

if food security is improved, unnecessary demand

curbed and waste reduced, it seems implausible that agri-

cultural production will not rise very substantially over

the next half century [14,19,20] (cf. [21]).

The main drivers of this scaling up are population

growth and rapidly rising per capita demand—for non-

food crops such as rubber and biofuels [22,23] and in par-

ticular the shift, as people become more prosperous, from

largely vegetarian diets dominated by staple crops to far

greater consumption of meat, dairy products and eggs.

The world’s human population looks likely to rise from

just over 7 billion today to more than 9 billion by 2050

[24]. On the basis of recent trends, livestock numbers are

likely to grow even faster: since 1961, worldwide chicken

numbers have risen more than fourfold, and in China
Proc. R. Soc. B (2012)
per capita meat consumption has increased from 4 to

54 kg per year (compared with 80 kg per person per year

in the UK; [19,25,26]). These patterns look set to con-

tinue. For example, commercially motivated attempts to

reverse lactose intolerance in China by carefully targeted

marketing campaigns have the potential to radically

increase demand for dairy products in the world’s most

populous nation [27].

These dietary changes have profound environmental

implications because typically far more land, nutrients

and water are needed, and more nitrous oxide and methane

emitted when a unit of food energy or protein for human

consumption is produced via an animal than direct from

a plant [28,29]. Rearing livestock on crop residues or

other waste products can reduce these costs and make a

net contribution to global food supply [28,30]. Neverthe-

less, the current disproportionate growth in livestock

numbers is being achieved in large part by using rangelands

(at a cost, often, to native biodiversity [31]) and by using

fertile croplands to produce animal feed [1]. Moreover,

these effects of rising per capita demand for livestock

products are compounded by increased production of

non-staple crops such as coffee, tea, flowers and luxury veg-

etables (more of which tend to be grown as countries’ yield

of staples increases [32]).

Taken together, the magnitude and rapidity of these

changes in demand underscore the importance of conser-

vation researchers and practitioners anticipating how

agriculture is likely to change, examining where these

changes are most likely to happen (especially in relation

to priority areas for conservation—[33,34]), and having

sufficiently broad understanding of farming to be able

to devise ways to limit their impact. So which farm

products should conservationists know most about?
3. TOPIC 2. TARGETING RESEARCH TO THE
FARM PRODUCTS THAT MATTER MOST
Which crops are likely to have the largest impact on bio-

diversity conservation? An initial indication can be gained

by identifying those crops that cover the greatest land area

and those whose area is increasing most rapidly. (Note

that it is harder to take this approach for livestock species

because the area their feed comes from is not quantified

in a consistent manner and they differ widely in diet

and feed conversion rates.) FAO statistics suggest the

top 10 crops defined in terms of area (including those

grown for livestock feed, fibre and biofuels) are wheat,

maize, rice, soybeans, barley, sorghum, millet, cotton,

rapeseed and beans [35]; together, these account for

two-thirds of global cropland. Except for barley, millet

and cotton, these crops also have high annual rates of

expansion of area grown, with rates for soybeans, maize,

wheat and rapeseed being especially high.

To see if these are the crops that attract most attention

from conservation scientists we conducted a literature

search on Web of Knowledge to find papers in con-

servation journals that looked at the impact on

biodiversity of any of these crops. As context, we also

looked for studies on five other crops noted for their bio-

diversity impact (coffee, cocoa, oil palm, rubber and tea).

This was not intended to be a comprehensive assessment

of all studies of the conservation effects of cultivating

these products (we looked at only a sample of the
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Figure 2. An indication of the relative number of papers in the conservation literature (blue bars; number of relevant papers)
that address the biodiversity impacts of specific crops, based on a random sample of 20% of 1062 papers returned from a lit-
erature search. Also shown are the global harvested area in 2010 (red; area in 106 ha) and mean annual increment in area
(green: expansion; 104 ha) based on linear regression of area from 1999 to 2010 [35]. The 10 crops on the left are the top
10 crops by harvested area, and the five on the right are additional crops noted for their biodiversity impact. The top 10

crops by annual increment is similar except that oil palm, sugar cane, vegetables and sunflower replace barley, sorghum,
millet and cotton. The literature search was carried out in February 2012 on Web of Knowledge for papers published up to
2011 in 14 conservation journals, with search terms for crop names and for farmland*, arable* or cereal* entered in the
topic field (which searches title, abstract and key words). Papers were counted if they were relevant to the impact on biodiversity

of the extent or management of named crops; those focused only on conservation of crop genetic diversity, pest control or
human–wildlife conflict were excluded.

2716 A. Balmford et al. Perspective. Conservation and farming
papers retrieved, omitted non-conservation journals and

completely ignored the grey literature, for example).

However, we think our findings are broadly indicative of

where conservation researchers interested in farming

have focused their effort.

The results are striking (figure 2). Temperate arable

crops such as wheat and barley are among the most

well-studied (despite the fact that our search underesti-

mates the number of papers relevant to these crops,

because many relevant studies mention only ‘arable’

land or ‘cereals’). Among tropical crops, more research

attention has been devoted to perennial crops typical of

moist forest regions than to crops grown in more open

or arid areas. This is understandable, given the rapid

expansion of these perennial crops in areas of high biodi-

versity value [8,36,37]. However, there remains a serious

knowledge gap about the effects on biodiversity of some

crops grown over large areas, such as soybeans, sorghum,

millet and cotton. Of these widespread crops with few pub-

lications, the area under soybeans is also rapidly increasing.

Some of the crops that have tended to be overlooked are less

widely traded than the crops conservationists have focused

on (and so may be less amenable to international market-

based interventions to limit their impact—L. Fishpool &

H. Ducharme 2012, personal communication); neverthe-

less, continuing to know very little about their impacts

would be unwise.

There appear to be similar gaps in the effort devoted to

understanding the impacts of livestock. For instance, a lit-

erature search for conservation papers about chickens

revealed more papers about prairie chickens (Tympanuchus

spp.) than about the consequences for wild nature of pro-

ducing tens of billions of domestic birds each year.
Proc. R. Soc. B (2012)
Conserving two globally threatened species of grouse is

undoubtedly important, but we suggest ameliorating the

direct and indirect effects of the poultry industry on land

use, fisheries, greenhouse gas emissions, water quality

and wild animal health is likely to have more bearing on

the fate of global biodiversity.

Our assessment of which farm products conservation-

ists need to focus on is obviously simplistic (it misses out

rooibos, flagged in §1, for example). More sophisticated

approaches might include identifying those products

associated with frontiers of habitat clearance, which are

grown in areas of particular biodiversity value, and

whose production is expected to increase substantially

in the future. Beyond the products themselves, it is also

vital to examine what farming approaches and methods

are studied, and what exactly is measured in those studies

(see §§4–6).
4. TOPIC 3. QUANTIFYING TRADE-OFFS AND
SYNERGIES
Most analysts agree that agricultural production will

increase dramatically over the next 50 years but that achiev-

ing this by increasing yields and converting wild lands to

agriculture in the ways seen over the past half century

is both impractical and likely to involve unacceptable

environmental impacts. However, opinions are divided

over the best strategic direction for instead limiting the

negative effects of this growth [6]. One option is to further

integrate conservation and food production: land sharing.

This approach—which underpins much European agri-

environment policy—aims to make existing farmland as

hospitable to wild species as possible, by reducing inputs
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of pesticides and fertilizers and retaining on-farm habitat

elements such as shade trees, hedgerows and ponds

[11,38–41]. However, land sharing typically lowers or

limits farm yields so that more farmed area is required to

produce a given amount of food. An alternative approach,

addressing this problem, is land sparing, in which yields

on existing farmland are maintained or increased while as

much unmodified habitat as possible is spared from future

clearance [42–45]. Others suggest that an intermediate

approach, or a mixture of land sharing and sparing at

different spatial scales, may be most appropriate [46–48].

Our view is that there are too few relevant quantitative

data to decide which of these approaches is likely to be

best. We therefore think that the way to progress this

debate is to conduct wide-ranging, quantitative analyses

of the consequences of these contrasting approaches

across broad spatial scales (rather than simply on existing

farmland), looking where necessary over the long-term

and even across into other sectors besides farming

[6,49,50]. We suggest that key externalities (such as the

generation of pollutants or the conversion of natural habi-

tat to farmland) should be expressed per unit of product

generated (rather than per unit of farm area) so as not to

underestimate the overall effects of meeting demand

through low-yielding agriculture. Assessing how far

high-yield farming actually spares land (the so-called

Borlaug effect; [51]) is crucial, as is quantifying the

real-world effects of land sharing on biodiversity; [52].

Where leakage (i.e. the spatial displacement of impacts)

is especially far-reaching (as is likely to be the case with

EU policy on biofuels, for example—[53]), it may be

necessary to assess the consequences of agricultural

decisions internationally or even globally. Taking such a

broad perspective is demanding—but it can also yield

important and counterintuitive insights.

In considering which approach to agriculture is better

for biodiversity, for example, several studies looking at the

species richness of different taxa on low-intensity farm-

land have concluded that because this can typically

support 40–60% of the species found in nearby forest,

maintaining this sort of countryside (i.e. land sharing) is

beneficial for biodiversity conservation [38,54–57] (but

see [58]). While it is important to consider the conserva-

tion value of farmland, the observation that some species

persist in it does not mean that it should be conserved at

all costs. Consideration also needs to be given to what sorts

of species (rather than simply how many) are found where,

to the abundance of each species (because presence alone

gives limited information about population viability), to

agricultural yields (because this influences how much

land is needed for farming), and to intact habitats and

high- as well as low-yielding farm land (for detailed dis-

cussion of these points, see Phalan et al. [50]; see also

[6,59–62]). Together, this information can then be used

to estimate how each species’ density changes across the

full spectrum of agricultural yield, with the shape of

its resulting density–yield curve predicting whether its

population size might be greatest under land sharing,

land sparing or some intermediate approach [6].

The only published studies that have addressed all these

requirements—in Ghana and India—have found higher

species richness in low- than in high-yield farmland, con-

sistent with previous studies, but have come to markedly

different conclusions [63]. In both areas and for both
Proc. R. Soc. B (2012)
birds and trees, while some (typically wide-

ranging) species had higher population densities on

farmland compared with intact habitat, more species had

lower densities on farmland, and most of these so-called

‘loser’ species (and nearly all narrowly distributed or threa-

tened species) were so dependent on forest that they would

have bigger populations under a system of high-yield farm-

ing coupled with habitat protection (i.e. land sparing) than

under land sharing or intermediate-yield farming [63].

Similarly, broad-scale studies incorporating the effects

of land-use change have generated novel conclusions

about the consequences for greenhouse gas emissions of

different approaches to farming. For example, assess-

ments (such as [64]) that look only at the growth,

refinement and use of biofuel crops typically report they

have lower emissions than fossil fuels. However, analyses

that take into account emissions incurred when natural

habitats are converted to make way for biofuel crops (or

the food crops they displace) consistently conclude that

switching from fossil fuels to biofuels made from farmed

crops will cause a net increase in emissions lasting 50

years or longer [65–67].

What about greenhouse gas emissions in the context

of the land sparing/sharing debate? While there is well-

justified concern over the emissions per unit area typically

associated with high-yielding agriculture [68], compari-

sons of approaches must include the consequences that

differences in yield are likely to have on the area of

farmland needed and hence on emissions incurred

during habitat conversion [69]. A recent global analysis

illustrates why [70]. When the estimated cumulative

emissions from farming since 1961 were compared with

those likely if yields had not increased, it was found as

expected that the yield growth seen over the following

45 years was linked to greatly increased emissions from

soils and fertilizer production. However, had low-yield

farming instead been maintained, these greenhouse gas

savings would have been dwarfed by emissions from the

extra land conversion needed to meet rising demand,

even if per capita demand also stayed at 1961 levels [70]

(figure 3). The authors thus conclude that investment in

high-yield farming has delivered cost-effective climate

mitigation through land sparing—though they also point

out that much more needs to be done to reduce emissions

from conventional intensive production.

But despite these findings on greenhouse gases and

Indian and Ghanaian birds and trees, the evidence that

land sparing outperforms land sharing is still patchy.

Even if (as discussed in §§5 and 6) yield increases are

achieved and are used as part of a strategy to save land

from conversion (or free it up for restoration), there are

still important gaps in our understanding. In the context

of biodiversity, the density–yield curve technique needs

to be elaborated to incorporate key aspects of the spatial

dynamics of populations and the externalities that farm-

ing imposes on populations living on non-farmed land

[6,50,63]. Empirical data collection needs to be extended

to other regions and taxa. In particular, more data are

needed for non-forested biomes and for areas which

have been repeatedly exposed to substantial natural dis-

turbances such as glacial–interglacial cycles, as these

might have long been purged of their disturbance-

sensitive biota [63,71]. An important challenge here will

be in establishing baselines against which the effects of
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different farming regimes can be judged. More broadly,

there is a pressing need to measure not just how biodiver-

sity and greenhouse gas fluxes vary with farm yields but to

consider other ecosystem services—and then to develop

methods for how best to limit the costs of farming

across a suite of benefits of importance to society [72].

Last, as well as improving our understanding of how con-

trasting farming approaches might perform in principle,

we need to know much more about how they might be

delivered in practice.
5. TOPIC 4. ASSESSING WHICH FARMING
METHODS HAVE GREATEST POTENTIAL
Given current evidence of growth in demand for agricul-

tural products, on how far we might meet that through

waste reduction, and on the relative merits of land

sparing versus sharing, we agree with calls for the

sustainable intensification of farming [14,19,20,25]. We

understand this to mean increasing developing world

yields at least cost in terms of environmental externalities,

and lowering the environmental costs of maintaining high

yields in the developed world. Others may consider that

land sharing is preferable, or even that increased farm

production is unnecessary. But whichever of these views

one takes, it seems there is a need to develop, test and

promote methods that lower the negative impacts of farm-

ing on biodiversity and ecosystem services per unit of

agricultural production.

The encouraging news is that very many potential

methods for achieving these aims are either in use already

or in development [18,19,20,73]. Simply widening the

adoption of existing farming techniques could do much

to close yield gaps (differences between what farmers cur-

rently achieve and what best practice can deliver in the

same area; [1]). There is particular scope for improve-

ment in sub-Saharan Africa, where adoption of practices

widespread elsewhere—applying even modest amounts

of inorganic fertilizer, using improved seed varieties,
Proc. R. Soc. B (2012)
mulching, spacing plants appropriately and so on—has

been shown to double or even treble yields in just a few

years [18,69,74–76].

In terms of crop improvement a diverse array of

sophisticated plant-science technologies using both

marker-assisted ‘conventional’ breeding and genetic modifi-

cation (GM) are at various stages of development—with

possibilities of raising yields and/or lowering externalities

by, among other things, enhancing nutrient and water

uptake and efficiency, increasing resistance to pests,

boosting drought tolerance and photosynthetic efficiency,

and converting annual crops into perennials [19,77].

The potential for improving largely neglected tropical

crops such as cassava, plantains and yams through such

approaches is especially marked [18], though concerns

about the extent to which GM and other sophisticated tech-

nologies place power over the food system in the hands of a

few corporations need to be taken seriously.

There are also many different methods for reducing

the inputs to farming—including organic techniques,

drip irrigation and co-culture systems (such as a 1200-

year-old south Chinese rice and fish co-culture method,

in which carp eat insect pests and then defaecate in the

paddy, thereby decreasing the need for pesticides and fer-

tilizers while maintaining rice yields and providing a

protein harvest [78]). Precision agriculture involving

fine-tuning fertilizer and pesticide inputs based on near

real-time, fine-scale measurements of soil, plant and

pest conditions can also increase resource efficiency and

reduce pollution inputs in developed-world agriculture

[79]. Elsewhere, if labour is abundant precision agricul-

ture can be achieved by farmers’ detailed knowledge of

soil properties at a fine scale, and their ability to tend

even to individual plants [76].

One other particularly promising area is the develop-

ment of integrated pest management and the use of

companion crops. In push–pull agriculture, yields are

increased by using companion crops grown within the

main crop to repel pests and others grown around field
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margins to attract them. The most advanced such system

to date—known as vuta sukuma (‘pull–push’) in Kiswa-

hili—involves combating stemborer damage in

African maize farming by intercropping with Desmodium

uncinatum and growing a trap crop of Napier grass

(Pennisetum purpureum) around the edge of the field

[80,81] (figure 4). The Desmodium produces volatile

semiochemicals which repel female stemborers but attract

their parasitoids, whereas the Napier grass produces

semiochemicals which attract the ovipositing pests, plus

a sticky exudate which kills their larvae. As well as greatly

reducing stemborer damage, both companion plants can

be harvested for animal feed, while the Desmodium has

the added advantages of fixing atmospheric nitrogen,

and of inducing suicidal germination by parasitic witch-

weed (Striga hermonthica), which itself causes heavy

yield losses across more than 40 per cent of sub-Saharan

Africa’s arable land. The system increases maize yields

from less than 1 to 3.5 t per hectare per year, and because

it builds on existing intercropping practices, uses locally

available plants and requires very limited external inputs

it has already been adopted by over 30 000 smallholder

farmers across around the eastern shore of Lake Victoria.

Efforts are now underway to apply similar push–pull

principles to other tropical crops, as well as to insect

pests of livestock, and even to aquaculture ([81];

J. Pickett 2012, personal communication).

The key challenge for conservationists is to quantify

the relative merits of the most promising of these and

other methods in terms of their on- and off-farm conse-

quences for biodiversity and ecosystem services. Very

few such tests have been conducted to date, and we sus-

pect that outcomes will vary across biomes and farming

systems. Such evaluation should be expressed per unit

of production, should include all externalities, and

should explicitly consider the impact a technique may

have on land conversion—through its effects on yield,

profitability, the availability of capital or labour, or the

range of environments in which particular crops can be

grown [51]. Data collection must take proper account

of potentially confounding variables. For example, com-

paring the output of farmers who are helped to adopt a

new method with that of less well-supported growers con-

tinuing previous practices may say less about the

innovation of interest than about the importance of
Proc. R. Soc. B (2012)
agricultural extension work (for an example, see

[83,84]; for a clear account of how to tackle the problem,

see [85]). It is also important to assess promising tech-

niques in a social context, and in particular to consider

factors which might influence a method’s adoption,

such as profits and other effects on livelihoods, equity

and gender considerations, the need for training or capi-

tal, and how well the practice fits local cultural

conditions [86]. Above all, we think it essential that this

assessment of ways forward is not bound by dogma: we

need to consider all options, from GM through to organic

farming, and identify likely winners based on data, not

ideology [1,19,20,25].
6. TOPIC 5. LEARNING HOW TO BETTER
INTEGRATE CONSERVATION AND AGRICULTURAL
POLICY
Alongside identifying on-farm techniques capable of

lowering the impacts of agriculture on wild nature,

we also need to develop those economic and policy instru-

ments needed for them to fulfil their potential to mitigate

environmental damage. For example, under a land

sparing approach, farming methods that increase yields

will not help the conservation of biodiversity at all

unless natural habitat that might otherwise have been

cleared for agriculture is spared (or farmland is restored

to nature). The evidence to date suggests that although

yield increases are sometimes associated with reduced

land conversion, the Borlaug effect is patchy and partial

[32,51,87–90]. Without explicit policy interventions link-

ing yield growth to land sparing, high yields can act as an

incentive for agricultural expansion [91], and land spared

from farming might be put to other uses than conserva-

tion. Clearly, for high-yield farming to consistently

benefit wild nature, we need to devise ways of simul-

taneously encouraging the setting aside or restoration of

other land for conservation (usually away from the farm

itself [92]). (Note that the same argument also holds in

reverse: the long-term conservation of intact habitats

threatened by conversion to agriculture is often likely to

depend—practically and, some would argue, ethically—

not just on enhanced protection but on alleviating

pressure by increasing yields on farmland elsewhere [93].)
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Figure 5. Schematic summarizing what some ‘biodiversity-friendly’ certification schemes currently endorse (a) compared with

landscapes that involve land sparing within large farms (b) or across a group of farms (c). In each landscape, the same total area
(denoted by the green shapes) is given over to wild nature, but recent evidence suggests that its value for other species and for
ecosystem services might increase from left to right, raising the question of whether certification could be realigned towards
incentivizing high-yield farmers to collectively set aside adjacent areas of land for conservation. Developed from ideas in
Edwards et al. [92] and Komar [97].
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India offers two local examples where conservation

efforts have generated both yield increases and land

sparing. In the remote Spiti Valley of the Trans-Himalaya,

herders who lost on average one-eighth of their livestock

each year to snow leopards (Uncia uncia) have joined an

insurance programme that covers their losses but also pro-

vides financial incentives for better shepherding. At the

same time, the villagers have set aside roughly 2000 hec-

tares from which livestock are excluded. This has enabled

the recovery of native ungulate prey, which in conjunction

with improved herding practices has caused depredation

of livestock by snow leopards to fall by two-thirds [94].

Meanwhile, in the western Ghats, villagers around

Bandipur National Park who have typically offset crop

losses to elephants (Elephas maximus) and wild boar

(Sus scrofa) by illegally grazing their cattle inside the

park have been given financial support to fence their

farms. This has boosted yields but also made entering

Bandipur no longer the most productive use of these

farmers’ time, so degradation of the park has slowed [95].

Developing instruments that can help yield growth and

deliver land sparing at larger scales is challenging but

there are several possibilities. One obvious route is

through greater government regulation and land-use

planning. For example, increased enforcement to reduce

deforestation is thought to be partly responsible for a

recent shift in the source of soybean production gains in

Mato Grosso, which are now being achieved less through

conversion of forest and more from yield growth and

expansion into pasture [96]. In many countries, there

may also be considerable scope for re-shaping govern-

ment subsidy schemes, with the suggestion, for instance,

that high-yielding farmers could become eligible for

agri-environment payments if they invest in large-scale

habitat restoration [61]. Payment schemes for securing

or enhancing the provision of ecosystem services could

have a role too: where expansion of low-yield farming is

a major threat, conditional payments for reducing habitat

loss could be used to support farmers to produce higher

yields on a smaller area. Such an approach could play

an especially important part in the implementation of

REDD (the UN-backed proposal for reducing emissions

from deforestation and forest degradation; [93]). One

other promising area for linking yield growth to land
Proc. R. Soc. B (2012)
sparing is through the market—for example, pressure

from environmental organizations and consumers is

thought to have been an additional factor in the dramatic

slowdown in forest conversion for soybean farming in

Mato Grosso state [96]. There are also suggestions that

certification schemes might be realigned away from reward-

ing low-yield farming towards incentivising producers

who instead—either individually or collectively—set aside

significant areas of land for conservation [97] (figure 5).

Although most attention in the literature (and in this

section) has focused on the problems of achieving land

sparing, the practical implementation of land sharing

has proved at least as difficult. Despite billions of euros

of investment each year in European agri-environment

schemes, for instance, biodiversity gains have often been

minimal [7,98,99]. Problems have included poor design,

poor execution, limited monitoring and a lack of adaptive

management. Elsewhere, there is a growing catalogue of

instances where promotion of low-yield farming has had

the unintended consequence of causing the conversion

or degradation of intact, previously non-farmed habitat

[89,100,101]. This reinforces the point that whether

they are intended to enhance delivery of benefits from

land sharing or land sparing, any promising policy

innovations need to be tested carefully, looking well

beyond the boundaries of the farms involved, and control-

ling as much as possible for potentially confounding

factors [85,102].
7. CLOSING REMARKS
The list of topics set out here is inevitably eclectic. Others

would doubtless have different suggestions. Nevertheless,

we believe that the efforts of conservationists, whether

working at local or global scales, would benefit from

being framed in the context of broad-reaching challenges

such as these. Burgeoning demand, growing worries

about food security and diverse advances in agricultural

technology mean farming and its impact on nature will

change very considerably over next the next 50 years.

Conservation has generally dealt with agricultural

change reactively—detecting major problems (such as

the side effects of DDT, the loss of winter stubbles or

the rapid expansion of biofuels) only after they have
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become widespread. We think such responses, though

necessary and understandable, are insufficient in an era

of accelerating agricultural change. Likewise, conserva-

tionists have typically had limited ambitions in their

approach to agriculture—looking only to influence activi-

ties which have harmful on-farm effects, rather than

thinking strategically about the impacts that different

approaches to farming have on overall patterns of land-

use, water availability, air quality and so on. We suggest

instead that there is a pressing need for conservation

researchers and practitioners to proactively and ambi-

tiously engage with farmers, plant breeders, nutrition

experts, retailers and consumers, and to work open-

mindedly, quantitatively, and—over large scales and
Proc. R. Soc. B (2012)
broad timeframes—to identify least-cost ways so as to

feed and fuel humanity into the future. Few other conser-

vation activities will have as great an influence on the fate

of wild nature.
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